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Abstract: This study proposed a real-time inductive loop signature based vehicle 

reidentification approach, RTREID-2M, which improved the previously developed 

RTREID-2 algorithm on two aspects: (1) Develop a cubic spline data imputation approach to 

replace the existing linear data imputation approach in order to improve the raw signature data 

quality; (2) Improve the time window setting for vehicles on High-Occupancy Vehicle (HOV) 

lanes so that vehicles on HOV lanes traveling with free flow speeds would be considered 

when generating candidate vehicle sets even during congestion time periods. In addition, a 

stratified-random sampling method was developed to effectively perform grouth-truthing task 

for evaluating the performance of the proposed RTREID-2M. The evaluation results showed 

desired performance for vehicle reidentification and travel time estimation under both 

free-flow and congested flow traffic conditions. The future research will focus on the 

potential applications and arterial vehicle reidentification utilizing the inductive loop 

signature technologies. 

Keywords: Vehicle Tracking, Vehicle Reidentification, Vehicle Signature, Inductive Loop 

Signature, Inductive Loop Detectors, Travel Time 

1. INTRODUCTION

Inductive Loop Detector (ILD) systems are currently the most invested technology for 

obtaining traffic data in the United States and are widely deployed on many major freeway 

networks. Inductive loop detectors are connected to traffic controllers via conventional 

bivalent ILD cards and they provide traffic agencies with accurate volume and occupancy 

information. When installed in a double loop speed trap configuration, they can also provide 

point speed and electronic vehicle length information. Otherwise, aggregate traffic speed 

information is usually estimated using other methods, which assume some representative 

static or dynamic electronic vehicle length value commonly known as the g-factor (Wang and 

Nihan, 2003). However, this speed information is a point-based measure. It does not capture 

traffic conditions between detector stations and hence may not accurately represent prevailing 

traffic conditions along a corridor. This is especially a concern during unstable traffic 

conditions when traffic flow exhibits the highest volatility and compressibility. 

Although the data obtained from conventional ILD systems is not suitable for obtaining 

origin-destination information, conventional ILD systems are found to be used to generate 

various traffic performance measures. However, the measures they provide, such as volume, 

point speed estimates, and density estimates, are primitive, and assumptions and factor 

adjustments are required to yield sufficient insight and certainty of knowledge needed for 

making key decisions in traffic operations and management. 

Unlike the conventional ILD systems that provide bivalent outputs to indicate vehicle 

presence, the inductive loop signature-based detector systems measure and output the 
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inductance changes (referred as "Magnitude") in an inductive loop detector. This series of 

inductance changes caused by each traversing vehicle produce an analog waveform output 

and is referred to as the inductive vehicle signature. Inductive loop signature-based systems 

have shown the potential to address the needs of traffic management agencies and have the 

advantage of being directly compatible with existing traffic controllers and Traffic 

Management Center (TMC) operations. 

The existing conventional ILD systems can be swapped directly with the inductive loop 

signature-based detector systems without suffering any loss in system functionality. Another 

advantage of inductive loop signature technology is its ability to harness the vast 

infrastructure of the currently installed base of inductive loop detectors. The loop signature 

technology has been further implemented in the real-world and its performance has been 

demonstrated through academic research (Jeng et al., 2010; Tok et al., 2008). Additionally, it 

has been demonstrated that the implementation of inductive loop signature equipment does 

not affect existing traffic operations and management systems. No pavement work, and thus 

no lane closure or traffic rerouting, is required to integrate an inductive loop signature-based 

system. 

Therefore, a real-time inductive loop signature-based vehicle reidentification algorithm 

is proposed in this study. A vehicle tracking system between two locations using inductive 

loop signature technology is performed to demonstrate the capability and accuracy of the 

proposed methods. A ground-truthing system and evaluation procedure will be developed for 

system assessment and input into a rigorous statistical analysis comparing the tracked vehicles 

against the ground-truthed vehicles. 

 

 

2. INDUCTIVE LOOP SIGNATURE TECHNOLOGY 

 

2.1 Inductive Vehicle Signatures 

 

As mentioned above, the inductive vehicle signature is an analog waveform output from the 

inductive loop signature-based detector systems. Samples of inductive vehicle signatures for 

various vehicle types are presented in Figure 1, which shows that there are clear distinctions 

observed in the signatures across different vehicle types. 

