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Abstract: This research investigates the factors that have effects on the occurrence of traffic 

collisions at highway-railroad grade crossings (HRGXs) using a two-stage classification and 

regression approach. In particular, the collinearity problem generally confronted in linear 

regression models is avoided by a pre-stratified structure in the explanatory variables. 

Classification and regression tree (CART) is adopted to identify the key factors that are 

responsible for traffic collisions at HRGXs. Using the HRGX crash and grade crossing 

inventory data provided by Taiwan Railways Administration (TRA) during 2008~2010 in 

Taiwan, the empirical study results indicate that number of daily trains and highway width are 

positively associated with crash frequency, and the four classifiers identified in the variable 

classification stage are also found to be positively related to the number of traffic collisions at 

HRGXs. 
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1. INTRODUCTION 

 

According to the annual statistical report released by Taiwan Railways Administration (TRA), 

Ministry of Transportation and Communication (MOTC), till December 2011 there were still 

555 Highway-Railroad Grade Crossings (HRGXs) in Taiwan. From 2008 to 2010, 105 

crashes have occurred at 569 HRGXs in Taiwan and resulted in 26 fatalities and 25 injuries. 

These numbers are much higher than those in the international rail community (Laffey, 2010). 

Despite HRGX crashes are rare incidents, they might incur significant number of casualties 

and different degrees of property losses. In 2009, although only approximately 5% of the total 

incidents in the entire TRA system are HRGX related, the average casualty impact of the 

traffic collisions at HRGXs are three times higher than that of the total railway incidents 
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(TRA, 2010). Facing such a serious safety problem, how to identify the key factors causing 

traffic collisions and their potential impacts is a crucial issue for the rail authority in Taiwan. 

According to the American Public Transit Association (APTA), an HRGX is that where 

the railroad crosses the road and users share the same right-of-way (ROW) and installs traffic 

control equipment on both sides to make sure that highway users and trains are passing safely. 

In this spatial area, because of different kinds of transportation modes passing through or 

driving around, there are two different traffic characteristics. On the railway side, trains with 

large mass can’t arbitrarily change the direction and have slow reaction in emergencies. On 

the highway side, users including motor vehicle, pedestrian, and cyclist have shorter stopping 

distance and are able to easily control direction and quick reaction in case of emergencies. 

The purpose of traffic warning/control equipment is to promote a safer and more efficient 

operation of both rail and highway traffic at an HRGX. Both passive- and active-type traffic 

control devices are widely employed, including traffic sign, signal, markings, illumination, 

emergency button, train detection device, flashing light and warning bell, barrier-protected 

gate, and the addition of extra warning devices such as barrier or wayside horn, and law 

enforcement camera, etc. 

In recent years, the TRA maintains a good crash database and HRGX inventory dataset. 

Hence a few local researches used statistical models to analyze these crash data. Hu et al. 

(2010; 2011; 2012) investigated crash severity, risk levels, and crash frequency using 

different categorical or count data regression models such as generalized logit model, 

zero-inflated Poisson model, and negative binomial model in which traffic exposure variables 

including number of daily trains and average daily roadway traffic are always found to be 

positively associated with the risk levels of an HRGX. 

There are numerous researches modeling HRGX crash frequency and/or severity in the 

international rail community. Saccomanno et al. (2004) used a risk-based model to identify 

highway-rail grade crossing black spots in which two components are specifically modeled: 

crash frequency and consequence. The model was applied to the Canadian HRGX inventory 

and crash data for the period of 1994-2001. Poisson and negative binominal (NB) frequency 

prediction expressions were developed for crossings with three types of warning devices. 

Finally, an NB expression which has better fit to the crash frequency was developed for the 

crash consequence model. The spatial distribution of black spots is discussed with respect to 

the type of warning device, upgrades in warning device, geographic location, and historical 

crash frequency. In addition, some research used zero inflated models to investigate the traffic 

collisions at HRHXs because crashes are rare incidents and traditional statistical models 

might underestimate the probability (Lee et al., 2005; Lord et al., 2005; Lord et al., 2007). 

