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Abstract: This paper derives commuters' equilibrium queuing costs and schedule delay costs
under the optimal single- and multi-step toll schemes. By comparing these equilibrium costs
with the same costs in the present pre-tolled case, one can forecast some changes in commuter
behavior from the no toll to the tolled cases. There are some valuable forecasting results for
decision making presented in this paper. Firstly, the number of commuters who will or will
not pay the tolls can be investigated before tolling a queuing bottleneck. Secondly, all
commuters' departure time switching decisions from the no toll case to both the optimal
single- or multi-step toll cases also can be investigated before tolling. Such coinmuter
behavior forecasting results, that the previous,literature has failed to provide, are valuable and
helpful to policy makers if the optimal step toll scheme is considered to put into practice.
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I.INTRODUCTION

Laih (1994) developed a flexible pricing mechanism including the optimal single- and multi-
step tolls to relieve commuting queuing in the moming at a road bottleneck. Four years later,
Singapore applied the optimal double-step toll scheme as the toll structureof Electronic Road
Pricing (ERP) System in East Coast Parkway (ECP). Take the passenger car for instance, ERP
rates in ECP for three time periods of AM 7:30-8:00, 8:00^:9:00 and 9:00-9:30 from April
1998 until March 1999 are $1, $2 and $1, respectively. Land Transport Authority (LIAj of
Singapore calls this toll structure "the shoulder pricing". In fact, one may observe that the
shoul4er pricing completely matches the optimal double-step toll structure. However, ERp
rates for passenger cars in ECP and other expressways from April 1999 have becoming
changeable and no longer match the optimal step toll structure to respond the multipli
changes in commuter behavior. Commuter behavior changes are complicated and viry
difficult lolorecast especially in urban areas because there are many commuting altematives
such as different modes and routes that commuters can take to reach their workplaces.

To forecast commuter behavior changes from the no toll to the tolled cases is a new topic in
the road pricing theory. Commuter behavior forecasts are also valuable and useful in decision
making because such information helps the authorities comprehensively evaluate the toll
3c!9me1 in the present pre-tolled case. Unfortunately, except for two 

"onf"r"r"" 
papers by

Laih (1998, 2000), the related literatures concerning to prouid. detailed commutei tehavioi
forecasts ifthe congestion toll is put into practice are not available. In order to fill up such a
deficiency to a certain degree, this paper provides a methodological framework to forecast
commuter behavior changes from the no toll case to both the opiimal single- and multi-step
toll cases.
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This paper first derives the complete and regular values in toll structures of the optimal n-step

tott schimes (where n= 7,2,3, ""') that are not provided in Laih's work (1994)' The optimal

r-step toll structure is the basis to develop the complete methodological framework for

commuter behavior forecasts. Next, this paper derives the equilibrium queuing cost and

schedule delay cost to each commuter before and after implementing the optimal r-step toll

schemes. The above equilibrium costs act as the indispensable tools to forecast commuter

behavior changes from ihe no toll to the tolled cases. By using the tools, commuter behavior

forecasts incluting the number of commuters who will or will not pay the tolls, and all

commuters' departure time switching decisions can be investigated.

The paper is organized as follows. A concise review of the no toll equilibrium, the optimal

n.r" ioll, and the basic optimal step toll structure for a queuing bottleneck model that have

been discussed in the previous literature is given in Section 2. Methodological frameworks

used to forecast commuter behavior changes from the no toll case to the optimal single- and

multi-step toll cases are developed in Sections 3 and 4, respectively' Accordingly, some

val4ble commuter behavior forecasts under the optimal r-step toll schemes are provided.

Finally, practical implications of the commuter behavior forecasts that this paper provides are

addressed carefully in Section 5.

2. BACKGROUND REVIEWS

Queuing often develops in front of the entry to a road bottleneck during the morning rush

hour dui to a limited capacity. Queuing as the result of stochastic changes in capacity, such as

car accidents, is not considered in this paper.

The basic assumptions for a queuing bottleneck model developed by Vickrey (1969) and

elaborated by Laih (1994, 1998, 2000) are as follows. Eirst, there are a fixed number of
homogeneous commuters, one per car, that choose their departure times rationally based on

the commuting cost minimization principle. Second, the total commuting cost for every

commuter includes the queuing cost, the schedule delay cost (the costs of arriving at work
earlier or later than the work start time) and the toll (if any). For simplicity, both the queuing

and schedule delay costs are usually assumed to be linear. Thifd, commuting demands to the

bottleneck are perfectly inelastic. There are two examples that can be raised to justifu this
assumption: l. Queuing often occurs at the nearest highway interchange to the downlown .uea

during the moming rush hour. Because most interchanges only have otre lane, a bottleneck is

formed in this situation. Almost all commuting cars in the highway choose to queue to enter