 

  
(a) Passenger car   (b) Pickup truck 

  
(c) School bus   (d) Semi-trailer truck 

Figure 1. Inductive vehicle signatures obtained from a 6-ft square inductive loop detector 
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The reason for different vehicle types having different shapes of signatures are due to 

their different attributes, including size, mental mass, axles, distance between the metal 

surfaces on the under carriage of the vehicle and the road surface, etc. For vehicles of the 

same type, their signatures have many similarities due to the similar vehicle design. For the 

same vehicle, its signatures at different loop detector stations are identical in ideal conditions 

(Sun et al., 1999); however, they are usually very similar but not the same. This is because a 

loop detector station is composed of a few components, including the roadway geometry, 

physical inductive loop detector, lead-in cables, and detector circuitry. The signatures change 

with vehicle speed, vehicle offset (both horizontally and vertically), loop type, loop condition 

and detection sensitivity settings, etc. Figure 2(a) shows a vehicle's signatures at two adjacent 

loop detector stations. They look different vertically and horizontally. The vertical differences 

are due to the different detectors, vehicle offset, and external environmental factors. The 

horizontal differences are mainly caused by different traveling speeds. 

 

0

45000

0 0.3

M
ag

n
it

u
d

e

Duration (second)

Upstream loop

Downstream loop

0

1

0 0.3

N
o

rm
al

iz
ed

 M
ag

n
it

u
d

e

Duration (second)

Upstream loop

Downstream loop

 
 (a) Raw signature    (b) Y-axis normalized signature 
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(c) Processed signatures after X-axis and Y-axis normalization 

Figure 2. Raw and normalized signatures for the same vehicle at different loop detector 

stations (Jeng et al., 2012) 

 

Figure 2(b) and Figure 2(c) illustrates that the signatures from the same vehicle are very 

alike at different loop stations after performing x and y normalization. Figure 2(b) shows the 

processed signatures after y-axis normalization. Figure 2(c) shows the processed signatures 

after x-axis normalization, which only keeps 60 data points along the x-axis for both 

signatures. 

The signatures' similarities for the same vehicle and among vehicles of the same type 

are the basis for vehicle tracking and classification using the inductive loop signature 

technology. Some existing research shows that when inductive vehicle signatures are matched 

across adjacent ILD stations, measures such as section-based speeds, travel times, and 

densities can be obtained (Oh et al., 2005; Jeng et al., 2010; Kwon and Parsekar, 2006; Oh 

and Ritchie, 2005). These measures can be further analyzed by vehicle type or by lane to yield 

even more detailed travel information if required. Researchers have also shown that inductive 
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loop signature technology possesses the ability to distinguish between passenger and 

commercial vehicle classes in the FHWA (Federal Highway Administration) vehicle 

classification scheme (Sun et al., 2003; Jeng and Ritchie, 2008; Gajda et al., 2001; Ki and 

Dail, 2005). This addresses the limitations of axle-based classification systems, which have 

problems distinguishing between passenger vehicles and light duty trucks as well as between 

single unit trucks and buses (Wang and Nihan, 2003; Zhang et al., 2006; Coifman and Kim, 

2009). 

Considering the vast infrastructure of the currently installed inductive loop detectors, 

the inductive loop signature technology has the potential to make the existing traffic 

performance measurement system collect more useful and accurate data for traffic 

information and traffic control and management applications. 

 

2.2 Inductive Loop Signature-based Vehicle Reidentification Algorithms 

 

One of the major research efforts for the implementation of the inductive loop signature 

technology is the development of inductive signature based vehicle reidentification  

algorithms. These algorithms reidentify a vehicle at a downstream detection station by 

matching an inductive signature from an upstream detection station based on the assumption 

that a vehicle will possess essentially the same normalized inductive signature when passing 

different loop detection stations (Sun et al., 1999). Researchers have developed several 

vehicle reidentification algorithms, including Piecewise Slope Rate (PSR) matching (Jeng et 

al., 2010; Jeng and Ritchie, 2006), Lexicographic Optimization (Sun et al., 1999; Oh and 

Ritchie, 2002), decision trees (Tawfik et al., 2004; Abdulhai and Tabib; 2003), maximum 

a-priori classifier (Ndoye et al; 2008), and blind deconvolution (Kown and Parsekar, 2006). 

Each of the studies adopts various techniques for raw signature processing, signature feature 

extraction, and vehicle matching. 

A PSR matching method, named RTREID-2 (Jeng and Ritchie, 2006) is adopted for 

further investigation in this study. The RTREID-2 reidentifies a vehicle at a downstream 

detection station by matching PSRs of inductive signatures from an upstream detection station. 

The PSR approach is employed to compress and transform the raw vehicle signatures first. 

Vehicle matches are then identified based on search methods applied to the averaged PSR 

differences within appropriate time windows. The advantage of RTREID-2 is its 

straightforward application to square or round inductive loop detectors in a single loop 

configuration. The results reported from the algorithm development have shown that with 30 

PSR values extracted, the correct matching rate was 80.8% and the system reliability was 

81.9% under light to moderate flow condition. 