The application of count data statistical models, however, has been plagued by a number 

of methodological and practical issues, such as a lack of statistical significance of factor 

inputs, higher-order interaction between data, and the presence of collinearity among model 
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inputs (Chang and Chang, 2005; Chang and Wang, 2006; Park and Saccomanno, 2005). To 

improve these deficiencies, Park and Saccomanno (2005) used tree-based data mining 

technique and statistical methods to estimate the main and interactive effects of introducing 

countermeasures at individual grade crossings in Canada. Yan et al. (2010) also applied a 

nonparametric statistical method, hierarchical tree-based regression (HTBR) model, to predict 

train-vehicle crash frequency for passive grade crossings controlled by cross bucks only and 

cross bucks combined with stop signs, respectively; and assess how the crash frequency 

changes after the stop-sign treatment is applied at the crossbuck-only-controlled crossings. 

Additionally, to analyze the severity levels of highway traffic crash, Chang and Chen (2005) 

and Chang and Wang (2006) considered that the classification and regression tree (CART) 

model is a good alternative to identify the risk factors that are associated with the occurrence 

of highway crashes. 

As revealed in the above literature review, modeling traffic collisions using one-stage 

count data statistical models confronts with some theoretical problems. Thereby, in this 

research we use a two-stage hierarchical regression model framework to investigate the main 

and interaction effects of a set of explanatory variables, and explore the key factors that might 

contribute to traffic collisions at HRGXs. In summary, the objectives of this research are 

twofold: 1) to identify the risk factors associated with traffic collisions at HRGXs; and 2) 

evaluate the countermeasure effects of the identified significant variables. This research 

conducts the empirical study by using the HRGX crash dataset collected by the TRA during 

2008~2010. The dataset also includes the basic properties and attributes of the investigated 

HRGXs, such as crossing types, highway geometric characteristics, daily trains, and highway 

vehicular traffic, etc. 

The remainder of this paper is organized as follows. Section 2 describes the 

methodological aspect of the proposed two-stage hierarchical regression model framework. 

Section 3 depicts the crash dataset and crossing inventory data used in the empirical study. 

Section 4 provides the empirical study results and insight into the policy implications. Finally, 

findings and limitations of this research are summarized in Section 5, and future research 

directions are also suggested. 

 

 

2. METHODOLOGY 

 

In view that crash data are discrete and nonnegative integer in nature, we use a two-stage 

hierarchical regression model framework to explore the risk factors at HRGXs. In the first 

stage, a tree-based data mining method is adopted for crash data classification. In the second 

stage, a count-data statistical model is used to identify the causal relationship between the 

classified risk factors and crash frequency. Details of the methodologies are described below. 
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2.1 Tree-based Data-mining Methods 

 

A hierarchical tree-based regression model which is a data exploration method classifies 

observations by recursively partitioning the predictor space. Due to its non-parametric nature 

and easy interpretation, it has received wide popularity in various fields (Chang and Chang, 

2005; Chang and Wang, 2006). Compared with the traditional linear regression models or 

count-data statistical models, hierarchical tree-based regression models effectively deal with 

the complex relationships among the explanatory variables such as collinearity and interaction 

effects in a large data set (Conerly et al., 2000). 

Classification and regression tree (CART) which is a popular data mining technique is 

used in this research. The CART algorithm, originally proposed by Breiman et al. (1983), is a 

simple non-parametric method. The prediction rules are given in the form of binary decision 

trees and it is easy to understand, use, explain, and interpret. In this study, a commonly 

applied technique called recursive partitioning (RPART) is used to identify the interactions 

among a set of risk factors for traffic collisions at HRGXs. 

RPART is characterized by the application of splitting rules in the data. It splits a sample 

into binary subsamples using a set of “yes-no” questions. The sample at a higher level is split 

into two left and right lower-level subsamples. Continue splitting sample according to node 

impurity until it cannot be split any further. At this time, the end node is called terminal node 

and represented by a rectangular. Besides, the other nodes are called non-terminal nodes (the 

decision nodes) and represented by a circle. Figure 1 shows an example of a tree structure. 

