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Abstract: This paper aims at improving the first three steps of the traditional four-step
transportation model by using longitudinal person-trip data obtained at three different points in
time in the Hiroshima metropolitan area. Important results can be obtained. Cross-sectional
assumptions implicit in traditional travel demand models such as temporal = stability,
homogeneity and serial independence are all statistically rejected. Dynamic models with fixed-
effects and random-effects are developed based on the statistical results of trip generation,
attraction and distribution models. Through empirical analysis, newly developed dynamic
models have proven to be superior to traditional ones in terms of prediction accuracy. Further,
an aggregate logit model (linear form) is employed for modal split. Finally, a dynamic
simultaneous-equation model with fixed-effects based on the seemingly unrelated regfessions
method is developed and its effectiveness is confirmed by empirical analysis.
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1. INTRODUCTION

Cross-sectional data has been broadly used in travel demand modeling, especially urban
transportation planning. However, there still remain several severe problems from a practical
point of view. For example, models using cross-sectional data cannot provide travel
information on temporal change, thereby reducing longer-term travel demand prediction
accuracy.

To alleviate these infirmities, longitudinal data collected at multiple points in time has come to
the fore of travel behavior research. According to whether or not samples surveyed are identical
over time, longitudinal data can be generally classified as panel data or repeated cross-sectional
data, respectively.

Although longitudinal data has its own specific problems such as expensive survey costs and
aftrition bias caused by repetitious surveying, its information provisional capabilities, especially
regarding the temporal change of travel behavior, surpasses that of cross-sectional data.
Unfortunately, most research thus far has been confined to individual behavioral analyses based
on panel data in which the time-span between two surveys is very short, e. g. half a year or one
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year (e.g., Sugie ef al., 1999). Travel demand models at the zonal level using longitudinal data
collected over multi-year intervals have not been satisfactorily developed, probably because a
sufficient number of data sets could not be easily obtained for the area in question.

The goal of this paper is to improve the first three steps of the conventional four-step model
using longitudinal travel data obtained in the Hiroshima metropolitan area during 1967, 1978
and 1987. Urbanization has expanded survey area size, hence the initial 32-zone area common
to all survey years is used for this study (Sugie et al, 1982) (see Figure 1). The data originates
from repeated cross-sectional data gathered at 10-year intervals. Though individuals sampled in
the survey are different at each point in time, the analysis unit (i.e. zone) is fixed over the
duration of the survey. Therefore, statistical methods developed for the analysis of individual
panel data can be applied at the zonal level (Ito et al., 1997).

In the field of travel behavior research, perhaps the most frequent reason that motivates a panel
study is the evaluation of the impact of a change in the transportation system, or a specific
transportation planning project (Kitamura, 1990). Accordingly, much research has been
dedicated to disaggregate travel behavior using panel data (Special Issue: Longitudinal Data
Methods, 1987; Special Issue: Panel Analysis of Travel Demand, 1989; Special Issue: Dynamic
Travel Behavior Analysis, 1990), and useful results have been obtained.

Survey Area

Survey year 1967 1978 1987
Sampling rate (%) 5.0 1.5 7:5
Area (square kilometers) 413 850 1,151
Population (thousands) 770 1,060 1,580
Number of zones 110 40 196

Figure 1 Expansion of the Hiroshima Metropolitan Area
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Most dynamic models in individual travel behavioral analysis have been developed using short-
term panel data. However, if we consider forecasting transportation conditions 10 to 20 years
down the road using dynamic models, assumptions at time t, which are functions of dependent
variables at time t-1, are not completely plausible. Therefore, it seems critical to consider time
series factors for studies conducted over long time intervals with few survey years. The
objective of this study is to develop dynamic travel demand models incorporating unobserved
heterogeneity and first-order serial correlation within the context of such a circumstance.

As for the format of this paper, section 2 is used to statistically test cross-sectional assumptions
for trip generation, attraction and distribution models. Based on the test results, dynamic single-
equation models integrating unobserved heterogeneity and first-order serial correlation are
developed in section 3. Finally, section 4 is used to develop a new dynamic modal split model
with simultaneous-equations, as it is not realistic to treat the error terms of different modes
independently.