Another study by Jeng et al. (2012) reported the results of a 6.2-mile freeway corridor 

implementation of RTREID-2 to provide traffic performance measurements under congested 

morning peak-period conditions. The repeatability of RTREID-2 was first examined using 

square single loop data, and then the applicability of RTREID-2 was assessed using round 

single loop data. The transferability of RTREID-2 to a heterogeneous detection system, 

including one square single loop detection station and one round single loop detection station, 

was also investigated. The corridor travel time and speed analysis were conducted and 

compared with GPS measurements from probe vehicles. The correlation between GPS and 

RTREID-2 speeds was also examined, and strong positive association between GPS speeds 

and RTREID-2 speeds was observed. The results suggest that RTREID-2 has the potential to 

be implemented successfully in freeway corridors that experience frequent congestions. 

Moreover, the flexibility of utilizing either a single type or a combination of existing round 

and square inductive loop detector infrastructure has made RTREID-2 readily deployable to 

Proceedings of the Eastern Asia Society for Transportation Studies, Vol.9, 2013



 

 

 

most inductive loop detector equipped corridors. 

In this study, RTREID-2 is further improved to address noises observed in vehicle 

signatures and refine the time window setting for vehicles traveling on the High-Occupancy 

Vehicle (HOV) lanes. The detailed discussions on RTREID-2 and the proposed modification 

to RTREID-2, which is referred to as RTREID-2M, are described in the next section. 

 

 

3. METHODOLOGY 

 

3.1 Existing RTREID-2 Algorithm 

 

RTREID-2 is the third generation of vehicle reidentification algorithm developed by the 

research team at University of California, Irvine (UCI). Unlike the first two generations of 

algorithms, REID-1 (Sun et al., 1999) and REID-2 (Jeng and Ritchie, 2005) that were 

designed for the off-line use, RTREID-2 was designed to reidentify vehicles in near real-time. 

RTREID-2 needs the field computers to extract the feature data, i.e., 30 PSR values, from the 

raw vehicle signatures, which typically consist of 200~1,800 data points. The PSRs are then 

sent to the center where vehicles are reidentified through matching PSRs. RTREID-2 provides 

a practical solution because of the use of less computational resources for signature data 

preprocessing and less communication bandwidth for data transmission.  

The procedure of data preprocessing and vehicle reidentification procedure in 

RTREID-2 can be summarized in seven steps (further details can be found in Jeng and Ritchie, 

2006; Jeng et al., 2010). 

 

Step 1: Data Cleaning and Imputation. After getting raw signature data from loop 

signature detector card, the bad signature data are removed. The remaining 

signature data are analyzed and the missing data are imputed using a linear 

interpolation method. 

Step 2: Normalization and Noise Elimination. The inductance value (i.e., magnitude) of 

each individual vehicle is normalized using its range so that the normalized 

magnitudes distribute from 0 to 1. The normalization process is applied to eliminate 

the vertical differences between signatures from the same vehicle at different 

detection stations. 

Step 3: Noise Elimination. The signature data may be full of noises when the magnitude 

is low. As a result, the lowest 20% (which is a tunable parameter) of the magnitudes 

is considered as noises and is removed. Thus, only a subset of each vehicle 

signature that the normalized magnitudes from Step 2 are within the range from 0.2 

to 1.0 is extracted in order to eliminate noise caused by the external environment 

factors.  

Step 4: Interpolation. The signature data are stretched or shrunk to obtain an identical 

number of data points per vehicle signature using a cubic spline method (Figure 

3(a)). The process is used to eliminate the horizontal differences between signatures 

since vehicles may be traveling with different speeds at different detection stations.  

Step 5: Piecewise Slope Rate (PSR) Calculation. The slope rate is calculated at a fixed 

interval size. The interval size used in the current RTREID-2 is 2. Thus, a signature 

with 60 data points has 30 PSR values as shown in Figure 3(b) and Figure 3(c). For 

example, if assuming the data point located at    1 1,   2,   0.2236x y   and the next 

data point is located at    2 2,   4,   0.4747x y  , then the slope rate is: 

Proceedings of the Eastern Asia Society for Transportation Studies, Vol.9, 2013



 

 

 

       2 1 2 1/ 0.4747 0.2236 / 4 2 0.12555y y x x      . 

Step 6: Candidate Vehicle Set Formation. A candidate vehicle set is defined via temporal 

search space reduction for establishing a feasible time period to include possibly 

matched vehicles at upstream detection station. The time window is estimated 

based on real-time traffic condition and the time window of the last 30-second time 

interval. 

