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Abstract: The multi-class dynamic user equilibrium (MDUE) model can be adopted in the lower 

level of a bi-level formulation of dynamic network design problems to predict heterogeneous 

travelers’ path choices in response to transportation authority’s decisions in the upper level. 

While a number of previous studies have devoted to the finite-dimensional MDUE (FMDUE) 

problem with a given number of user classes, the infinite-dimensional MDUE (IMDUE) problem 

was rarely addressed. This work proposes a column generation-based algorithm that solves the 

IMDUE problem as a series of FMDUE sub-problems. Each sub-problem is formulated as a 

nonlinear minimization program via a gap function and solved by a feasible descent direction 

method that is able to circumvent the needs to calculate partial derivatives for determining search 

direction, while maintaining the mechanisms of searching along feasible descent directions. 

Numerical results show our approach is superior to the algorithm based on the method of 

successive averages. 

Keywords: Traffic assignment; dynamic user equilibrium; column generation; user heterogeneity. 

1. INTRODUCTION

Dynamic user equilibrium (DUE, Smith, 1993) models have been widely applied to obtain 

time-varying link or path flows in response to supply- or demand-side traffic network 

improvement and management measures, such as adding new roads (or lanes), ramp metering, 

managed lanes, congestion pricing, signal optimization, and information provision (FHWA, 

2012). Particularly, DUE models can be adopted in the lower level of bi-level formulations of 

dynamic network design problems (e.g., Clegg et al., 2001; Yang et al., 2003; Smith, 2005; 

Joksimovic et al., 2005; Karoonsoontawong and Waller, 2007; Chen and Hu, 2010) to predict 

users’ responses in path (and/or departure time) choices to transportation authority’s decisions in 

the upper level. As opposed to most existing DUE models that considered homogeneous users in 

a road network, a few of previous studies explicitly took heterogeneous users’ characteristics and 

preferences (e.g., income, value of time, risk-taking behavior, information availability, etc.) into 

account and developed multi-class or multi-criterion DUE models (e.g., Peeta and Mahmassani, 

1995; Huang and Lam, 2003; He et al., 2003; Yang et al., 2003; Joksimovic et al., 2006; Lu et al., 

2008), in order to realistically describe travelers’ choice behavior.  

This work deals with the infinite-dimensional multi-class DUE (IMDUE) problem which 

considers each traveler poses a distinct characteristic or preference of interest in the underlying 

path choice decision framework. While a number of previous studies have devoted to the 
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finite-dimensional MDUE (FMDUE) problem with a predetermined number of user classes (e.g., 

Peeta and Mahmassani, 1995; Huang and Lam, 2003; He et al., 2003; Yang et al., 2003; 

Joksimovic et al., 2006), the IMDUE problem was rarely addressed in the literature. Recognizing 

that the evaluation of congestion pricing strategies requires modeling the response of users with 

non-identical preferences, Lu et al. (2008) developed a IMDUE model, called bi-criterion DUE 

or BDUE, which explicitly considers that tripmakers with different values of time (VOT) select 

paths that simultaneously optimize the two essential choice criteria: travel time and out-of-pocket 

cost (e.g., Dial, 1979). As opposed to conventional DUE models that designated a constant VOT 

or a discrete set of VOT to all tripmakers in a network (e.g., Uchida and Sugiki, 2011), the 

BDUE model allows the VOT to be continuously distributed among tripmakers. Numerical 

results demonstrated that the VOT distribution significantly affects path flow patterns and toll 

road usage, highlighting the necessity of addressing user heterogeneity in dynamic traffic 

assignment (DTA) models for time-varying road pricing.  

 Lu et al. (2008) presented an algorithm based on the method of successive averages (MSA) 

to solve the IMDUE problem. The MSA remains by far one of the most widely used solution 

heuristics in DTA context, due to its simplicity and non-requirement of derivative information for 

the flow-cost mapping function (e.g., Oh and Park, 2011). However, the MSA does not guarantee 

descent (or improvement in the objective function) at every iteration (Bertsekas, 1995). Moreover, 

its convergence properties in real-life networks have been inconclusive, mainly because 

pre-determined and across-the-board step sizes do not exploit local information in searching for a 

solution, and therefore tend to have sluggish performance properties (Lu et al., 2009). 

To provide a more effective solution approach than MSA-based approaches for the IMDUE 

problem, this work formulates the problem as infinite-dimensional variational inequalities and 

proposes an algorithm based on the idea of column generation method, or Dantzig-Wolf 

decomposition (e.g., Dantzig and Wolfe, 1960; Larsson and Patriksson, 1992; Patriksson, 1994), 

which solves the IMDUE problem as a series of FMDUE sub-problems and progressively finds 

(approximate) solutions. Specifically, integrated in the column generation-based algorithmic 

framework are (i) a parametric-based path generation scheme that partitions the entire range of 

VOT into many subintervals and accordingly determines the multiple user classes and the 

corresponding least generalized cost (or extreme non-dominated) paths for each user class 

(Mahmassani et al., 2005), (ii) a feasible descent direction method for updating multi-class path 

flows, and (iii) a multi-class dynamic network loading (MDNL) model that captures traffic 

dynamics and determines experienced path travel times for a given path flow pattern. Numerical 

experiments will be conducted on two large-scale road networks to compare the performance of 

our approach and that of the MSA-based heuristic proposed by Lu et al. (2008).  

The rest of this paper is organized as follows. Section 2 presents the problem statement and 

formulation of the IMDUE problem, followed by the overview of the column generation-based 

algorithm in section 3. Section 4 describes the reduced FMDUE sub-problem and the multi-class 

path flow updating scheme. Section 5 reports the results of the numerical experiments which 

compare the solution quality of the new algorithm and the MSA in solving the problem. 

Concluding remarks are in section 6.  