2. STATISTICAL TEST OF CROSS-SECTIONAL ASSUMPTIONS

2.1 Cross-sectional Assumptions

Traditional travel demand models using cross-sectional data can be expressed as follows:

K
Yie = B+ Ek:l Br Xy it + Vit 1)

where,
i, t :zone (or zone pair) and time, respectively
y;; :dependent variable (e.g. generated trips)
Xy it : k'th explanatory variable of y;,

By :parameter of x, ;,

u : some constant
: error term having an identical and independent distribution (i.i.d.) for i and t
: total number of explanatory variables

The following is assumed for Eq. (1).

Assumption 1: temporal stability, i.e. B, is independent of time.

Assumption 2: homogeneity, i.e. i is constant across zones.

Assumption 3: serial independence of v;,.
Based on the above assumptions, Eq. (1) can be estimated using the ordinary least squares
(OLS) method. However, if these assumptions do not hold, using the estimation results based
on OLS will lead to erroneous conclusions.
2.2 Estimation of Trip Generation, Attraction and Distribution Models
In this section, traditional travel demand models are developed for statistical analysis. The
indices related to population and employment in industry, business and commerce are used as

explanatory variables for trip generation and attraction models expressed as Eq. (1).

For trip distribution, a gravity model (Eq. (2)) is employed to check the temporal stability of
model parameters.
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yije = w(Gi)™ (AP /(i)™ @
where,
Yije interzonal trips between zones i and j at time t
G;, :trips generated in zone i

1t
A trips attracted in zone j
Ty, :a friction factor measuring average travel time between zones i and j
w, B> Ba P : model parameters

This model is widely used in Japan. For computational convenience, Eq. (2) can be converted
to its log-linear form as follows:

In(yij) = In(n) + B In(Gie) + Ba In(Aji) - Br In(Tije) + vije (3)

This indicates that the above trip distribution model can be also expressed as Eq. (1).
Accordingly, generation/attraction and distribution models are estimated using OLS (only the
results with respect to total trip purpose are shown in Table 1 due to limited space). The sample
size for trip distribution is smaller than expected (32x32=1,024), because intrazonal as well as
zero-trip samples elicited during survey year 1978 (a mere 1.5% sampling rate) were excluded
from the analysis. It can be seen that each model has an excellent goodness-of-fit (i.e. multiple
correlation coefficient) and that population as well as business and commerce employment
variables are significant in the generation/attraction models.

2.3 Test of Temporal Stability

To testwhether or not the estimated parameters based on OLS are temporally stable, we use a
covariance analysis method (Hsiao, 1986). First, we estimate Eq. (4) using OLS for each
year.

K
Yie = W+ 2k=1 Bt Xiit + Vit C)

Constant i, and parameter By, vary over time and their residual sum of squares can be

calculated as S1. Next, we estimate Eq. (1) using OLS and pooled data from 1967 and 1978,
then calculate its residual sum of squares as S;. The hypothesis of temporal stability for
constantst and parameters can be thought of as Eq. (4) subject to (k+1)(T-1) linear restrictions:

Ho: m1=pz=---=pr and Bk,1 =Pk2=-=PBkT
Based on S and S, the following F-statistic can be employed to test temporal stability.

_(S2-S1)/[(T-1)(K+1)]

£ S1/[NT-T(K+1)]

®)

The test results of Eq. (5) are shown in Table 2. Test results for the school attraction model is
not indicated because the number of students in 1967, an important explanatory variable in the
model, cannot be obtained. From Table 2, it is obvious that temporal stability for all of the
models is convincingly rejected.
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Table 1 Estimation Results for Generation, Attraction and Distribution Models

(Total Trip Purpose)

Hvlhrat bl Trip generation Trip attraction

IO VAT 1967 1978 1987 1967 1978 1987

Constant -434 -3280 561 -502 -3335 597

(0.13) (1.26) (0.17) (0.15) (1.27) (0.18)

Population 2215 1750  1.660 2210 1.745  1.655
(17.1)** (24.6)** (23.4)** (17.1)** (24.4)** (23.2)**

Employment in 3540 2190 2790 3561 2198  2.804

Sample size 32 32 32 32 32 39
Multiple correlation (999 0990 0995 0990 0990 0988
coefficient