 

 

Figure 1. Tree structure using RPART 

 

The RPART guiding principles used to construct the hierarchical regression trees contain 

the following four steps (Park and Saccomanno, 2005). 

�� � d 

yes no 

�� � e 

yes 
no 
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1. RPART starts with the root node; RPART performs all splits on each of the explanatory 

variables, applies a predefined node impurity measure to each split, and determines the 

reduction in impurity that is achieved. 

2. RPART then selects the best split by applying a goodness-of-split criteria and 

partitioning the data set into left and right sub nodes. 

3. Because RPART is recursive, it repeats Steps 1 and 2 for each of the nonterminal nodes, 

resulting in the largest possible tree. The change in impurity of node t of each split can be 

estimated using the following expression: 

� 	
�, 
� � 	

�� � 	

�� � 	

�� (1) 

where, 

 	

�� � impurity	
i. e. , deviance�	at	current	node	
, 
 	

�� � impurity	
i. e. , deviance�	at	the	left	subnode	
�, and 

 	

�� � impurity	
i. e. , deviance�	at	the	right	subnode	
�. 
  4. From the series of splits generated by a variable at a node, the rule is to choose the split 

that maximizes the reduction in the impurity at the current node. The best split is that 

associated with the highest � 	

� value. 

In the likelihood-ratio (LR) criterion, each node’s impurity is measured as the within-node 

deviance: 

	

� � ∑ )*+ 	,-. / 01
23415 � 6*+ � 78
+9:  

(2) 

where, 

 *+ � observed	event	count	for	observation	;, 
			
+ � baseline	measure	for	observation	;	
e. g. , index	of	the	time	and	space�, and 

 78 � ∑01
= � observed	overall	event	rate. 

The impurity measure has the property that D

�� ? 	

�� @ 	

��, meaning that the 

current impurity estimate is greater than or equal to the impurity estimates of the node created 

at the current split. Using this character, we can build the right-size tree for the causal analysis 

in the second stage. More details about tree-growing and tree-pruning algorithms for the 

RPART can be found in Breiman et al. (1983). 

 

2.2 Count-data Statistical Models 

 

After identifying the hierarchical relationship between crashes and the explanatory variables 

in the CART model, we will use count data statistical regression models to further investigate 
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the key factors contributing to traffic collisions and/or casualties at HRGXs. For crash 

frequency analysis, many researches used Poisson regression, negative binominal (NB) 

regression, or Zero-inflated Poisson (ZIP) regression models. Since crash frequency is count 

data with discrete and nonnegative integer characteristics, hence Poisson regression model is 

more suitable than multiple linear regression models. However, the overdispersion problem 

frequently found in most crash data where the variance of data is greater than their mean; 

resulting that mean estimates given by Poisson regression models might be biased. On the 

other hand, negative binomial models provide a plausible general form that effectively 

captures data overdispersion phenomena, and it is applied to the present research. 

The NB regression model is similar to a Poisson regression model except that an error 

term with Gamma distribution is associated with the mean of an event (here we define such an 

event is a traffic collision(s) at HRGXs). The functional form of a NB model is as following: 

7+ � ABC1DE1 
(3) 

It can be rewritten as: 

ln 7+ �FG+ @ E+ 
(4) 

where, 

7+: expected number of collisions from Poisson regression; and 

  EH~JKLLK
1, N��. 
The conditional probability has the following form: 

O
K+|E+�＝ QRSTU21 QRS
E1�VT21 QRS
E1�VW1
X1! 	，K+ � 0,1,2,… ; ; � 1,2,… , ^.  

(5) 

Eq. (5) formulates the probability of K+ times occurred at the ;4_ HRGX in a given period 

of time. 

Using Eq. (5), we can obtain the following probability distribution by integral operation: 

O
K+� � `
aDX1�
`
a�X1! b+a
1 � b+�X1   

(6) 

where b � a
aD21

, c � �
d, and Γ6‧9 is the gamma function. 