 

 

2. PROBLEM STATEMENT AND MODEL FORMULATION 

 

2.1 Problem Statement 

Proceedings of the Eastern Asia Society for Transportation Studies, Vol.9, 2013



 3 

 

Consider a network G = (N, A), where N is the set of nodes and A is the set of directed links a = 

(i, j), iN and jN. The time period of interest (planning horizon) is discretized into a set of 

small time intervals, S = {t0, t0 +, t0 +2,…, t0 +M}, where t0 is the earliest possible departure 

time from any origin node,  a small time interval, and M a large number such that the intervals 

from t0 to t0+M cover S. t

ad  and t

ac  denotes the travel time and out-of-pocket cost for a 

vehicle to traverse link a in time interval t. The following notation and variables are used in this 

paper.  

o  subscript for an origin node, oN.  

d  subscript for a destination node, dN.  

    superscript for a departure time interval,  S.  

   value of time (VOT); [min
, max

], where min
 and max

 are smallest and largest 

possible values of , respectively. 

( , , )P o d   the set of feasible paths for a given triplet (o, d, ). 

p    subscript for a path pP(o, d, ). 

( )odh   number of trips with VOT  departing from o to d in time interval . 

( )odpr   number of trips with VOT  departing from o to d in time interval  that are 

assigned to path pP(o, d, ). 

r()   the class-specific time-varying path flow vector for the trips with VOT ; i.e. r() 

 { ( )odpr  , o, d, , and pP(o, d, )}. 

r the multi-class, time-varying path flow vector for the trips with all possible values 

of time; i.e. r {r(),[min
, max

]}. 

odpTT  experienced path travel time for the trips departing from o to d in time interval  

assigned to path pP(o, d, ). 

TT vector of experienced path times; TT ={
odpTT ,o, d, , and pP(o, d, )}. 

odpTC    experienced path travel cost for the trips departing from o to d in time interval  

assigned to path pP(o, d, ). 

TC vector of experienced path costs; TC ={
odpTC ,o, d, , and pP(o, d, )}. 

 

The experienced path generalized cost evaluated at a multi-class, time-varying path flow 

vector r and perceived by the tripmakers (or trips) with VOT  departing from o to d in time 

interval  assigned to path p ( , , )P o d  is defined as: 

 

( , )odp odp odpGC r TC TT      , (1) 

 

where 
( , , )

t

odp iji j t p
TT d


  and 

( , , )

t

odp iji j t p
TC c


 . The VOT relative to each trip represents 

how much money the tripmaker is willing to trade for a unit time saving. To realistically reflect 

heterogeneity of the population, this study assumes VOT is continuously distributed across the 

population of trip-makers, with a given density function: ()>0, [min
, max

] and 
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max

min
( ) 1d




    , where the feasible range of VOT is given by the closed interval [min

, max
]. 

Note that the distribution of VOT is assumed known, and can be estimated from survey data (e.g. 

Small et al., 2005). The time-dependent origin-destination (O-D) demands for the entire feasible 

range of VOT over the planning horizon (i.e. ( )odh  ,o, d, , and [min
, max

]) are also 

assumed known, a priori.  

The key behavioral assumption made for the path choice decision is that each tripmaker will 

choose a path that minimizes the path generalized cost function, defined in Eq.(1). Specifically, 

for trips with VOT , a path p*P(o, d, ) will be selected if and only if 
*( , )odpGC r   = min 

pP(o,d,) ( , )odpGC r  . Based on this assumption, the IMDUE is defined as follows:  

For each OD pair and for each departure time interval, every trip-maker cannot decrease 

the experienced path generalized cost with respect to that trip-maker’s particular VOT by 

unilaterally changing path. 

This implies that each trip-maker is assigned to a path with the least generalized cost with respect 

to his/her own VOT.  

Based on the above definition, the IMDUE conditions can be mathematically stated as the 

following:  min max[ , ]  , 

 

*( )[ ( , *) ( , *)] 0odp odp odr GC r r       , o, d, , pP(o, d, ), (2) 

( , *) ( , *) 0odp odGC r r     , o, d, , pP(o, d, ), (3) 

( , , )
( ) ( )odp odp P o d

r h 


 


 , o, d, , (4) 

( ) 0odpr   , o, d, , pP(o, d, ), (5) 

 

where * { *( )}odpr r   is a multi-class time-varying MDUE path flow vector, and ( , *)od r   is 

the time-varying minimum O-D generalized travel cost, evaluated at r*, for the trips with the 

same ( , , , )o d   . Given the above assumptions and definition, the IMDUE problem aims to 

obtain a time-varying path flow vector ( )odpr  , o, d, , p P(o, d, ) and [min
, max

], 

satisfying the above IMDUE conditions, for a given set of time-varying link tolls.  

 

2.2 Model Formulation 

 

Let ()  {r()} be the set of feasible class-specific path flow vectors r() satisfying the path 

flow conservation constraints (4) and non-negativity constraints (5). The following proposition 

gives the equivalent VI formulation of the IMDUE problem of interest. 

 

Proposition 1: Solving for the IMDUE flow pattern r* is equivalent to finding the solution of a 

system of variational inequalities; that is, [min
, max

], find r*()() such that 

1 ( , , )

( , *) ( ( ) ( )*) 0
T

odp odp odp

o O d D p P o d

GC r r r  

 

  
   

    ,  r()(), (6) 

 

Proceedings of the Eastern Asia Society for Transportation Studies, Vol.9, 2013



 5 

or in the following vector form for simplicity and clarity:  

 

GC(, r*)
T
  (r()  r*())  0, r()(), and [min

, max
], (7) 

 

where GC(, r*) is the path generalized cost vector perceived by the trips with VOT  and 

evaluated at flow pattern r*, and  denotes the inner product of the two vectors: GC(, r*) and 

(r*()  r()). Since (6) or (7) is only required to hold on [min
, max

], it can be further 

represented by the following infinite-dimensional VI (see e.g. Marcotte and Zhu, 1997): find r*  

{r*(), [min
, max

]} and r* such that 

 

GC(r*)
T
  (r  r*)  0,  r (8) 

 

where GC(r*){GC(, r*), [min
, max

]}, and ={r}={(),[min
, max

]}.  