. Trip distribution

Explanatory variable 1967 1978 1987

Constant -8.837 -12.38 -5.609
(9.11)** (8.80)** (6.70)**

Generated trips 0.876 0.918 0.938
(16.3)** (11.5)** (20.0)**

Attracted trips 1.106 1.245 0.827
(19.8)** (14.0)** (15.9)**

Average travel time -1.792 -1.235 -1.962
) _ (23.6)** (14.3)** (30.9)**

Sample size 458 458 458
MU P comebition Sy 0o 0.739 0.881
coefficient

(tscores in parentheses; *: significant at 5%, **: 1% )
Table 2 Temporal Stability Test Results

Trip purpose Generation Attraction Distribution

Work F(2,60) =8.09** F(2,60)=3.94* F(4,802) =5.62**
School F(2, 60) =5.29** F(4, 434) =5.48**
Home F(3,58) =25.2**  F(2, 60) =54.0** F(4, 866) =24.2**
Shopping F(3,58)=174**  F(3,58) =46.7** F(4,208) =21.9**
Personal F(3,58)=126**  F(3,58)=127** F(4, 540) =35.1**
Business F(3,58) =92.2**  F(3,58) =88.2** F(4, 632) =46.3**
Total F(3,58) =123**  F(3,58) =123**  F(4, 908) = 32.3**

( Figures in F(, ) are degree of freedom; *: significant at 5%; **: 1% )

2.4 Testing for Homogeneity

Consider the following equation with fixed-effects parameter ;.

K
Yie = O +u+ 2k=1 B Xy i + 1y (6)
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The test of homogeneity determines whether or not the null hypothesis Ho: 8; = 0 holds. We
estimate, first of all, the pooled model (Eq. (6)) in which 8 = 0 using OLS and obtain the

estimated residual uj;. Then the following Breusch-Pagan statistic A can be used to test for
homogeneity (Maddala, 1987; Meurs, 1990).

G %[21’ [23;1 ﬁi‘r/zil 2?:1 ai? . 1}2 @)

The A statistic follows a %2 distribution with one degree of freedom when N is sufficiently

larger than 1. The test results based on A are shown in Table 3, and one can deduce that the
existence of heterogeneity in most models is accepted.

Table 3 Homogeneity Test Results

Model Work  School Home Shopping Personal Business Total
Genmeration 0.013 0737 . 2533 21.1** ~ 224** 14.5** " 18.7%*
Attraction  0.002 3.691 7.52** . 20.4** 15.2** [18.7**

Distribution 49.2** 19.0** 143** 3.616  5.28* 2514 42.8**
( *: significant at 5%; **: 1% )

2.5 Testing for Serial Independence

Here we test for the existence of serial correlation of error terms in the presence of
heterogeneity. Therefore, we assume the following error structure:

Ujp = P U t+ 8y (8)
where p is a first-order serial correlation coefficient satisfying stationarity assumption|p | < 1.

By estimating Eqs. (6) and (8) with OLS when null hypothesis Ho: p = 0 holds, we can obtain

the estimated residual Uj and establish the following generalized Durbin-Watson statistic
(Bhargava et al., 1982; Maddala, 1987).

DW= Sty S -0 Diey Dt i ©)

The test results using Eq. (9) shown in Table 4 indicate the existence of first-order serial
correlation in all of the models at significance levels of 5% (the critical value is approximately
2.00).

Table 4 Serial Independence Test Results

Model Work Séhool Home Shopping Personal Business Total
Generation  0.98* 1.15% 1.28* 1.81* 1.84* 1:67* 1:97%
Attraction  0.99* 1.34* 1.48* 1.80* 1.69* 1.76*

Distribution 0.65* 0.71* 0.43* 0.82* 0.86* 1.09* 0.69*
(*: significant at 5% )
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3. DYNAMIC MODELS INCORPORATING UNOBSERVED
HETEROGENEITY AND FIRST-ORDER SERIAL CORRELATION

The above test results would impel one to relax all three cross-sectional assumptions. However,
because longitudinal data used here comprises only three time points, it is not possible to
incorporate time-varying parameters into the models. For this reason, we develop dynamic
models that incorporate heterogeneity and first-order serial correlation simultaneously for
generation, attraction and distribution models. The general formulae can be represented as
follows (Bhargava et al., 1982; Hsiao, 1986):

K
Yit = Bt 2k=1 B Xy it + Vit (10)
Vie = O +uy (11)
Ui = P Uy g+ € (12)

where v, u;, €, are error terms with ¢;, having an i.i.d.