Step 7: Vehicle Matching. Every 30 sec, a vehicle matching process is performed as 

shown in Figure 3(d). This process includes several sub-steps: 

1) Compute and sum the differences between PSRs obtained from the 

downstream target vehicle and each upstream candidate vehicle; 

2) Find the Average of the total PSRs Differences (AMD); 

3) Perform a minimum AMD search to decide the best match. 
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(a) Step 4: Data Interpolation (CASE_840) 

0

0.1

0.2

0.3

0.4

0.5

0.6

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64

(X1,Y1) =

(28, 0.2236)

(X2,Y2) =

(56, 0.4747)

PSR2 =(Y2 - Y1) / (X2 - X1)

= 0.007986

 
(b) Step 5: PSR Calculation 

Piecewise Slope Rate (PSR = 30)
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(c) Step 5: PSR Plot 

Piecewise Slope Rate (PSR = 30)
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(d) Steps 7: Vehicle Matching 

Figure 3. The procedure of RTREID-2 (Jeng and Ritchie, 2006) 

 

3.2 Improvement of RTREID-2 

 

3.2.1 Data Imputation Algorithms 

 

Data missing is frequently observed when a vehicle travels with a higher speed (i.e., shorter 

duration on the loops) or when frequent interference from adjacent lanes is observed (e.g., 

under congestion condition). As explained in 3.1, a linear data imputation approach is adopted 

in RTREID-2 to fill in the missing data when signature data is collected from the detector 

card. The linear data imputation approach is effective when few signature data dropping is 

present. However, when many signature data are dropped, the approach is not suitable and the 

signature after imputation presents the zigzag patterns as shown in Figure 4. The dataset may 
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become very noisy (e.g., the dataset used in this study) and the original RTREID-2 will not 

perform sufficiently without further modification. Therefore, we proposed and evaluated two 

new data imputation approaches to fill in the data gaps while approximating the shape of the 

original waveform in this study. These two approaches are Cubic Polynomial and Cubic 

Spline approximation. 
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(a) Raw siganture with issues    (b) Signature with linear imputation 

Figure 4. Raw signature and signatures with linear data imputation approach 

 

A cubic polynomial is a polynomial function of degree three. The general cubic 

polynomial equation can be written as: 

 

  3 2

3 2 1 0f x a x a x a x a     (1) 

 

Cubic spline approximation is a piecewise curve fitting method (Gerald and Wheatley, 

1989). For the case with equal intervals, given the ith interval, the cubic function connects 

points and the function is defined by: 

 
3 2( ) ( ) ( )i i i i i i if a x x b x x c x x d        (2) 

where, 
2 2
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i i
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f f
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  , and 

 i id f . 

 

The detailed comparison of these two approaches against the linear data imputation 

approach is illustrated in Figure 5. Figure 5 depicts a partial waveform in which only the first 

0.1 seconds of the signature data are shown. It was found that the cubic polynomial and cubic 

spline approaches produced similar results. However, it was also found that the cubic 

polynomial approach showed oscillation in imputation results for very short time periods 

under certain scenarios (e.g., signatures collected from accelerating vehicles, as shown in 

Figure 6), which may generate unstable imputation results. On the contrary, the cubic spline 

approach produces smoother and more stable results than the cubic polynomial does. Figure 7 

Proceedings of the Eastern Asia Society for Transportation Studies, Vol.9, 2013



 

 

 

shows the resulting comparison of no data imputation, linear imputation, and cubic spline 

imputation. Therefore, the cubic spline data imputation approach was chosen to process the 

raw signature data in RTREID-2M. 

 

0

5000

10000

15000

20000

25000

30000

0 0.02 0.04 0.06 0.08 0.1

M
ag

n
it

u
d

e

Duration (second)

Linear

Cubic Spline

Cubic Polynomial

 
Figure 5. Linear imputation vs cubic polynomial imputation vs cubic spline imputation 
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Figure 6. Detailed comparison of raw signature vs cubic polynomial imputation vs cubic 

spline imputation 
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Figure 7. Comparison of raw signature vs linear imputation vs cubic spline imputation 
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3.2.2 Time Window Setting for Vehicles on HOV Lane 

 

The time window restriction aims to determine a feasible and reasonable time period so that 

the correct vehicle can be included in the candidate vehicle set. The computational efficiency 

should be satisfied at the same time as well. Therefore, the estimated travel time is utilized to 

set up the lower and the upper bounds of the desired time window. The original RTREID-2 

treats vehicles along mixed-flow lanes and HOV lanes the same. However, it was found that 

vehicles along HOV lane travel at free-flow speed for most of the time. In order to improve 

the performance of RTREID-2, the time window setting for vehicles from HOV lanes was 

modified so that the default lower boundary of the time window would be always applied. 