 

Proof: The proof of Proposition 1 is given in the Appendix. (e.g., Ran and Boyce, 1996) 

 

Although the theoretical guarantee of properties such as existence and uniqueness of 

solutions to the infinite-dimensional VI problem (8) can be analytically derived, it typically 

requires the generalized path cost function, i.e. GC(r), to be continuous and strictly monotone 

with respect to path flows on the finite and convex compact set  (e.g. Smith 1993; Nagurney 

1998). Those properties of path cost functions might not be satisfied in general road networks 

with complex traffic controls. Moreover, the focus of this research is on developing 

simulation-based heuristic that solves the original IMDUE problem as a series of 

finite-dimensional nonlinear minimization programs (i.e., FMDUE sub-problems) to 

progressively find approximate solutions in large-scale road networks. Thus, further discussion of 

solution existence and uniqueness is beyond the scope of the current paper. 

 

3. SOLUTION ALGORITHM  

 

3.1 Overview of the Column Generation-Based Algorithmic Framework 

 

To avoid explicit enumeration of all possible paths, this work develops a column 

generation-based heuristic that generates a representative subset of paths with competitive 

generalized costs and augments the path set as needed. The proposed algorithm operates as 

follows (Fig. 1). 

In each (outer loop) iteration k, the path generation algorithm, parametric analysis method 

(PAM, Mahmassani et al., 2005) is applied to augments the current subset of feasible paths; 

newly generated paths, if any, are added to the subset. The PAM partitions the entire range of 

VOT into many subintervals and accordingly determines the corresponding multiple user classes 

and the least generalized cost (i.e., extreme non-dominated) path tree for each user class. The 

algorithm terminates if no new path is found for any user class, or a preset convergence criterion 

is satisfied; otherwise, it uses a multi-class path-swapping descent direction method to solve the 

(reduced) FMDUE problem defined by the current set of paths, before returning to the path 

generation step. This method proceeds iteratively and forms the inner loop (with iteration counter 

l) in the column generation-based framework. Also embedded in this algorithmic framework is 
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the MDNL model based on the mesoscopic traffic flow simulator developed by Jayakrishnan et al. 

(1994a) to determine experienced travel times for a given time-varying path flow pattern r; that is, 

traffic flow propagation and the vehicular spatial and temporal interactions are addressed through 

the traffic simulation. By and large, the original IMDUE problem is solved in this algorithmic 

framework as a series of FMDUE sub-problems to progressively find approximate solutions. 

 

 
Fig. 1 Flow chart of the solution algorithm 

 

3.2 The Parametric Analysis Method (PAM) 
 

In order to circumvent the difficulty of finding and storing the least generalized cost path for each 

individual tripmaker with different VOT, the PAM is adopted to find the set of extreme 

non-dominated path trees, each of which minimizes the parametric path generalized cost function 

Eq.(1) for a particular VOT subinterval. The idea of finding the set of extreme non-dominated 

paths is based on the assumption that in the disutility minimization-based path choice modeling 
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framework with convex disutility functions, all trips would choose only among the set of extreme 

non-dominated paths corresponding to the extreme points on the efficient frontier in the criterion 

space (see e.g. Dial, 1996, 1997; Marcotte and Zhu, 1997).  

Based on the parametric analysis, the algorithm is able to not only sequentially enumerate 

all possible time-dependent extreme non-dominated path trees (and all corresponding sensitivity 

ranges of VOT) but also directly move from one extreme non-dominated path tree (and its 

sensitivity range of VOT) to the next one without redundant calculations on the non-extreme 

solutions. In each iteration, the PAM is applied to obtain the set of VOT breakpoints:  ={0
, 

1
,…, B

 | min
 = 0

 < 1
 <…< b

 <…< B
 =max

} that partitions the entire feasible range of 

VOT into B subintervals: [
b1

, 
b
), b = 1,…, B, and hence defines the B master user classes of 

trips, each master user class u(b) of which covers the trips with VOT [
b1

, 
b
). Associated 

with each VOT subinterval b (or master user class u(b)) is the time-dependent extreme 

non-dominated path tree: Tr(b), which optimizes the path generalized cost function Eq.(1) for the 

corresponding VOT subinterval [
b1

, 
b
) and consists of time-dependent least generalized cost 

paths from a given origin node, for all departure time intervals, to all the other (destination) nodes 

in a network.  

In the column generation-based solution framework, if there is not any new path found for 

each (o, d, ) and each user class u(b), or the outer loop iteration counter k equals Kmax (maximum 

number of outer iterations) then the algorithm terminate; otherwise it starts the inner loop with 

the set of VOT breakpoints (), as well as current path set and path assignment r
k
 . 

 

 

4. SOLVING THE FMDUE PROBLEM 

 

4.1 The FMDUE Problem 

 

With the set of VOT breakpoints () determined by the PAM in an (outer loop) iteration k of the 

column generation-based algorithmic framework, the entire population of heterogeneous 

tripmakers in a network can be divided into a finite number of user classes, and hence the 

IMDUE problem can be reduced to the FMDUE problem, in which the equilibration within each 

user class is sought. Note that the FMDUE in each iteration k is determined based on the current 

subset of feasible paths, while the original IMDUE is defined by the complete set of feasible 

paths: P(o, d, ), o, d, . In the inner loop (corresponding to an outer loop iteration k) of the 

column generation-based algorithmic framework, we solve the corresponding FMDUE problem 

which aims at finding a multi-class path flow vector that satisfies the FMDUE condition:  

For each user class, each OD pair, and each departure time interval, every trip cannot 

decrease the experienced path generalized cost by unilaterally changing paths.  

