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Abstract: A complete factorial analysis of 9072 combinations of jointed concrete pavement 

design inputs was initiated with some modifications of the experimental matrix applied to 

represent all design practice of a typical department of transport in the Snowbelt region of the 

US. Several axle and truck configurations frequently observed in the state were considered in 

the analysis by placing the load configuration at the location that results in the maximum 

response, so-called critical load location. Mechanistic responses were obtained through finite 

element analysis using ISLAB2000® structural model. These mechanistic responses were used 

to train, test and validate a neural network model. The neural network-based model was then 

used to provide a full catalog of mechanistic responses that were not addressed in the final 

experimental matrix. The results show high coefficient of correlation (R
2
) for both testing and

validation data, which proved the model’s generalization ability-- a critical indicator of the 

goodness of the models since these data sets were not used in the model development (i.e., 

during the training stage)—and, hence, utility to assess different types of pavement designs and 

loadings. 

Keywords: Concrete pavement, neural networks, mechanistic response 

1. PROBLEM STATEMENT

ISLAB2000® structural model is a finite element program for the analysis of jointed concrete 

pavements. The input values used by ISLAB2000® are Axle Type, Joint Spacing, Shoulder 

Type, PCC Thickness, Base Thickness, K value and Temperature as shown in table 1. If one is 

to analyze the data range shown in table 1 for seven inputs then ISLAB2000® will need 

approximately four hundred and eighty thousand combinations, which is time consuming and 

impractical in real world applications. To overcome this problem, neural network-based 

approach is proposed in this study. Nine thousand and seventy two combinations were taken 

from ISLAB2000® model where half of them were used to train the network and the remaining 

data was used to test and validate the neural network model.  
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Table 1. Input variables used to predict stresses 

Input Variables Values or Ranges Format 

Axle Type Single, Tandem, Tridem, more than 4 Axles Discrete 

Joint Spacing 177,315 Continuous 

Shoulder Type PCC, AC, Widened Lane Discrete 

PCC Thickness 6, 7,8,9,10,11,12 Continuous 

Base Thickness 4,16,26 Continuous 

K value 30,100,200 Continuous 

Temperature 0,10,20 Continuous 

 

2. LITERATURE REVIEW 

Neural networks have been used extensively in pavement design and performance evaluation 

(among many others: Bayrak & Ceylan, 2008; Ceylan et al., 1998; Ferregut & Abdalla, 1998; 

Pekan et al., 2008; Poole et al., 1998; Saltan & Terzi, 2004; Suleiman et al., 20011). For 

example, Farregut et al (1998) used neural network back propagation to predict longitudinal 

roughness of pavement. They used 157 sections to develop the neural network model of the 

International Roughness Index (IRI). Out of the 157 they used 140 sections to train the network 

and 17 sections to validate the network. They found high correlation coefficient value (R
2
) for 

the training and validation data models. Fontul et al. (2003) developed a neural network model 

for structural evaluation of pavements. The Falling Weight Deflectometer (FWD) database was 

used as input to the neural network. Training was performed with 1000 datasets randomly 

chosen from 26000 data points. Validation was done using data in the same range as the 

training but which was not actually used during the training stage.  The neural network models 

showed good results for the structural pavement evaluation. However, other models and 

procedure may be used to study jointed concrete pavements. For example, Seo and Kim (2013) 

studies longitudinal cracking at transvers joints in jointed pavements and developed models 

using finite element modeling. 
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3. ARTIFICIAL NEURAL NETWORK 

3.1 Background  

 

An artificial neural network (ANN) is composed of number of interconnected units, which has 

a natural tendency for storing experiential knowledge and making it available for use. ANN is a 

branch of the more general field of Artificial Intelligence (AI). AI theory aims at study and 

design of intelligent systems where an intelligent system is one that perceives its environment 

and takes actions that maximize its chances of success. 

ANNs can be used to approximate some complex input-output relationship and have 

proved to be powerful tools for function approximation. They are usually fed with a large 

amount of data to approximate the underlying relationship. The organization of the neurons and 

weight of the connections determine the output in response to an external input stimulus. 