The size of the time window can be described as follows: 

 

If (HOV lane){ 

  time window lower bound = default lower boundary of the time window 

  time window upper bound = estimated maximum travel time for HOV lane 

} 

else{  // general purpose lanes 

  time window lower bound = estimated minimum travel time for non-HOV lanes 

  time window upper bound = estimated maximum travel time for non-HOV lanes 

} 

 

With this modification, vehicles from HOV lanes traveling at free flow speeds will be 

considered when generating candidate vehicle sets even during congestion time periods. This 

modification is necessary to ensure that congestion observed on the mainline lanes, which is 

not usually replicated on the HOV lanes, does not interfere with matching vehicles traveling 

on HOV lanes. 

 

 

4. STUDY SITE DESCRIPTIONS AND DATA PREPARATION 

 

4.1 Study Site Descriptions 

 

The study site is located on the Northbound I-405 freeway from Laguna Canyon Road to 

Sand Canyon Ave in Irvine, California. Loop detectors in a double configuration are available 

at both locations. Both stations are equipped with square loop detectors. Station 1 at Laguna 

Canyon Road overpass has seven lanes while Station 2 at Sand Canyon Ave overpass has six 

lanes. The study site configuration is displayed in Figure 8. 
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Figure 8. Study site: Northbound I-405 in Irvine, California 
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4.2 Data Preparation 

 

4.2.1 Data Collection 

 

The dataset used in this study was obtained from University of California, Irvine. The dataset 

was collected during the morning peak hours from 6:35AM to 10:00AM, May 12, 2009 and 

included both signature and video data captured from the field. The study time period covered 

the traffic conditions from free-flow to congestion and then back to free-flow. During 

congestion, the average travel speed was between 20 and 30 mph. In addition, it was found 

that the signature data for this dataset was of lower quality due to the noise present in the 

signatures as discussed in 3.2.1. 

Partial ground-truthed data were available from this dataset. The ground-truthed data 

included nine discrete time periods: 6:35AM, 7:00AM, 7:35AM, 8:00AM, 8:10 AM, 8:20AM, 

8:35AM, 9:00AM, and 9:35AM, in which three to five minutes of the video data was 

evaluated. Both uncongested (6:35AM, 7:00AM, 9:00AM, and 9:35AM) and congested (from 

7:35AM to 8:35AM) traffic conditions were observed in the ground-truthed dataset. A total 

number of 4,827 vehicles were ground-truthed between stations. 

 

4.2.2 Data Ground-truthing 

 

In order to examine travel time performance, additional ground-truthed vehicles were required 

to show the changes of travel time over the whole time period. The obtained video data, 

which were captured in low-resolution, were used in generating more ground-truthed data. 

Ground-truthing was a very time consuming and labor intensive task, which involved manual 

checking and visual observation of the signature and video data. Therefore, a 

stratified-random sampling method was developed to effectively determine the number of 

vehicles required for estimating travel times at desired accuracy. 

The objective of the stratified random sampling method approach was to determine the 

minimum number of vehicles that could be sampled such that the travel times computed from 

the sampled vehicles fell within a given range, or threshold, of the actual travel times. Each 

proposed sampling scheme below was firstly compared against the ground-truthed data 

obtained from UCI so that the sample size at each time interval (30 seconds) could be 

determined. The candidate sampling approaches include: 

 

 Random 1: Randomly sample one vehicle 

 Random 2: Randomly sample two vehicles 

 Random 3: Randomly sample three vehicles 

 Random 4: Randomly sample four vehicles 

 Random 5: Randomly sample five vehicles 

 Random 6: Randomly sample six vehicles 

 

Next, an acceptable error percentage (i.e., threshold) of estimated travel time was 

defined. The approach that met the threshold was selected to perform the ground-truthing task 

later using the data between 7:15AM and 9:15AM, which captured the onset and the end of 

congestion. 

The six proposed approaches were compared based on accuracy, and the one that 

provided the appropriate number of ground-truthed vehicles and the desired accuracy in travel 

time estimation was utilized in ground-truthing task. Three performance measurements were 

applied to evaluate the estimated travel time: 
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 Mean absolute percent error (MAPE) 

 Kolmogorov-Smirnov (K-S) test 

 Pearson’s Correlation 

 

It was noted that HOV lane vehicles should be considered separately from mainline 

vehicles as they usually had shorter travel times. Therefore, the proposed sampling method 

was only applied to non-HOV lane data. 