The FMDUE condition implies that, tripmakers in each user class are assigned to their respective 

least generalized cost path; more costly paths are not used.  

The following notation and variables are defined (or redefined) for the FMDUE problem.  

(b, o, d, ) combination of user class u(b), O-D pair (o, d) and departure interval . 

P(b, o, d, ) current subset of feasible time-dependent extreme non-dominated paths for a (b, 

o, d, ).  

( )odh b
 number of class u(b) trips departing from o to d in time interval . 
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( )odpr b  number of class u(b) trips departing from o to d in time interval  and assigned 

to path pP(b, o, d, ). 

r(b) { ( ), , , , ( , , , )}odpr b o d p P b o d     ; the class-specific path flow vector for the 

class u(b) trips. 

r {r(b), b = 1,…, B}; the multi-class path flow vector. 

( , )odpGC b r  the path generalized cost of class u(b) trips departing from o to d in time interval 

 that are assigned to path pP(b, o, d, ). 
 

The FMDUE condition can then be mathematically stated as the following: for each user class b,  

 

**( )[ ( , *) ( , *)] 0odp odp odpr b GC b r GC b r    , , , , ( , , , )o d p P b o d   , (9) 

*( , *) ( , *) 0odp odpGC b r GC b r   , , , , ( , , , )o d p P b o d   , (10) 

( , , , )
*( ) ( )odp odp P b o d

r b h b 


 , , ,o d  , (11) 

*( ) 0, , , , ( , , , )odpr b o d p P b o d     , (12) 

 

where r* is a multi-class time-varying FMDUE path flow vector, and p* denotes the (referenced) 

least generalized cost path of a (b, o, d, ): 
*( , )odpGC b r = min{ ( , )odpGC b r , pP(b, o, d, )}. 

To measure the deviation of a path flow vector r from the above FMDUE condition, this 

study extends the gap function, defined by Lu et al. (2009), to the multi-class context as the 

following. 

*

( , , , )

( ) ( ) [ ( , ) ( , )]odp odp odp

b o d p P b o d

Gap r r b GC b r GC b r  

 

     (13) 

Gap(r) provides a measure of the violation of the FMDUE condition in terms of the difference 

between the total experienced path cost and the total shortest path cost evaluated at a given path 

flow pattern r. The difference vanishes when the time-varying path flow vector r* satisfies the 

FMDUE condition. Thus, solving the FMDUE problem can be viewed as a process of finding the 

path flow vector r* such that Gap(r*) = 0. Accordingly, this study formulates the FMDUE 

problem as a nonlinear minimization problem (NMP) by using the gap function.  

(NMP) *

( , , , )

( ) ( ) [ ( , ) ( , )]odp odp odp
r

b o d p P b o d

MinGap r r b GC b r GC b r  

 

     (14a) 

Subject to 
*( , ) ( ) 0odp odpGC b r GC b   , , , , , ( , , , )b o d p P b o d   , (14b) 

( , , , )
( ) ( )odp odp P b o d

r b h b 


 , , , ,b o d  , (14c) 

( ) 0, , , , , ( , , , )odpr b b o d p P b o d     . (14d) 

 

4.2 Multi-class path flow updating/equilibrating scheme 

  

Several conventional gradient-based solution algorithms for constrained nonlinear programming 

(NLP) problems could be applied to solve the NMP (Bertsekas, 1995). For a comprehensive 

review, the reader is referred to the book by Patriksson (1994). With the promising computational 
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results reported in the literature (e.g., Florian and Nguyen, 1974; Bertsekas and Gafni, 1983; 

Jayakrishnan et al., 1994b; Patriksson, 1994), it seems valuable to extend the gradient-based 

algorithms to solve the NMP. However, several issues have hindered the direct extension. For 

instance, evaluating first-order partial derivatives (i.e., the gradient) for determining search 

directions and performing line search (e.g., bisection or golden section) for obtaining optimal step 

sizes are computationally intensive (or intractable) for large network applications, because of the 

temporal dimension. Furthermore, when experienced path costs are obtained through the 

(simulation-based) dynamic network loading model, analytical calculations of partial derivatives 

are not available, and stability and accuracy of numerically calculated derivatives are not 

guaranteed.  

Another major challenge is the presence of the constraints in Eq.14(c), given that both path 

flows r and least generalized path costs 
*( , )odpGC b r , (b, o, d, , p) are the decision variables. 

That is, to maintain the feasibility of the updated path flows, one has to explicitly keep track of 

the exact change of the least generalized path costs GC* and the set of active constraints. 

Standard nonlinear programming theory (e.g. Bertsekas, 1995) would suggest that the use of the 

Armijo step size rule in a line search scheme can help to identify the active constraints in a finite 

number of iterations. Besides, one can also use the gradient information to estimate the possible 

changes in the least travel times and the active constraint set. For example, to solve a 

reformulation of the static fixed demand traffic assignment problem, Lo and Chen (2000) 

determined search directions by using the gradient of a gap function in which partial derivatives 

were taken with respect to both path flows and least travel times. Nevertheless, in the 

simulation-based DTA model, performing a line search scheme and calculating the gradient of 

the gap function are computationally intensive (and prohibitive in real networks). To deal with 

this difficulty, this study assumes that the active constraint set, which is identified at the 

beginning of each inner loop iteration, stays fixed during an inner loop iteration. In other words, 

when solving the FMDUE (or adjusting flows on existing paths) in the inner loop, we assume the 

shortest paths are fixed in an inner loop iteration l. That is, 
*( , )odpGC b r = min{ ( , )odpGC b r , 

pP(b, o, d, )}. This active constraint set strategy had also been applied in several DTA 

studies, such as Huang and Lam (2002), and Szeto and Lo (2005). 