  

3.2 Neural Network Model 

 

In this study, feed forward back propagation (FFBP) type neural network was trained, tested 

and validated using the MATLAB (MATrix LABoratory) Neural Network Toolbox version 4. 

FFBP is a powerful network which can be taught to map one data into another using the 

“examples” for the mapping to be learned. The architecture of a simple FFBP is a collection of 

nodes distributed over an input layer, hidden layer(or layers) and an output layer as shown in 

figure 1. The nodes between successive layers are connected with links, each of which carries a 

weight that describes the strength of that connection. The connection weights are initially 

selected at random. The errors between outputs and the actual answers (or targets) are then 

propagated backward through the network and the connection weights are individually adjusted 

so as to reduce the error. The examples to develop a FFBP neural network model were obtained 

from a finite element program. 
 

Figure 1. Basic architecture of Feed Forward Back Propagation Neural Network 
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4. EXPERIMENTAL SETUP 

An ANN model was trained for this research with the results from the ISLAB2000 finite 

element program. Longitudinal bottom, transverse bottom and longitudinal top stresses were 

predicted on the basis of Axle Type, Joint Spacing, Shoulder Type, PCC Thickness, Base 

Thickness, K value and Temperature. Table 1 shows the inputs variable ranges with their data 

structure.  

Nine thousand seventy two mechanistic responses were obtained using ISLAB2000 

based on the finalized experimental matrix. Table 2 shows the total number of data points 

available for each input variable. The matrix did not capture all possible combinations. 

However, this database can be used to develop a neural network model that will suitably predict 

pavement response for all possible variables.  

 

Table 2. Total Numbers of Data Points for Each Input Variable 
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5. DATA FOR TRAINING, VALIDATION AND TESTING 

 

To improve the generalization ability of the network and to avoid over-training (that is when 

the network actually memorizes data and patterns), “Early Stopping” technique was used. In 

this technique the available data is divided into three subsets. The first subset is the training set, 

which is used for computing the gradient and updating the network weights and biases. The 

second subset is the validation set. The error in the validation set is monitored (not used in 

computing or updating weights) during the training process. In the initial phase of training, the 

error of validation decrease with more training data. However when the network begins to 

over-fit the data to the model, the error in the validation set starts increasing. When the 

validation error increases for a specified number of successive iterations, the training is stopped 

and the weights and biases at the minimum of the validation error are retained. The test set 

error is not used during the training, but it is used to compare different models (Matlab, 2003). 

In our case, we had 9072 data points, used 50%  (4536) for training, 25% (2268) were used for 

for validation, and the remaining 25% were used for testing.  
 

5.1 Pre and Post processing of Data 

 

The seven inputs and three targets were preprocessed before starting the training process. 

Neural network training becomes more efficient by preprocessing the inputs and targets. The 

function “Premnmx” was used to preprocessed the data, which scaled both the inputs and 

targets in the range [-1,1]. The outputs produced by the network were also in the same range, 

which were converted into original units by using the function “Postmnmx”. Following 

algorithm was used to pre and post processing. 

2 (p-minp)
pn  1

(maxp - minp)


   

Where 

p = Original Input or Target value 

pn = Value of Input or Target in the range of [-1,1] 

 

5.2 Transfer Function 

 

There is a number of transfer functions available in the Matlab neural network tool box 

including Saturating linear transfer function (satlin), Log sigmoid transfer function (logsig), 

Hyperbolic tangent sigmoid transfer function (tansig) etc (Matlab, 2003). The selection of any 

transfer function depends upon the data range. For example in our case we normalized the 

training data by preprocessing data to fit in the range of  [-1,1]. We selected two types of 

transfer functions, the Pureline and Tansig. The properties of these transfer function are shown 

in figure 2 and 3.  
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Figure 2. Tan-Sigmoid Transfer Function 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Pure-line Transfer Function 

 

 

0 

+1 

-1 

a = tansig (n) 

a 

n 

b 

0 

-1 

+1 

n 

b = Purelin (n) 

Proceedings of the Eastern Asia Society for Transportation Studies, Vol.9, 2013



 7 

6. NEURAL NETWORK ARCHITECTURE 

 

The feed forward back propagation (FFBP) type neural network model was used to train the 

network. Figure 4 shows the architecture of the FFBP neural network model used with the 

inputs and targets. There is one rule to decide the number of hidden neurons and layers; using 

large number of neurons saturates the network and the network starts memorizing the targets 

without getting the logic. By using the Early stopping technique this problem can be 

eliminated. To make the network less complicated and more generalized, different number of 

hidden neurons was tried. The optimal network was selected on the basis of the least mean 

square error.  Figure 5 and 6 shows the mean-square errors and the properties of different 

combinations tried for the two-layer and three-layer models, respectively.  