 

4.2.3 Data Validation 

 

The comparisons of the proposed approaches are listed from Table 1 to Table 3, and the 

performance for the congestion time period (8:00AM-9:00AM) is also evaluated. It is found 

that only the MAPEs of Random 1 exceed 2%. For the K-S test and Pearson’s correlation, all 

of the proposed approaches yield similar performances. 
 

Table 1. Comparisons of the proposed sampling approaches: MAPEs 
MAPE Summary 

Sample Type Sample Size 
           Aggregation 

Sample %       
All Data 8-9am Only 

Random 1 71 1.7% 2.13% 2.14% 

Random 2 142 3.4% 1.56% 1.44% 

Random 3 213 5.1% 1.31% 1.34% 

Random 4 284 6.8% 0.82% 0.89% 

Random 5 355 8.5% 0.96% 0.75% 

Random 6 426 10.2% 0.73% 0.62% 

 

Table 2. Comparisons of the proposed sampling approaches: K-S test 
K-S Test Dmax Summary (alpha = 0.05; Critical Value = Dc) 

Sample Type Sample Size 
           Aggregation 

Sample % 

All Data 8-9am Only 

Dc = 0.16 Dc = 0.24 

Random 1 71 1.7% 0.003 0.005 

Random 2 142 3.4% 0.002 0.002 

Random 3 213 5.1% 0.001 0.002 

Random 4 284 6.8% 0.001 0.002 

Random 5 355 8.5% 0.001 0.001 

Random 6 426 10.2% 0.001 0.001 

 

Table 3. Comparisons of the proposed sampling approaches: Pearson’s Correlation 
Pearson's Correlation Summary 

Sample Type Sample Size 
          Aggregation 

Sample %       
All Data 8-9am Only 

Random 1 71 1.7% 99.90% 99.69% 

Random 2 142 3.4% 99.93% 99.79% 

Random 3 213 5.1% 99.95% 99.86% 

Random 4 284 6.8% 99.98% 99.94% 

Random 5 355 8.5% 99.98% 99.96% 

Random 6 426 10.2% 99.99% 99.97% 

 

To facilitate the evaluation procedure, the results are further illustrated from Figure 9 to 

Figure 11. It can be seen from Figure 9 that the largest MAPEs are generated by the Random 

1 approach. In general, the MAPEs for all the approaches are below 8%. 
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Figure 9. MAPEs: All data with 30-second aggregation 
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(a) By sample size and relative error 
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(b) By sampling rate and relative error 

Figure 10. Random sampling results: All data with non-HOV lanes 
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It can be observed from Figure 10 that given the relative error below 2%, Random 2 

approach requires the least amount of vehicles to achieve the goal. Moreover, with the sample 

size increasing from the Random 2 approach to the Random 6 approach (from 142 vehicles 

for Random 2 to 426 vehicles for Random 6), the relative error only decreases by 0.83% 

(from 1.56% to 0.73%). The benefit (% decreased in error) to cost (% increased in sample 

size) ratio is -0.27, which implies when the sample size is increased by 1%, the error will only 

decrease by 0.27%. 

The resulting estimated travel times are shown in Figure 11 and no outlier is observed. 

Since the benefit of selecting the best performing approach, Random 6, was not significantly 

better than the approach requiring the least amount of additional ground-truthing, Random 2 

was applied in the ground-truthing task. Based on the Random 2 sampling approach, data 

between 7:15AM and 9:15AM was divided into 30-second intervals. For each time interval, 

two vehicles were randomly selected for ground-truthing. 
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Figure 11. Estimated travel time: All data with 30s aggregation 

 

In addition, all HOV lane vehicles from the same time period were ground-truthed. This 

was because less problematic signature data was observed on HOV lanes, and it was relatively 

easier to perform the ground-truthing task on HOV lanes (due to both limited lane changing 

and congestion). Upon completion of this task, an additional 2,706 vehicles representing the 

entire time period were added to the ground-truthed dataset. 

 

 

5. PERFORMANCE EVALUATION 

 

5.1 Reidentification Performance Evaluation 

 

To evaluate the performance of RTREID-2M, three indices were applied, including total 

matching rate (TMR), system correct matching rate (SCMR), and mean absolute percent error 

(MAPE) of travel times: 
 

total number of matched vehicles
TMR

total number of vehicles
  (3) 
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total number of correctly matched vehicles
SCMR

total number of matched vehicles
  (4) 

, ,

1 ,

/ 100%
N

obs n est n

n obs n

TTime TTime
MAPE N

TTime

 
  

  
  (5) 

where, 

,obs nTTime : Observed average travel time at time step n  (ground-truthed) 

,est nTTime : Estimated average travel time at time step n  (reidentification algorithm) 

N : Total number of time steps 

 

The evaluation time period was from 6:30 to 10:00 AM. There were a total of 31,430 

vehicles of which 4,827 vehicles at selected 3 to 5 min time periods were fully ground-truthed.  