This work proposes a multi-class path-swapping descent direction method that is able to 

circumvent the need to calculate partial derivatives and to optimally determine step sizes, while, 

in the mean time, maintains the mechanisms of searching along (feasible) descent directions. The 

proposed heuristic decomposes the NMP into many (b, o, d, ) sub-problems and solves each of 

them by adjusting time-varying, multi-class O-D flows between non-least generalized cost paths 

and the (referenced) least generalized cost path. Given a feasible solution r
l
 in an inner loop 

iteration l, the method features the following form: 

 

1 ( ( ) *( ))
[ ] [ ]

( )

l l l
l l l l l l

l

r GC r GC r
r P r Dir P r

GC r
 

 

 
       (15) 

 

where  Dir
l
 is the (feasible) descent direction and l

(0, 1) is the step size in iteration l; P[u] 

denotes the unique projection of path flow vector u onto  (the set of feasible path flow vectors) 

and is defined as the unique solution of the problem: min || ||v u v  . ( )lGC r  { ( , )l

odpGC b r , 
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b, o, d, , pP(b, o, d, )}; *( )lGC r   {
*( , )l

odpGC b r , b, o, d, , pP(b, o, d, )} is the 

multi-class least path generalized cost vector evaluated at a flow pattern r
l
.  

 

Proposition 2: ( Dir
l
) is the feasible descent searching direction corresponding to the iterate r

l
.  

Proof: the proof of Proposition 2 is given in the Appendix.  

 

According to Eq.(15), the new iterate r
l+1

 is obtained by updating the current iterate r
l
 along 

the direction  Dir
l
 with a move size l

. Specifically, for each (b, o, d, ) sub-problem, the 

proposed multi-class path-swapping descent direction method updates the current path 

assignment r
l
 as follows:  

,

*, 1 ,
( ) [ ( , ) ( , )]

( ) max{0,  ( ) }
( , )

l l l

odp odp odpl l l

odp odp l

odp

r b GC b r GC b r
r b r b

GC b r

  

 




 
   ,  

 pP(b, o, d, ), p  p*; (16a) 
,

*, 1 ,

* *

( , , , ), *

( ) [ ( , ) ( , )]
( ) ( )

( , )

l l l

odp odp odpl l l

odp odp l
p P b o d p p odp

r b GC b r GC b r
r b r b

GC b r

  

 






 

 
   , (16b) 

where step size l
 is determined by the scheme of mixed step sizes, described in the following 

 

l
 = 1/k, if l = 0; l

 = 1, otherwise.  (17) 

 

This multi-class path assignment updating scheme is intuitively based on the fact that travelers 

farther from the equilibrium and on paths with larger flow rates are more inclined to change path 

than those on paths with smaller flow rates and with travel cost closer to the minimal cost.  

 

 

5. NUMERICAL EXPERIMENTS 

 

A set of numerical experiments is conducted to compare the solution quality of the proposed 

IMDUE algorithm (termed CG for column generation) and that of the MSA-based algorithm, 

developed by Lu et al. (2008), in addition to examining the convergence pattern and solution 

quality of the new algorithm. Both algorithms are coded and compiled by using the Compaq 

Visual FORTRAN 6.6 and evaluated on the Windows XP platform and a machine with an Intel 

Pentium IV 2.8 GHz CPU and 2GB RAM.  

In all the experiments conducted, the following parameter settings are applied. The 

continuous VOT distribution considered in the experiments is a normal distribution with (mean, 

standard deviation) = (24, 12), denoted as N(24, 12). The parameters of this normal distribution 

are adapted from the estimated measurements in a value pricing experiment conducted in 

Southern California, USA (Brownstone and Small, 2005), and the unit of VOT in this study is 

United States dollars (USD) per hour. The feasible range of the VOT distribution [min
,max

] is 

[0.6, 180].  

A strict convergence criterion is used in the inner loop of the column generation-based 

algorithm; that is |Gap(r
l
)  Gap(r

l-1
)|/Gap(r

l
)  0.001. The initial solutions are obtained by 

loading time-varying O-D demands to the extreme non-dominated paths calculated based on 
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prevailing travel times output from the traffic simulator. Another measure of effectiveness 

(MOE), AGap(r), is also collected in the conducted experiments, in addition to Gap(r). 

 

*

( , , , )

( , , , )

( ) [ ( , ) ( , )]

( )
( )

odp odp odp

b o d p P b o d

odp

b o d p P b o d

r b GC b r GC b r

AGap r
r b

  

 



 





 



 

 
   (18) 

 

This MOE, which is the average gap over all vehicles in the network for a given path flow pattern 

r, is independent of problem sizes and thus useful for examining the convergence pattern and 

solution quality of the proposed algorithm on different networks. The minimum of the AGap(r) is 

zero. Essentially, the smaller the average gap, the closer the solution is to the IMDUE.  

 

5.1 Experiments on Irvine network 

 

The Irvine (California, USA) network consists of 326 nodes (70 of them are signalized), 626 

links, and 61 traffic analysis zones (TAZ). This network had been calibrated by using real-world 

observations from multiple-day detector data (Mahmassani et al., 2003). A 2-hour (7-9AM) 

morning peak time-varying O-D demand table is extracted from a 6-hour (4-10AM) demand table 

and loaded to the test network, with 35,300 vehicles in the observation period (7:10-8:50AM). To 

create hypothetical dynamic pricing scenarios, one lane of a portion (about 1 mile) of the I-405 

westbound freeway is converted to a toll road, along with an additional new toll lane. The two 

toll lanes have the same length as the (remaining) three regular lanes but a 10-mile higher posted 

speed limit (and hence higher capacity) than the regular lanes. Table 1 lists the three simple 

dynamic pricing scenarios tested in the experiment conducted on the Irvine network. These three 

pricing scenarios have the same four pricing periods but different toll levels, each representing 

low, middle, and high toll scenarios, respectively. 