 

The expected value and variance are given below: 

fTg+V � b 
(7) 

hKiTg+V � b @ Nb� (8) 

 

The maximum Likelihood estimation function of the NB regression model for 	7+ is given as 

follows: 
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(9) 

From Eqs. (7) and (8) one can see that this model allows the variance to exceed the mean, 

and hKiTg+V � 	fTg+VT1 @ Nf
g+�V � fTg+V @ NfTg+V� . By this equation, the Poisson 

regression model can be regarded as a limiting model of the negative binomial regression 

model as α approaches 0 and the expected value is equal to its variance. In other words, once 

α is equal to 0, the NB distribution will be becoming the Poisson distribution. Hence, the 

Poisson regression model is a special case of the NB model, where α is the overdispersion 

parameter. 

In consideration of the data overdispersion, Cameron and Trivedi (1990) and Greene 

(2000) proposed a statistic hypothesis test to decide a suitable model between Poisson and NB 

models. The hypotheses of this model selection test are listed below: 

H 0 :	N � 0 
H 1 :	N t 0 

(10) 

We can test that if the overdispersion parameter N is zero or not by using the t-test. 

Finally, if we reject the null hypothesis (i.e. N t 0 ), meaning that the expected value does 

not equal to variance of the data, and the decision rule is to choose the NB model; otherwise 

we choose the Poisson model. In both of the models, the likelihood ratio statistics u� is used 

as an indicator to examine the performance of the used model(s). 

 

 

3. DATA DESCRIPTION 

 

3.1 Data Collection 

 

Up to 2011, there are 542 HRGXs at the Taiwanese traditional railway system (i.e. the TRA 

system). The crash data for the empirical study were collected by the TRA, MOTC during 

2008~2010. Relevant crash history and crossing inventory data of a total of 795 HRGXs were 

collected. The dataset includes both crash and basic attributes of the investigated HRGXs. 

In the traffic collision data, it includes crash frequency, number of injury and fatalities. 

Besides, the basic attributes collected are: railway operation (e.g., daily trains, train speed, 

and number of tracks), crossing facilities (e.g., crossing type, crossing angle, obstacle 

detection device, flash light and warning bell, and emergency button, etc.), and highway 

characteristics (e.g., highway type, grade, width, and daily vehicular traffic, etc.). 

 

3.2 Description of the Empirical Data 
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In the 795-HRGXs dataset, by removing those being abolished, elevated, or closed to use 

of the HRGXs after 2010 and those with incomplete data registration, a total of 569 HRGXs 

were selected for the empirical study. 

In the dataset, 105 crashes in total and 12 HRGXs confronting with one traffic collision 

during the three-year time period. These traffic collisions have resulted in 26 fatalities and 25 

injuries. In addition, these crashes involved 32 automobiles, 24 pedestrians, and 22 

motorcycles, which account for 74% of all the vehicle types. Table 1 provides the detailed 

description of the variables. 

 

Table 1. Definition of the variables 

Feature Variable Description Type Definition 

Traffic 

accident 

and 

casualty 

Crash target variable Categorical 0: no crash; 1: an crash 

Injury number of injuries 

caused by a crash 

Quantitative number of injuries 

Fatality number of fatalities 

caused by a crash 

Quantitative number of fatalities 

Rail Line TRA’s main operating 

lines around the Taiwan 

main island 

Categorical 1: western line; 2: Taichung 

line; 3: Pingtung line; 4: 

Yilan line; 5: North-link line; 

6: Taitung line; 7: South-link 

line; 8: Linkou line; 9: 

Neiwan line; 10: Jiji line; 11: 

Taichung harbor line; 12: 

Kaohsiung harbor line; 13: 

other lines 

Daily trains number of trains at an 

HRGX 

Quantitative number of trains per day 

Train radio radio used to provide 

message for protecting 

train from crash 

Categorical 0: without; 1: with 

Highway Number of 

daily traffic 

daily highway vehicular 

traffic 

Quantitative PCUs per day or AADT 

Road width highway width of an 

HRGX 

Quantitative meter 

Highway level highway function and 

administration 

Categorical 1: provincial highway; 2: 

urban road; 3: prefectural 

road; 4: community road; 5: 
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county road; 6: village road; 