For the whole study period, the total number of matched vehicles is 20,855 and the 

corresponding TMR is 66.4%. During the selected time periods, 3,224 vehicles of 4,827 

vehicles are matched and the corresponding TMR is 66.8%. Table 4 shows the correct 

matching rate during each of the discrete ground-truthed time periods. The average SCMR is 

65.6%. The SCMR is between 75% and 79% under the free flow condition and between 52% 

and 70% during congestion. 

The actual numbers of correct matched vehicles are 4827  66.8%  65.6%  2115   , 

which corresponds to 43.8% of the total vehicles. According to related research (Oh and 

Jayakrishnan, 2002), 20% penetration rate of probe vehicles can be used to obtain the travel 

time data at enough accuracy.  

 

Table 4. Reidentification performance for each ground-truth time period 

Time 

period 
ALL 

6:36:00 

- 

6:40:30  

7:00:30 

-  

7:04:00 

7:35:30 

- 

7:39:00 

8:01:00 

- 

8:04:00 

8:10:30 

- 

8:14:00 

8:20:30 

- 

8:23:00 

8:35:30 

- 

8:39:30 

9:00:30 

- 

9:03:30 

9:35:30 

- 

9:38:30 

SCMR 65.6% 74.5% 75.2% 51.8% 57.5% 70.1% 54.8% 55.3% 68.2% 78.7% 

 

5.2 Travel Time Analysis 

 

The results of the travel time accuracy evaluation are shown in Table 5. The MAPE of overall 

travel time performance (MAPE TT) is 4.3%. For free flow conditions, the average MAPE for 

each aggregation time interval is below 5%, equivalent to an accuracy of over 95%. For 

congestion time periods, the largest MAPE is 6.2%, indicating the accuracy is above 93%. 

The proposed RTREID-2M was not able to match all vehicles. Even for those matched 

vehicles, some were incorrect matches. Their influence to travel time estimation was further 

quantified. First, the travel time performance was analyzed assuming all matched vehicles 

were correct matches (i.e., TMR = 66.8% and SCMR = 100%). This scenario represented the 

best condition the proposed approach could reach. All mismatched vehicles' records were 

found and then replaced with the ground-truth data. The evaluation results show that the 

MAPE of overall travel time performance is 2% if all 66.8% of vehicles are correctly 

matched. 

Next, the travel time performance using only those mismatched vehicles was analyzed. 

This scenario indicated the worst condition the proposed approach could reach. As explained 

earlier, there were a total of 3,224 matched vehicles and 65.6% of them were correct matches. 

Therefore, there were 1,109 mismatched vehicles (equivalent to 23% of the total vehicles). 

The evaluation results show that the MAPE of overall travel time performance is 8.8% only 

using these mismatched vehicles' data. 
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For each time period, the travel time was calculated every 30 seconds. The selected 

results are shown in Figure 12. Figure 12Error! Reference source not found. illustrates the 

detailed comparisons between RTREID-2M and ground-truthed travel times via 

box-and-whisker plots for the time period from 8:20:30 to 8:23:00. The 30 second aggregated 

travel time is represented by the blue diamond for RTREID-2M and the pink square for the 

ground-truthed data. The box-and-whisker plots include some useful information about the 

ground-truthed data. 

It is found that for all of the ground-truthed time periods, RTREID-2M produces highly 

accurate travel time results and matches the ground-truthed travel times quite well. All of the 

RTREID-2M travel times fall within one standard deviation of the mean ground-truthed travel 

times except for two time periods (7:04:00 and 8:39:30). 
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Figure 12. RTREID-2M travel times vs ground-truthed travel times: 8:20:30-8:23:00AM 
 

The correlation between RTREID-2M and ground-truthed travel times is also examined 

as shown in Figure 13(a). The high Pearson R value (i.e., 0.990) indicates the good matches of 

the trends of the travel times over time. Furthermore, since the ground-truthed dataset does 

not cover the whole time period of data, the sampled ground-truthed travel times described in 

4.2.3 are utilized to show the performance of the RTREID-2M travel time. Figure 13(b) shows 

strong correlations between RTREID-2M and sampled ground-truthed travel times with the 

high Pearson R value, 0.955. 
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(a) RTREID-2M vs ground-truthed travel times   (b) RTREID-2M vs sampled ground-truthed travel times 

Figure 13. Pearson R analysis 
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In addition, as shown in Figure 14(a), the RTREID-2M travel times follow the trend of 

the actual travel times very closely. The time window, which is one of the most important 

parameters in RTREID-2M, is dynamically changed based on traffic conditions as shown in 

Figure 14(b), which illustrates the upper and lower boundaries of the time window. Since the 

study site has both mixed-flow lanes and HOV lane facilities, the time window is big enough 

to include all the potential candidate vehicles. 