 

Table 1 Dynamic road pricing scenarios tested on Irvine network 
Pricing 

Scenario 

Period 1 

(7:00-7:30AM) 

Period 2 

(7:30-8:00AM) 

Period 3 

(8:00-8:30AM) 

Period 4 

(8:30-9:00AM) 

1 (Low) $0.10 $0.20 $0.30 $0.15 

2 (Middle) $0.20 $0.30 $0.40 $0.25 

3 (High $0.30 $0.40 $0.50 $0.35 

 

The convergence patterns in terms of iteration-by-iteration gap values of the CG algorithm 

under the three dynamic pricing scenarios are presented in Table 2. It can be seen that the 

algorithm can effectively reduce the gap measure as well as the average gap in all three pricing 

scenarios tested on the Irvine network, although the convergence patterns are not strictly 

monotonic decreasing. As for the solution quality, the final gap values obtained by the new 

algorithm are 3.9% (196.3/5028.6), 4.5% (234.9/5211.2), and 5.4% (315.1/5795.7) of the initial 

gap values, respectively, for the three pricing scenarios. In addition, the average gap values for 

the three pricing scenarios, obtained by dividing these final gap values by the number of vehicles 

loaded in the observation period, are all less than 0.01 minutes. These small gap and average gap 

values indicate that the proposed algorithm is able to find close-to-IMDUE solutions for this 

network application. 
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Table 2 Convergence patterns of the CG algorithm on Irvine network 
 Gap(r) AGap(r) 

Iteration Scenario 1 Scenario 2 Scenario 3 Scenario 1 Scenario 2 Scenario 3 

0 5028.6 5211.2 5795.7 0.142 0.148 0.164 

1 835.0 1025.6 851.3 0.024 0.029 0.024 

2 787.1 892.2 822.7 0.022 0.025 0.023 

3 452.8 624.6 546.9 0.013 0.018 0.015 

4 536.9 505.0 501.4 0.015 0.014 0.014 

5 590.7 597.7 407.3 0.017 0.017 0.012 

6 376.1 415.4 542.2 0.011 0.012 0.015 

7 409.6 332.2 419.5 0.012 0.009 0.012 

8 523.4 342.0 385.8 0.015 0.010 0.011 

9 316.2 369.4 366.9 0.009 0.010 0.010 

10 406.5 357.9 299.1 0.012 0.010 0.008 

11 372.9 280.1 460.6 0.011 0.008 0.013 

12 430.7 294.8 402.2 0.012 0.008 0.011 

13 335.7 238.9 237.7 0.010 0.007 0.007 

14 589.1 256.4 292.6 0.017 0.007 0.008 

15 274.5 255.4 320.2 0.008 0.007 0.009 

16 283.4 252.9 353.9 0.008 0.007 0.010 

17 271.2 228.3 249.3 0.008 0.006 0.007 

18 247.1 268.3 323.7 0.007 0.008 0.009 

19 258.4 285.3 313.0 0.007 0.008 0.009 

20 196.3 234.9 315.1 0.006 0.007 0.009 

 

The comparison of solution quality of CG and MSA is reported in Table 3 and Fig. 2. As 

shown in the figure and table, the proposed algorithm, CG, obtains a much better solution in 

terms of Gap(r) and AGap(r). The final AGap(r) value obtained by MSA (0.056 min) is 8 times 

larger than that obtained by CG (0.007 min). The gap reduction percentages of CG and MSA are 

96% ((5211.2234.9) / 5211.2) and 62% ((5211.21985.1) / 5211.2), respectively. The 

computation times of CG and MSA on Irvine network are about 24 and 23 hours, respectively. 

Thus, CG reduces the initial gap value 34% (=96%62%) more than MSA with just 4.3% more 

of computation time. 
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Fig. 2 Comparison of solution quality on Irvine network 

Proceedings of the Eastern Asia Society for Transportation Studies, Vol.9, 2013



 13 

 

Table 3 Comparison of solution quality on Irvine network 
 CG MSA 

Iteration Gap(r) AGap(r) Gap(r) AGap(r) 

0 5211.2  0.148  5211.2  0.148  

1 1025.6  0.029  3781.3  0.107  

2 892.2  0.025  2925.5  0.083  

3 624.6  0.018  2368.5  0.067  

4 505.0  0.014  2102.6  0.060  

5 597.7  0.017  1985.7  0.056  

6 415.4  0.012  1934.1  0.055  

7 332.2  0.009  1972.3  0.056  

8 342.0  0.010  2053.4  0.058  

9 369.4  0.010  2029.5  0.057  

10 357.9  0.010  2130.6  0.060  

11 280.1  0.008  2244.4  0.064  

12 294.8  0.008  1851.9  0.052  

13 238.9  0.007  1923.5  0.054  

14 256.4  0.007  2045.4  0.058  

15 255.4  0.007  1959.2  0.056  

16 252.9  0.007  1831.8  0.052  

17 228.3  0.006  2117.5  0.060  

18 268.3  0.008  1921.0  0.054  

19 285.3  0.008  1952.3  0.055  

20 234.9  0.007  1985.1  0.056  

 

5.2 Experiments on CHART network 

 

To further demonstrate the capability of the proposed algorithm for large-scale networks with 

dynamic road pricing scenarios, another experiment is conducted on a large road network: the 

Maryland CHART network, which consists primarily of the I-95 freeway corridor between 

Washington, D.C. and Baltimore (Maryland, USA) and is bounded by two beltways (I-695 

Baltimore Beltway on the north and I-495 Capital Beltway on the south). The CHART network 

has 2241 nodes (231 of them are signalized), 3459 links and 111 traffic analysis zones (TAZ). 