The initial condition for Egs. (10) ~ (12) is given as (Lillard ef al, 1978):
uy = ey /V1-p? (13)

According to the assumptions about d;, we can obtain a model with fixed-effects (i.e. 8, does

not change stochastically) and a model with random-effects (i.e. 8; is a random variable).
Because error term u;, has a first-order serial correlation, the generalized least squares (GLS)
method can be applied. The GLS estimator can be defined as (Amemiya, 1985):

= e S
B-lx o x] xvay (14)

where Q* = (IN ® Q) isa NT x NT matrix and Q is a T x T variance-covariance matrix of the

stationary first-order auto regression, meaning Q has elements of the form (Bhargava et al.;
1982):

o, = p*(1-p? (15)

Eq. (14) is expressed rather abstrusely, and practical estimation would be complex. In light of
this, we set about transforming Egs. (10) ~ (12) using a simple method.

3.1 Specification of Dynamic Models with Fixed-effects (DFIX)

Based on the above theoretical background, Eqgs. (10) ~ (12) can be transformed as follows:

V1-p? (Vi1 -yp) = 2:((:1 { V1-p? Br (X.i1 'ik,i)] + & (16)

2 _ K » =
Yie - YD) - P (i1 - %) = 2k=1 Bre [(Ric it - X)) - P (Kiiee = X )] + &, 17)
where,

/ 2

g1 =¢€-V1-pu, g =€ -(1-p)y
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-~ T _ T
i = %Em Yits Xk,i = %zm Xk, it

Because the error term €, (t=1,2, ..., T)is serially independent, OLS can be applied to Egs.
(16) and (17) However, for a study wuh a minimum number of survey years we propose

y=1/ NTEl 12! ,Yit and X =1/ NTEl 121 _1Xk,it instead of yi and Xy ; because the
former can increase degrees of freedom for the estimation.

N
In order to estimate p and d; separately, Hsiao (1986) assumes >i21 9, = 0. Using OLS to get

the estimated value of B, () from Eqs. (16) and (17), along with y and Xy, we can calculate

the estimated values f;, d; of u, ; as follows:

~

- K 2 _ e K
“=Y+2k=1 Br X 9 =Yi‘l"2k=1 B Xk,i (18)

In fact, a consistent estimator of p must be pre-determined by the estimated parameter of y;, in
Eq. (19), because it cannot be obtained directly from Egs. (16) and (17) using OLS with an
insufficient number of survey years.

K ]
Vit = @+ P Vi t 2k=1 [ B Xi.it + Yk Xiit-1] + Cit (19)

Finally, the estimated value y;, of y;, can be expressed as a function of y;;_j, Xy ;.1 as well as
Xy it as follows:

~ s K [© ~ I
(= P Vi +(1-p)(u+ )+ Ek:] {Bk (i it = P Xy je-1) (20)
3.2 Specification of Dynamic Models with Random-effects (DRAN)

In contrast with DFIX, the variance-covariance matrix Q of error term v;, in DRAN is defined
as follows (Lillard et al., 1978):

1 oppt

Q=] plip Lo - [+l (1)
B
Lot - e 1]

20D : 5 o -
where o, Oy are variances of error terms u;, and &;, and i is a T x 1 matrix in which all of the
elements are 1.

. Since substituting @ into Eq. (14) will cause the same problem as in DFIX, we propose another
transformation method to specify DRAN.