 

 

Figure 4. Feed Forward Back Propagation neural network with seven inputs and three 

targets. 
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Figure 5. Mean squares for the two layer neural network models 
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Figure 6. Mean squares for the three layer neural network models 
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In a two-layer network, one hundred (100) neurons in the first layer with tansig (tangent 

hyperbola transformation) transfer function and 3 neurons in the second layer with purelin 

(linear transformation) transfer function works better than all other two-layer models as shown 

in figure 5. A three layer system, model having 30, 50, 3 neurons in first, second and third 

layers, respectively, and transfer function tansig in first and second layers and purelin in third 

layer have a least mean square error as shown in figure 6.   

As discuss above, the 100-3 two layer model and the 30-50-3 three-layer model 

performed better than other models (or architectures). The three-layer models is recommended 

for this study because it captures the linear and non-linear behavior of the data more effectively 

than the two layer system, and it has fewer number of neurons. The results for the 30-50-3 

three-layer model are presented in the following section.    

 

7. RESULTS 

 

The three-layer neural network model with 30,50 and 3 neurons in first, second and third layers 

respectively, respectively, was selected as the best configuration.  Figures 7, 8 and 9 present the 

correlations between the predictions by the neural network and the actual values for training, 

testing and validation data respectively.  The neural network shows strong correlation 

coefficient (R
2
) for training, testing and validation data for all three outputs (Longitudinal 

Bottom, Transverse Bottom and Longitudinal Top Stresses). Note that high R
2
 for testing and 

validation data shows that generalization of the model (network) is possible because this data 

was not used in the model development.   

Two inputs axle type and lateral support were used as discrete variables. Figures 10 and 

11 show the sensitivity of trained neural network to these two variables. Axle-type-4-or-more 

have greater mean square error as compare to the other axle types because this type contains 

axles from 4 to 8. Reducing the range or using each axle type separately can overcome this 

problem. However for pavement stresses produced by axles less than 3 are more significant 

than those by axle-type-4-or-more. Similarly figure 11 shows that the neural network has 

greater mean square error for AC lateral support and longitudinal bottom stress.   
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Figure 7. Training data Regression plots for the three outputs. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8. Testing data Regression plots for the three outputs. 
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Figure 9. Validation data Regression plots for the three outputs. 
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Figure 10. Mean Square Error for different axle type configurations. 
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Figure 11. Mean Square Error for different lateral supports. 

 

8. CONCLUSIONS 

 

A neural network-based model is presented that can predict transvers bottom, longitudinal 

bottom, and longitudinal top stress in jointed concrete pavements. Different architectures were 

evaluated for best performance. The selected model performed well for predicting all three 

types of stresses. The coefficient of multiple correlations R
2
 and the mean square errors were 

used as indicators of the effectiveness of the model. The R
2
 values for the model predicting the 

different types of stresses were consistently higher than 0.95. The mean squares errors values 

were low but not as favorable for all types of stresses under different conditions. Longitudinal 

bottom stress, in particular, has very high mean square error for the case of 4-or-more-axel. 

Regardless of the type of lateral support, the mean square error for longitudinal bottom stress is 

high compared to the other two stress types. The results show that the neural network model is 

able to generalize and estimate stresses for conditions beyond those used in the development of 

the model. This is an important feature with significant practical implications: A neural 

network model can be developed based on limited but representative data that cover practical 

ranges of traffic, material, and structural conditions. The model can then be used for evaluation 

of different types of stress, and thus used for design of jointed concrete pavements for 

combinations of conditions other than those used in the development of the model. 
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