This network had been calibrated by using real-world observations from multiple-day detector 

data (Mahmassani et al. 2006). An available 1-hour (7:30-8:30AM) morning peak time-varying 

O-D demand (with 39,560 vehicles in the observation period from 7:40 to 8:20 AM) table is 

extracted and loaded to the network. To create hypothetic dynamic toll scenarios, one of the 

20-mile long southbound lanes of the I-95 corridor is converted to the toll road, together with an 

additional new toll lane. The two toll lanes have the same length, posted speed limit, and capacity 

as the (remaining) three regular lanes. The two-lane toll road consists of 57 links in the coded 

network, and the four access/egress points to/from the toll road are interchanges with I-195, 

MD-100, MD-32 and MD-198, where additional on-ramps and off-ramps are added. A dynamic 

link toll vector generated by the method proposed by Dong et al. (2011) is used in this network to 

test the BDUE algorithm.  

The comparison of solution quality of CG and MSA is reported in Table 4 and Fig. 3. As 

presented in the figure and table, CG significantly outperforms MSA, because the final AGap(r) 

value obtained by MSA (0.149 min) is almost 19 times larger than that obtained by CG (0.008 

min). The gap reduction percentages of CG and MSA are 98.8% ((25393.2300.1) / 25393.2) and 
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76.7% ((25393.25915.4) / 25393.2), respectively. The computation times of CG and MSA on 

CHART network are about 40 and 39 hours, respectively. Similar to the result found on Irvine 

network, CG reduces the initial gap value 22% (=98.8%76.7%) more than MSA with just 2.5% 

more of computation time. While MSA was reported in the previous work (e.g., Lu et al., 2008) 

to be able to find acceptable solutions, the results on both networks shown in the current paper 

demonstrate that CG is more effective than MSA in obtaining close-to-IMDUE solutions. Note 

that for planning purpose, those amounts of computation time are acceptable, and less 

computation time can be achieved with more powerful machines and/or more efficient 

implementation (coding) of the algorithm. 
 

Table 4 Comparison of solution quality on CHART network 
 CG MSA 

Iteration Gap(r) AGap(r) Gap(r) AGap(r) 

0 25393.2 0.641 25393.2 0.641 

1 5622.9 0.142 11082.9 0.280  

2 3207.4 0.081 13210.4 0.334  

3 1885.5 0.048 11933.5 0.301  

4 1379.7 0.035 9847.8 0.249  

5 1051.3 0.027 8325.4 0.210  

6 984.0 0.025 7775.6 0.196  

7 814.4 0.021 6397.9 0.162  

8 816.0 0.021 6072.8 0.153  

9 621.6 0.016 6591.1 0.166  

10 642.8 0.016 7178.3 0.181  

11 492.1 0.012 6325.7 0.160  

12 427.8 0.011 5637.8 0.142  

13 415.8 0.011 6104.7 0.154  

14 310.2 0.008 6389.6 0.161  

15 300.1 0.008 5915.4 0.149  
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Fig. 3 Comparison of solution quality on CHART network 
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6 Concluding Remarks 
 

This paper presents an efficient algorithm for solving the IMDUE problem, or specifically the 

BDUE problem, which assumes the VOT is continuously distributed across the population of 

trips. The proposed column generation-based algorithm (i) applies the parametric analysis 

method in the outer loop to determine multiple user classes and to generate representative 

extreme non-dominated paths, and (ii) solves FMDUE problems in the inner loop by a feasible 

descent direction method. Although the mathematical abstraction of the problem is a typical 

analytical formulation, the solution algorithm adopts the simulation-based approach to tackle 

many practical aspects of the DTA applications. The experimental results show that the 

convergence pattern of the proposed algorithm is not affected by the different VOT assumptions 

(constant or random VOT), and the algorithm is able to find close-to-IMDUE (or approximate) 

solutions. In addition, the solution quality of the proposed algorithm is much better than that of 

the MSA-based solution method.  

Several interesting research directions can be continued based on the rich modeling 

capabilities of the IMDUE model in capturing traffic dynamics and user heterogeneity. For 

instance, the model can be extended to consider O-D-specific and/or time-varying VOT 

distributions, provided that the data are available to estimate the underlying parameter 

distributions. The model can also be integrated into a solution framework aiming at finding 

optimal or Pareto-improving dynamic pricing schemes, including locations, pricing periods and 

toll charges, so as to alleviate congestion. In addition, incorporating stochastic path choice with 

explicit perception errors (e.g. logit or probit models) would be an important and interesting 

extension. It will be interesting to implement some other VI algorithms developed for the static 

traffic assignment problems and compare their performance with that of our proposed approach. 

The model presented in this paper can be viewed as laying the foundation for a platform that 

integrates more realistic behavioral modeling in a dynamic network analysis tool. The main 

challenges in this development is to continue pushing the boundary of what can be realistically 

handled in a large network setting within the limits of practical computational capabilities. 
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APPENDIX 

 

Proof of Proposition 1: 

 

Suppose r* satisfies the MDUE condition, and let G(r*) be the corresponding path generalized 

cost vector. According to the MDUE definition, for an equilibrium multi-class path flow vector 

r*, the following condition can be established: 

If ( , *)odqG r  > ( , *)odpG r  (= ( )od

  ), then ( )odqr  = 0.  

If ( , *)odqG r  = ( , *)odpG r  (= ( )od

  ), then ( )odqr   0.  

o, d, , p and qP(o, d, ), and [min
, max

] (A1) 

where ( )od

   is the minimum possible generalized travel cost for the trips with VOT  from o 

to d departing at time . 
Consider these path generalized costs G(r*) as fixed at the current level of path flow r*. 