K
Yir = u+ 2k=1 By Xk i1 +Mi1 (22)
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P K P
1‘_13 Yierqop Yik1 = M+ Diet B (1—_Lp Xt =T Fit-1) + M (23)
where,
Mip = U+ 9, My = ¢, /(1-p) +§
The error term m;, (t =1, 2, ..., T) has the following variance-covariance matrix.
01 Ocov Ocov " Ocov
2
cov 92 Ocoy " Ocov
2
¥ = cov 0c_ov O3 0'c.ov (24)
L 2
ocov Ocov 0cov OT =
where,
2 2 2 2 .2 2
O-2=03="'=0T = Oe/(l'p) +06 » Ocoy = 045

2. :
O, is the variance of error term e;,.

Eq. (24) is a special case of the GLS error structure. When T = 2, it follows the structure of the
seemingly unrelated regressions (SUR) method (Zellner, 1962).

Similar to DFIX, the estimated value of y;, (y,) can also be calculated based on travel
information at a previous time point.

JE e Rk 2 -
Yie = PV +u(1-p)+ 21(:1 Br (Xicit = P Xy 1) (25)

3.3 Estimation of DFIX and DRAN

In this section, we estimate DFIX and DRAN using data in 1967 and 1978 (only total trip
purpose estimations are shown). It is obvious that most of the estimated parameters have the
expected signs and are statistically significant.

To check the significance of DFIX and DRAN, we use the estimated parameters in Table 5 to
predict travel demand in 1987 and then compare them with the predictions of models OLS-78,
SUR-78 and FSUR-78 (see Table 6).

OLS-78 is a traditional prediction model, which extrapolates future conditions from present
cross-sectional relationships, hence parameters of the base year (1978 in this study) are used
for prediction. SUR-78 considers temporal variation of parameters, zonal variation of constants
and arbitrary serial correlation. The difference between SUR-78 and FSUR-78 is that the latter
does not assume parameters to vary over time. They use data in 1967 and 1978 for model
estimation. However, since it is not clear how correlation between present and future error
terms is considered, it is not addressed in this paper. Comparing these two models can make it
Clear whether or not time-varying parameters significantly influence prediction accuracy.
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Table 5 Estimation Results for Generation, Attraction and Distribution Models

(Total Trip Purpose)

Explanatory Generation  Attraction __ Distribution
variable DFIX DRAN DFIX DRAN DFIX __ DRAN_
Constant -2099 -2157 -11.78

(0.64) (0.65) (12.2)**
Population 1.694 1.762 1.690 1.754

(8.10)** (19.1)** (8.03)** (18.9)**

Employment in 2.476 2.299 2.484  2.302

business and commerce
Trips generated
Trips attracted

Average travel time

(10.6)** (26.5)** (10.6)** (26.3)**

0.878  1.057
(17.3)** (19.8)**
0.932  0.884

(17.3)** (14.8)**

-1.014  -0.744
(15.8)** (11.3)**

(t scores in parentheses; *: significant at 5%; **: 1%)

Table 6 Prediction Models for 1987

Variati . .
Prediction model -4 anation  Serial correlation  Estimation
w+0i Bt method
FE B 2 e 9N
- es es yes/no
FSUR-78 es o yeshod) SURY
DFIX yes no yes (1st)9 OLS
DRAN yes no yes (1st)9 GLS
Prediction model Da'ta f0.r model Paramet.ers. used
estimation for prediction
OLS-78 1978 1978
SUR-78 1967+1978 1978
FSUR 'S 1967+1978  1967+19789)
DFIX 1967+1978 1967+19784)
DRAN 1967+1978 1967+19789)

a) considered in model estimation, but not for prediction b) see section 3.2

¢) first-order serial correlation d)

commom parameters for 1967 and 78

Goodness-of-fit indices used to evaluate prediction accuracy regarding actual (Y;) and

estimated (/Yi) trips in 1987 are correlation coefficient (R) and Theil's inequality coefficient
(U,: 0 = its value s 1) a (Theil, 1961). U, can be expressed as Eq. (26).

U, =J—1l\_1 Eil(Yi ~¥;) /(&EilYiz +\[§2i1?*2)

(26)

A larger value of R and a smaller value of U, means higher prediction accuracy. The prediction
accuracy of each model defined in Table 6 is shown in Table 7.
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We can see from Table 7 that FSUR-78 is superior to OLS-78 and SUR-78 in terms of model
accuracy. This result means that zone-dependent constants (i.e. u + ;) are more important than

time-varying parameters (i.e. f8,), supporting the assumptions of DFIX and DRAN.