7: agriculture road; 8: special 

road; 9: port road 

Highway signal number of coordinated 

highway intersections 

Quantitative number of highway signals 

coordinated 

Vehicle type main vehicle or user 

type 

Categorical 1: truck; 2: pickup; 3: 

automobile; 4: motorcycle; 5: 

bicycle; 6: pedestrian; 7: 

agricultural vehicle; 8: others 

Crossing Crossing type type of HRGX Categorical 1: type one; 2: type two; 3: 

type three; 4: manual; 5: 

special; 6: half-closure 

Crossing width railway width of an  

HRGX 

Quantitative meter 

Crossing angle angle of the railroad 

crossing the road 

Quantitative degree 

Surface type HRGX’s crossing 

surface type 

Categorical 1: flat; 2: raised; 3: 

depression; 4: slant; 5: others 

6-meter arm number of four-quadrant 

gates with 6-meter arm 

Quantitative positive integer 

8-meter arm number of four-quadrant 

gates with 8-meter arm 

Quantitative positive integer 

Flash flashing light Categorical 0: without; 1: with 

Alarm warning bell Categorical 0: without; 1: with 

Surveillance video surveillance 

camera 

Categorical 0: without; 1: with 

Manual 

warning 

manual warning device Categorical 0: without; 1: with 

Auto warning automatic warning 

device 

Categorical 0: without; 1: with 

Small indicator traditional train 

approaching direction 

indicator 

Categorical 0: without; 1: with 

Large indicator advanced LED train 

approaching direction 

indicator 

Categorical 0: without; 1: with 

Detector infrared obstacle Categorical 0: without; 1: with 
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detector 

Emergency 

button 

equipment used in 

emergency situations 

Categorical 0: without; 1: with 

Gate quadrant-type barrier at 

HRGXs to avoid 

breaking incidents 

Categorical 0: without; 1: with 

Others Weather climatic condition when 

a crash is occurred 

Categorical 1: sunny; 2: cloudy; 3: rainy; 

4: typhoon 

Responsibility whether the TRA is 

responsible for the crash 

Categorical 0: no; 1: yes 

Region administrative region 

around the main island 

of Taiwan 

Qualitative 1: north (Taipei, Keelung, 

Taoyuan, and Hsinchu); 2: 

west (Taichung, Nantou, 

Miaoli, Changhua, and 

Yunlin); 3: south (Chiayi, 

Tainan, Pingtung, and 

Kaohsiung ); 4: east (Yilan, 

Hualien, and Taitung) 

 

 

4. RESULTS AND DISCUSSION 

 

4.1 Results of the CART Classification 

 

Thirty variables were used in an attempt to identify the potential influence factors that might 

cause traffic collisions and/or casualties at HRGXs. This research has developed the CART 

model to classify the risk factors. Figure 2 shows the overall classification result. The tree 

finally produces a total of twenty three terminal nodes, and the tree can be classified 

according to the TRA’s main operating lines, highway level, road width, number of daily 

traffic, and some crossing attributes. The result indicates that those variables are critical to 

explain the causes of crashes at HRGXs. It is easy to depict the hierarchical relationships 

among the explanatory variables. In the root node, the model starts splitting based on the 

variable of (train) Line. This indicates that TRA’s main operating lines are suitable to classify 

traffic collisions at HRGXs, which can significantly distinguish the target variable by 

reducing the impurity of the nodes). CART classifies the lines of Pingtung, Taitung, 

South-link, Jiji, Taichung harbor, Kaohsiung harbor, and other lines into the left side of the 

tree (See Fig. 3). Because these lines possess similar operational characteristics; they serve 

relatively less number of daily trains on these lines. Therefore in node 2, we can 
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conspicuously find that under these less busy lines, the probability of traffic collision only 

accounts for 3.4%. The next split variable is Highway level, shown in terminal node 1, 

including highway levels of provincial highway, urban road, lane, county road, village road, 

agriculture road, and port road. In terminal node 1, the probability of crash is almost zero. 