Because r* satisfies the MDUE condition and hence only least generalized cost paths are used, 

the total generalized cost cannot be reduced by moving flows from least generalized cost paths to 

other inefficient paths. For instance, if path generalized costs are fixed as G(r*) and ( , *)odqG r   

> ( , *)odpG r   then moving flow ( )odpr   from p to q will lead to an increase of total generalized 

cost by ( )odpr   ( , *)odqG r    ( )odpr   ( , *)odpG r   > 0. Therefore any other feasible 

multi-class path flow vector r  has total generalized cost at least as large as r* which uses 

only cheapest paths. In other words, the MDUE path flow vector r* satisfying (A1) is also the 

solution of the infinite dimensional variational inequality (8): 

    G(r*)
T
 r*  G(r*)

T
 r  or  G(r*)

T
  (r*  r)  0,  r  (A2) 

Conversely, assume that condition (A1) does not hold, then there exists the following 

situation for some triplet (o, d, ) and paths p and q: ( )odqr  > 0 and ( , *)odqG r  > ( , *)odpG r   

(= ( )od

  ). Moving flow ( )odqr   from q to the cheaper path p will result in a reduction of total 

generalized cost by ( )odqr   ( , *)odqG r   ( )odqr   ( , *)odpG r  >0. Let the resulting flow pattern 

be r . Then G(r*)
T
 r < G(r*)

T
 r*, in which case Eq.(8) is not satisfied. 

    From above, if (A1) is satisfied then Eq.(8) is satisfied, and if (A1) does not hold then Eq.(8) 

does not, either. Thus, conditions (A1) and Eq.(8) are equivalent, and solving for the IMDUE 

flow pattern is equivalent to finding the solution of the (possibly) infinite dimensional variational 

inequality Eq.(8). This completes the proof. 

 

Proof of Proposition 2: 

 

Denote by 
t

a  the time-dependent link marginal travel time: the travel time contribution of an 

additional unit of vehicular flow on link a in time interval t to the link travel time 
t

ad . By 

assuming that 
t

ad  is a monotonic (increasing) function of 
t

ax  (the number of vehicles on link a 

in time interval t): [( ) ] [ ( ) ( )] 0t t t t t t t t

a a a a a a a ax x x d x x d x       (e.g. Nagurney, 1998), with 

0t

ax  , the following can be obtained:  
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0

( ) ( )
lim 0t

a

t t t t t
t a a a a a
a tx

a

d x x d x

x


 

  
 


. (A3) 

Note that this study considers t

a  as a local link marginal. Peeta (1994) gave a comprehensive 

discussion on global link marginals with temporal and spatial interactions.  

Since link costs (i.e. tolls) t

ac  are given as input, the path marginal generalized cost 

perceived by the tripmaker of user class u(b), ( , )odp b r , is assumed to be the sum of constituent 

link marginal travel times weighted by the VOT of user class u(b). 
,

( )

( , ) ( )t t

odp a odpa

a A p

b r b    


    (A4) 

where A(p) is the set of links on path p, t is the first time interval in which link a on path p is 

reached by a vehicle assigned to that path in time , and ,t

odpa

  is the time-dependent link-path 

incidence indicator; ,t

odpa

  =1 if vehicles going from o to d assigned to path p at time   pass 

link a in time interval t, and 0 otherwise.  

Recall that p* be the referenced shortest path for a (b, o, d, ). Then constraints (14c) can be 

re-written as the following:  

*

( , , , )\ *

( ) ( ) ( )odp od odp

p P b o d p

r b h b r b  



   , b, o, d, and .    (A5) 

Define a new path flow vector { ( ), ( , , , ) \ *, , , , }odpy y b p P b o d p b o d      . By substituting 

Eq.(A3) into the objective function (14a), the NMP becomes the following unconstrained 

minimization problem:  

*

( , , , )\ *

( ) ( ) [ ( , ) ( , )]odp odp odp

b o d p P b o d p

MinGap y y b GC b y GC b y  

 

     (A6) 

Note that the constraints (14b) and (14d) are satisfied in the NMP because of the aforementioned 

active constraint set strategy and the projection of the updated solution onto the feasible set , 

respectively. With this transformation and according to Eq.(A4), the first-order partial derivative 

of Gap(r) with respect to a particular ( )odpy b  is obtained as the following:  
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where A(p) is the set of links on path p, and ( ) ( ) ( *)B p A p A p   is the set of links that are on 

either the non-shortest path p or the referenced shortest path p*. In the following, we prove that 

the search direction 
( ) *( )

[ ]
( )

GC y GC y
y

GC y


 is a descent direction of Gap(y) at y.  

To prove the vector Dir = 
( ) *( )

[ ]
( )

GC y GC y
y

GC y


 is a descent direction of Gap(y) at y, it is 

necessary to show that the inner product Gap(y)  (1  Dir) < 0 (see e.g. Theorem 4.1.2 in 

Bazara’a et al. 1993).  Component-wise, this is equivalent to showing that  

( , , , )\ *

( )
(( 1) ( )) 0

( )
odpp P b o d p

odp

Gap y
Dir b

y b






   


 , b, o, d, and ,  (A8) 

where 
*( ( , ) ( , ))

( ) [ ( ) ]
( , )

odp odp

odp odp

odp

GC b y GC b y
Dir b y b

GC b y

 

 




   and 

( )

( )odp

Gap y

y b




 is defined as Eq.(A7). 

    Consider that, for a (b, o, d, ) and for each path p ( ( )odpr b >0) in the path set P(b, o, d, )\p*, 

the cost of path p could be either equal to or greater than the least cost . In the first case, p is one 

of the shortest (more precisely, least cost) paths, then ( ) 0odpDir b   and accordingly 

(1)
( )

( )odp

Gap y

y b




 ( )odpDir b =0. In the latter case, p is a non-shortest path, then ( ) 0odpDir b  . 

According to Eq.(A3), link marginal travel times are non-negative and 
*( , ) ( , )odp odpGC b y GC b y   

is positive for any non-shortest path p, so 
( )

0
( )odp

Gap y

y b





 and 

( )
( 1) ( ) 0

( )
odp

odp

Gap y
Dir b

y b






   


.  

Mathematically, for each (b, o, d, ) 
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 (A9) 

 

where P(b, o, d, ) is the set of least generalized cost paths of a (b, o, d, ). Thus the search 

direction Dir is a descent direction of Gap(y) at y. This completes the proof.  
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