As heterogeneity parameters represent travel change due to unmeasurable zonal (or spatial)
characteristics, they must be more effective than time-varying parameters. Moreover,
incorporating first-order serial correlation into DFIX and DRAN makes it possible to consider
travel information at previous time points explicitly. As a result, DFIX and DRAN are most
accurate of all the models defined in Table 6. Besides, since the heterogeneity parameter can be
explicitly incorporated in DFIX, it is more desirable to use this model to predict travel demand
rather than DRAN.

Table 7 Prediction Accuracy of the Models Defined in Table 6

(Total Trip Purpose)

Model ..Generation ... Attraction. .. Distribution _

Theil's R Theil's R Theil's
OLS-78 0.977 0.069 0.976 0.070 0.823  0.045
SUR-78 0.978 0.071 0.978 0.071 0.801 0.046
FSUR-78 0.983 0.058 0.983 0.058 0.840 0.044
DFIX 0.992 0.031 0.992 0.031 0.884 0.038
DRAN 0.982 0.058 0.982 0.059 0.879  0.035

4. DYNAMIC MODELS WITH SIMULTANEOUS-EQUATIONS

In this section, we extend the dynamic single-equation models of section 3 to the modal split
phase. Although a number of modal split models have been employed in travel demand
analysis, a logit model such as Eq. (27) is used here because it is more theoretically well-
founded than other models.

M :
m m m
Piie = exp(Vijl )/ ey ©XP ( Vit ) @7
K K m
m m 1 m
Vi Sea 4 2k=1 By Xiij,0 + 2k=1<,+1 Br Xuijt (28)
where,
P;}’,[ : trip share held by mode m between zones i and j at time t
V;?’t : linear utility function of mode m
in i, :K'th explanatory variable of mode m (e.g. average travel time)
B,  :parameter common to all modes
Xy,ij,i - explanatory variable common to all modes
m

By : parameter for mode m
a™  : constant for mode m

There exist two methods to estimate Eq. (27): one is the maximum likelihood (ML) method,
and the another is GLS (or SUR). We adopt the latter (SUR) here because it incorporates time
series information into the model better than the ML method. For travel modes car, bus and rail,
Eq. (27) can be transformed as follows (Theil, 1969) :

BUS CAR BUS CAR
PSP = VS VR L (29)

IR 1 ij,t

In(P
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RAIL
ij,t

CAR RAIL
5 .1 = Yy

CAR
In( P/ P SV e (30)
The explanatory variable common to all modes is average travel time, and the following

variables are used independently in the two equations:
1) accessibility ¥}, (i.e.E}j1 A, /Tyj) of origin zone i;

2) egressibility W;, (i.e. $iv; Gy/Ty;,) of destination zone j
3) car ownership in origin zone i;

4) business and commerce employment percentages at destination zone j (an indicator of
parking difficulty);

where G;;, A;, and Ty, are defined as in Eq. (2).

The models developed in section 3 belong to the single-equation approach. For the modal split
model, we must estimate Egs. (29) and (30) simultaneously to determine the correlation
between error terms @;;  and M;; ;.

4.1 Test of Cross-sectional Assumptions for the Modal Split Model

To carry out the tests we use total trip purpose data from 1967 and 1978. The covariance
analysis method is handy to test temporal stability as was done in section 3. Applying the same
method to Egs. (29) and (30) would be too complicated, hence we first estimate Eqs. (29) and
(30) using SUR for each year (see Table 8). The sample size decreases due to reasons shown in
Table 1. Models obtained have relatively high multiple correlation coefficients, but their
parameters seem to vary over time.

It was then tested whether or not the parameters' t-statistics each year were equal (see Table 9).
It is clear that most of the parameters are significantly different for survey years 1967 and 1978.
We used the same statistics employed in the previous section to test the homogeneity and serial
independence assumptions, but the estimated residuals used here are from simultaneous SUR
estimations of Egs. (29) and (30), not from a separate OLS estimation. The test results of Table
10 indicate that all estimations are statistically rejected at significance levels of 5% or 1%,
suggesting the existence of heterogeneity and first-order serial correlation.