 
 

0

20

40

60

80

100

120

140

160

0
6
:2

0

0
6
:3

0

0
6
:4

0

0
6
:5

0

0
7
:0

0

0
7
:1

0

0
7
:2

0

0
7
:3

0

0
7
:4

0

0
7
:5

0

0
8
:0

0

0
8
:1

0

0
8
:2

0

0
8
:3

0

0
8
:4

0

0
8
:5

0

0
9
:0

0

0
9
:1

0

0
9
:2

0

0
9
:3

0

0
9
:4

0

0
9
:5

0

1
0
:0

0

T
ra

v
e
l 
T

im
e
 (
s
e
c
)

Time of Day (Morning Peak)

Laguna Canyon 1 - Sand Canyon 05/12/2009 Dataset

RTREID-2M

GT

 
(a) 6:30-10:00AM 
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(b) With time window boundaries 

Figure 14. RTREID-2M travel times vs ground-truthed travel times 
 

The RTREID-2M travel times generally follow the trend of the sampled ground-truthed 

travel times very well during the congestion period as shown in Figure 15. Comparing with 
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the sampled travel time, the overall MAPE of RTREID-2M travel time is 12.1%. Figure 16 

compares the section travel speed estimated by RTREID-2M against the ground-truthed travel 

speed and the point speeds estimated using volume and duration data extracted from the raw 

signature data. It can be observed that RTREID-2M speed estimates are very accurate whereas 

point speeds are not reliable measurements of section travel speed. 
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Figure 15. RTREID-2M travel times vs sampled ground-truthed travel times: congestion 

period 
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Figure 16. RTREID-2M speeds vs point speeds vs ground-truthed speeds 

 

As indicated earlier, point detector speed is not representative of section travel speed.  

However, the point speeds are widely used in the estimation of section travel time. Therefore, 

two methods of section travel time estimations using point speeds were analyzed and 
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compared in this study: 

 

 Section travel time by average speed: 

distance
TT by Average Speed

upstream point speed downstream point speed

2


 

 
 

 (6) 

 Section travel time by weighted distance:  

distance distance
TT by Weighted Distance 0.5 0.5

upstream point speed downstream point speed
    (7) 

 

As shown in Figure 17, both point detector based travel time methods have limited 

capabilities of computing accurate section travel time compared to RTREID-2M. For instance, 

the point estimates dramatically drop from 8:00AM to 8:10A, whereas RTREID-2M does not. 
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Figure 17. Comparisons of travel times: Congestion Period 

 

 

6. CONCLUSIONS AND FUTURE RESEARCH 

 

In this study, a real-time inductive loop signature based vehicle reidentification approach, 

named RTREID-2M, was proposed and evaluated. This research was conducted based on the 

existing knowledge and the latest academic research product, RTREID-2. The inductive 

signature technology was introduced and the research basis for the application of the 

technology was explained. The proposed RTREID-2M improved the original RTREID-2 on 

two aspects: (1) The cubic spline data imputation approach was developed to replace the 

existing linear data imputation approach in order to improve the quality of the raw signature 

data; (2) The time window setting for vehicles on HOV lanes was modified so that vehicles on 

HOV lanes traveling with free flow speeds would be considered when generating candidate 
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vehicle sets even during congestion time periods. Additionally, a stratified-random sampling 

method was developed to effectively perform grouth-truthing task for showing the changes of 

travel time over the whole time period. 

The results obtained from this study showed desired performance for vehicle 

reidentification and travel time estimation under both free-flow and congested flow traffic 

conditions. The system correct matching rate (SCMR) was between 75% and 79% under the 

free-flow condition and between 52% and 70% during congestion. The accuracy of overall 

travel time performance was over 95%. The strong correlation (Pearson R = 0.955) between 

RTREID-2M and ground-truthed travel times indicated the good matches of the trends of the 

travel times over time. Furthermore, the travel times obtained from RTREID-2M were 

compared with the travel times estimated via two point detector based travel time methods 

using point speeds, which were widely used in the estimation of section travel time. The 

results demonstrated that both point detector based methods had limited capabilities of 

providing accurate section travel times compared to RTREID-2M. The future researches will 

focus on the potential applications and arterial vehicle reidentification utilizing the inductive 

loop signature technology. 
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