Looking at the left-hand side of the tree, we conclude that for those HRGXs located in Jiji line, 

Taichung harbor line, and the highway level is prefectural road or special road, a higher crash 

probability is observed. 

 

In the right-hand side of the tree (see Figures 4 and 5), it is found that for the western, 

Taichung, Yilan, North-link, Linkou, and Neiwan lines, a higher crash probability is also 

found. It is because that more daily trains serving these lines; causing more traffic collisions 

in these service areas. Finally, under these different influence factors, the significant crash 

rates are found in terminal nodes 15, 18, 21, and 23. The result indicates that when a grade 

crossing located at an area with higher daily trains, highway width greater than 4.95 meters, 

crossing angle less than 97.5 degrees, and the highway level is urban road or some non-main 

artery, a higher crash probability is generally observed. 
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Figure 3. Left-hand side of the CART result 
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Figure 5. Right-hand side of the CART result (2/2) 
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4.2 Count-data Statistical Model for Crash Frequency 

 

After identifying the key factors revealed in the first-stage of applying the CART algorithm, 

we can continue to conduct the count data statistical regression modeling to further explore 

the potential impact of the key factors on traffic collisions. 
Before starting the NB regression analysis, we need to decide which variables to be 

incorporated into the crash frequency model. The CART algorithm also provides beneficial 

information to objectively conduct the variable selection process. As a result, we selected 

seven variables into the NB modeling, including Crossing angle, Number of daily traffic, 

Daily trains, Line, Crossing width, Road width, and Highway level; four classifiers 

(interaction) variables C1, C2, C3, and C4 are also incorporated into the model process. 

Details of variable settings and description are provided in Table 2. 

The model estimation result shown in Table 3 indicates that the overdispersion parameter 

α is not significant (
 � 0.002 � 1.96), meaning that the expected value of the data is equal 

to its variance, so we choose the Poisson regression model for later analysis. Under the 5% 

level of confidence and referring to the CRAT classification results, we find that most of the 

selected variables are significantly associated with the occurrence of crashes. The empirical 

study result shows that the geographical and/or environmental conditions (C1~C4) have more 

probability causing traffic collisions at HRGXs. For instance, C1 represents terminal node 23 

in the CART result where the HRGXs are located at western, Taichung, Yilan, North-link, 

Linkoue, and Neiwan lines. In addition, for those HRGXs with road width greater than 4.95 

meters, highway signals are more than one. In Table 3, the coefficient of C1 is about 1.161, 

meaning that under the C1 environmental conditions, it significantly increases crash 

frequency (t-value = 3.403). 

Beside, line 2 also meanings that when an HRGX locate at the TRA’s main operation 

lines where relatively high traffic volume is observed, it could increase crash probability; the 

same finding is confirmed in the CART analysis. When crash frequency is increased, it would 

simultaneously increase the probability of injuries and/or fatalities. Finally, these coefficients 

of the selected variables are all reasonably positive, which conforms to our expectation. 

However, highway level and crossing angle are not found to be significant in this model. 
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Table 2. Variable settings and description for the NB regression model 

Variable Notation Definition 

Crossing width X1 Meter (m) 

Number of daily traffic X2 Passenger car unit (PCU) 

Daily trains X3 Trains/day 

Line Line 0 1 for Pingtung line, Taitung line, 

South-Link line, Kaohsiung-Harbor line, 

and other lines; 0 for otherwise. 

 Line 1 1 for Jiji line and Taichung harbor lines; 0 

for otherwise. 

 Line 2 1 for western, Taichung, Yilan, North-link, 

Linkou, and Neiwan lines; 0 for otherwise. 

Crossing width X5 Meter (m) 

Road width X6 Meter (m) 

Highway level Highway 0 1 for provincial highway, prefectural road, 

community road, and port road; 0 for 

otherwise. 