Much like section 3, we can use the above test results to rewrite Egs. (29) and (30) as follows:

BUS , 5 CAR BC _ BUS ,CAR
lﬂ(Pij,t [Py ) =0y + Vi -Vii T, (31)
RAIL , ,, CAR RC RAIL ,CAR
ln(Pij,t /Pijz ) =9d; +Viip -Vii M (32)
BC BC
W =P O F &y (33)
RC RC
Mije = P Mijea + &y (34)
BC _RC )
where, &;; ,d;; : heterogeneity parameters
RC .. . . o
pBC, p C . first-order serial correlation coefficients

Journal of the Eastern Asia Society for Transportation Studies, Vol.4, No.3. October, 2001



141

Dynamic Travel Demand Models Based on Longitudinal Person-Trip Data

Table 8 SUR Estimation Results of Eqns (29) and (30) for Each Survey Year

coefficient

Explanatory variable 1967 1978 1987
Average travel time (min.) -1.61E-03 -2.08E-03 -3.10E-02
B e 0.36) (1.25) . (4.59)**
En(29) .
Constant 0.761 0.428 -1.58
(1.56) (0.76) (2:37)*
Accessibility of origin zone 7.54E-07 2.66E-06 4.50E-06
(0.81) (1.93) (4.13)**
Egressibility of destination zone 63:88%06 68:§/§§3-06 (—8‘.%2)}3-06
Car ownership in origin zone -2.35 -4.62 -4.65
(1.54) (2:73)** (2.81)**
Business and commerce employment 1 4 1.49 3.28
percentages in destinationzone  (4.28)** GBI (6.72)*
Ean@(30)
Constant 1.35 0.358 0.382
(1.76) (0.46) (0.44)
Accessibility of origin zone -6.20E-06 -7.42E-07 -1.37E-06
(4.15)** (0.39) 0.97)
Egressibility of destination zone -2.43E-05 -2.53E-05 -2.01E-05
(3.42)** (2.30)* (2:21)*
Car ownership in origin zone 1.07 -2.69 -0.452
(0.44) (1.15) (0.21)
Business and commerce employment -0.219 1.11 0.946
percentages in destination zone (2.20)* (1.48)
Sample size 126 126 126
Multiple correlation 0.672 0.763 0.859

(tscores in parentheses; *: significant at 5%; **: 1% )

Table 9 Test Results for Temporal Stability
Explanatory variable

1967 vs. 1978

Average traveltime 113
e e SO , eqn (30)
Constant Si03 x> 10:1%*
Accessibility of origin zone 12.8%* 2525
Egressibility of destination zone 4.32%* 0.810
Car ownership at origin zone 11.2%* 12:5 5%

Business and commerce employment

* * ¥
percentages in destination zone G 20.6

( *:significant at 5%; **: 1% )

Table 10 Test Results for Heterogeneity and First-order Serial Correlation

Equation Heterogeneity Serial correlation
(29) LISE" 0.699*
(30) 13.0** 0.827*

( *:significant at 5%; **: 1% )
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4.2 Specification and Estimation of Dynamic Simultaneous-equation Modal
Split Models with Fixed-effects (DSEFIX)

We can develop dynamic simultaneous-equations models for modal split using the same method
demonstrated in section 3. However, it becomes very complicated to extend DRAN to
simultaneous-equations due to error structure complexity. Therefore, we only discuss dynamic
models with fixed-effects. Eqs. (31) ~ (34) can be transformed as follows:

BC
, BC K™ BC  BC BC
Yijt = 2;(:1 By X'wijt * Eijt (35
RC
,RC K RC  Rrc RC

Yijt = 2k=1 Bx X'wijt + &ijt (36)

where y'i?f, y'i?"c, X'kl?g,n x"s S[ are transformed variables of In (Pi?,lljs / PE?R) in Eq. (31),
In (Piifdl‘ / Piﬁ\p‘) in Eq. (32) and their explanatory variabies, respectively. These variables can
be expressed similar to Eqgs. (16) and (17) using the average values of i, j and t.