 Highway 1 1 for urban road, county road, village road, 

agriculture road, and special road; 0 for 

otherwise. 

Classifier 1 C1 1 for terminal node 23; 0 for otherwise. 

Classifier 2 C2 1 for terminal node 21; 0 for otherwise. 

Classifier 3 C3 1 for terminal node 18; 0 for otherwise. 

Classifier 4 C4 1 for terminal node 15; 0 for otherwise. 

 

In Table 3, we can further evaluate the model’s capability of modeling the crash data. 

The likelihood ratio statistics u� index is given as: 

u� � 1 � ��
B�
��
x�  

(11) 

where jj
F� is the log likelihood function with an intercept and predictors, jj
0� is 

restricted log likelihood with only an intercept. 

 

As shown in Table 3, the u� � 0.186 in the estimated model, indicating that the 

estimated model is statistically satisfactory. 
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Table 3. Results of the Poisson regression model 

Variable Coefficient Standard Error b/St. Er. 

Constant -3.998 0.469 -8.520 

C1 1.161 0.341 3.403 

C2 0.691 0.368 1.876 

C3 1.295 0.473 2.739 

C4 1.290 0.535 2.414 

Line 2 1.686 0.515 3.275 

X3 0.002 0.002 1.143 

X6 0.029 0.017 1.737 

Number of observations 502 

Log likelihood function -204.615 

Info. Criterion: AIC 0.847 

Finite Sample: AIC 0.848 

Restricted log likelihood -251.335 

McFadden Pseudo 

R-squared 

0.186 

Chi squared                    93.441 

 

 
5. CONCLUSIONS AND RECOMMENDATIONS 

 

This research analyzes the newly collected HRGXs data in Taiwan using CART to classify the 

HRGXs crash and inventory data, and accordingly develop count data statistical regression 

models to explore the causal relationships between crash frequency and a set of influence 

factors aiming to find the key risk factors causing traffic collisions at HRGXs. Based on the 

empirical study results, we summarize the findings, address the limitations, and provide future 

research directions as below. 

 

5.1 Findings and Conclusions 

 

In the CART analysis result, the variables of line, daily trains, road width, highway level, 

crossing width, number of daily traffic, crossing angle, and some equipment variables are the 

important factors resulting in traffic collisions at HRGXs. Specifically, for those HRGXs 

located at the TRA’s main operating lines, larger road width, and higher vehicle volume, it 

might result in a higher possibility of a crash. Secondly, by conducting the Poisson regression 

modeling process, we verify the same result of the selected influence factors. Furthermore, 

despite the newly collected HRGX data are relatively less in terms of number of traffic 
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collisions in these three years, using the non-parametric method can help us identify the data 

collinearity and interaction problems. The empirical study results also show that the two-stage 

hierarchical regression model framework for the investigation of traffic collisions at HRGXs 

is satisfactory. Finally, the risk factors identified in this research are expected to provide the 

TRA with beneficial information to undertake effective safety improvement programs. 

 

5.2 Limitations and Future Research 

 

One of the research limitations is the relatively short time period of data collection (2008 

through 2010). A lack of sufficient samples makes it difficult to reveal the key risk factors 

affecting the safety levels at HRGXs. For example, the current dataset can’t provide us with 

further crash risk analysis in terms of crash severity and/or number of casualties in a given 

period of time at HRGXs. For future research, a number of issues can be pursued. First, from 

the methodological perspective, some advanced statistical models for count data can be 

adopted and evaluated for data correlation research. By comparing the identified risk factors 

and prediction performance between different statistical models, it can provide valuable 

insights into the underlying relationships between a set of risk factors and traffic collisions at 

HRGXs. Second, in the data collection process, we did not evaluate data collection methods 

in this research. Future studies might investigate the effect of non-random samples on the 

analysis results of the adopted non-parameter models. Finally, in this study we only consider 

of geographical and/or environmental conditions at HRGXs; highway users’ behaviors at 

HRGXs is one of the main concerns that is worthy of further investigation. 
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