7, —BC :
BC ( l—pBC) \yﬁl -y ) if t=1 o7
Yie = BC =BC BG, BC . =BC .
i =Y D-p G-y ) i >l
BC {[Jl-pBC)z(xE,?j,l_ch) if t=1 o
Xkijt =1 pc  _BC BC, BC =BC ;
|Xkije =X )-p (Xijj1 —Xx ) if t>1
[ 2, RC —RC .
,RC {[ 1—pRC) (yi'}l -7 if t=1 (39)
Yiit =1 Rrc —RC, RC, RC =RC :
\Gii =¥ D= Gia-y )i >
RC {[\ll—pRC)z(xicij,1~iRC) if t=1 o
Xkijt =1 Rrc _RC RC, RC —RC .
|Gri-X )=p (igea -X7) i t>1
where,
BC BUS , ,CAR RC RAIL , ,CAR
yije =In(Pije / Pije ) yiit =In(Pije /Pije )
Bc 1 N BC rRc 1 e o B
y =72 Yij y o=T= 2}’"(
NT Uz,l: et NTUZ“: »
P NT O c 1 NI oo
— BC = K
Xx =\NT Xk,ijt Xk =T XKk,ij,t
NTU2=1:=1 ! NT 44 !
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Note that N and T are the number of zone pairs and time points. The SUR method can be
directly applied to Eqs. (35) and (36), and heterogeneity parameters and constants can be
estimated as done in Eq. (18).

Using data for 1967 and 1978 we estimated DSFIX parameters and subsequently predicted the
trips according to travel mode in 1987. Only final (1987) prediction accuracy is shown in Table
11. The traditional model listed in the Table is without heterogeneity and first-order serial
correlation. Accordingly, DSFIX is relatively superior in terms of prediction accuracy, even
though their goodness-of-fit indices are not satisfactory.

Table 11 Prediction Accuracy of Modal Split Models for 1987

Model R Theil's
Traditional model 0.534 0.281
DSFIX 0.596 0.268

5. CONCLUSIONS

Environments surrounding transportation experience more acute and more frequent changes
now than ever before. For this reason, traditional travel demand models that extrapolate
longitudinally from cross-sectional relationships have become impractical.

This paper have developed a new model system that incorporates unobserved heterogeneity and
first-order serial correlation based on repeated cross-sectional data gathered at multi-year
intervals. Notable results have been obtained.

The conventional cross-sectional assumptions of temporal stability, homogeneity and serial
independence, accepted in traditional travel demand models are all statistically rejected. Further,
the issue of temporal variation becomes difficult with only a minimal number of survey time
points. Hence, in this paper we have proposed incorporating unobserved heterogeneity and
first-order serial correlation of error terms into the model.

With respect to trip generation, attraction and distribution models, dynamic models with fixed-
effects and random-effects are developed based on the above statistical results. Through
empirical analysis, newly developed dynamic models have proven to be superior to traditional
ones in terms of prediction accuracy. As heterogeneity parameters with fixed-effects can reflect
different zonal characteristics directly, we have concluded that dynamic models with fixed-
effects could be used for long-term predictions.

The log-linear form of an aggregate logit model is used for the modal split phase. Because
modes chosen are not independent of one another, the correlation among error terms of
different modes should be considered. However, since it was difficult to extend the single-
equation model with random-effects to modal split, a dynamic simultaneous-equation model
with fixed-effects based on SUR was developed and its effectiveness confirmed by empirical
analysis.

These dynamic models are expected to improve prediction accuracy, but there still remain some
problems. One is that we have used data only from the initial 1967 survey area. This area is
common to all survey years, but since survey areas enlarge with the passage of time, it is
necessary to incorporate this phenomenon into our models.

Gravity and logit models are fundamentally non-linear, so they must be transformed to log-
linear form in order to apply the ideas introduced for trip generation/attraction models to them.
Consequently, non-linear models need to be dealt with directly to further develop dynamic
travel demand models.
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Finally, we can say that the dynamic models proposed here would be also a useful tool for
travel demand analysis and forecasting in developing countries. Because the longitudinal travel
data will soon be available in these countries since the Person Trip Survey has been already
done to make transportation plans in many Asian Metropolitan Areas and the second and third
surveys are successively planning to be carried out to review them.
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