the nearest interchange .to the downtown Consequently, commuting demands to the

interchange can be treated as perfectly in6lastic in this case. 2. Because of topographic

restraints, such as tunnels and bridges, commuting roads often have a nturow segment. A
bottleneck is also formed in this situation. Since altemative roads to the downtown are not

existent, there are often long and persistent queues at the bottleneck during the moming rush
hour. Therefore, commuting demands to such commuting roads also can be treated as

perfectly inelastic. Fourth, the route segments before and after the bottleneck have a sufficient
capacity so that no queuing would occur there. Fifth, any commuting time other than waiting
in the queue due to the bottleneck is constant for departure time decisions. Therefore, one

may consider that a commuter arrives at the bottleneck as soon as he/she departs from home,
and arrives at the workplace immediately after leaving the bottleneck.

Definitions to all notations used in this paper are listed in Appendix so that one can find them

Journal of the Eastern Asia Society for Transportation Studies' Vol.4' No.3. October' 2001



Commuter Behavior Forecasting under the Optimal Single-and Multi-Step Toll Schemes 
'71

conveniently and quickly. Let's first review the no toll equilibrium case. Because every
commuter seeks his departure time to minimize his commuting costs, a stable equilibrium can
be reached when all commuters' commuting costs are equal. Accordingly, the equilibrium
condition can be expressed as d(TC) I dt = 0 for all r. Appllng this rule, the no toll

equilibrium queueing cost (a 'To" Q)) to all early arrivals at work increases linearly from t,
to a maximum value at f , and then decreases linearly from f to ,e, to all late arrivals at

work. Accordingly, the values of t s , f and r ,, can be determined as

t =t'- / (N/r) T=t'- f' ,*,' B
o g+r' o(g*i' il and to'=t +fiV(N/s)' Since all

commuters who depart during [lo,tr, ] have the same commuting cost in equilibrium, the

equilibrium commuting cost for each commuter can be obtained as

rC"=a.r,;G)= lY q,g.' p+y

The optimal fine toll is defined as a series of tolls that will completely eliminate the efficiency
loss of all commuters' queueing times. Consequently, the shape of the optimal fine toil
scheme is triangular because of continuously changeable charges throughout the queuing
period [rr,/r, ]. Because the optimal fine toll eliminates queuing completely, all commuters'

departure times from home can be considered as their arrival times at work. The maximum
optimal fine toll is located at the work start time, i.e.,c(t'). This is reasonable because
commuters are willing to pay the highest toll in order to arrive at work on time without
incurring any schedule delay costs.

The single- and multi-step tolls inscribed in the optimal fine toll triangle are first developed
by Laih (1994) to reduce the queuing costs to a desired level. The single- and multi-step toll
schemes are shaped as a rectangle, and a pyramid made up of multiple rectangles, respectively.
Because the step toll with the maximum revenue inscribed in the optimal fiie toll triangle is
defined as the optimal step toll, the optimal single-, double- and friple-step tolls divide the
maximum optimal fine toll r(r') (or the equilibrium commuting cost ZC" ) into two, three
and four equal amounts, respectively. The effects of the optimaisingle-, double- and triple-
step tolls on queuing reduction have been derived tobe ll2,zn naTru,respectively, of the
total queuing time that existed in the no toll equilibrium. These queuing reduction efiects are
obtained simply because the maximum toll revenues from the optimi single-, double- and
triple-step toll schemes are ll2, 213 and 3/4, respectively, of the total 

"quilib.i 
m queuing

costs in the no toll case. The above results provided by Laitr (1994) are valuable information
for decision-making by the authorities, but, unfortunately, iittte lnformation of commuter
behavior changes from the no toll to the tolled cases can be provided in the present pre-tolled
sifuation. These problems will be dealt with in the following'sections.

3. COMMUTER BEHAVIOR IN THE OPTIMAL SINGLE-STEP TOLL CASE

This Section derives the equilibrium queuing costs and schedule delay costs under the optimal
single-step toll scheme. By comparing the Jquilibrium queuing cost; beiore and after iotSng
the bottleneck, the differences in distribution ofdeparture rateithroughout the queuing perioi
can be known. Meanwhile, the size of departures for all types of comiruters und-er the-optimal
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single-step toll scheme can be obtained. Finally, the equilibrium.schedule delay costs before

anjafter iolling the bottleneck will be compared to investigate all commuters' departure time

switching decisions.

3.1 Equilibrium Queuing Costs and Departure Rates

In order to collect the maximum step toll revenue without making commuters worse off than

they would be in the no toll equilibrium, an optimal single-step toll p 1=79" /2), inscribed

within the optimal fine toll LtqRtq, in Figure l, is applied at t*and lifted at t- . ftoMtn',

on the left hand side in this Figure, illustrates the no toll equilibrium queuing cost. The slopes

,f N , Mtc, ,l *a nq *" 3L, -aT , g 
^-rd -T,respectively.Thedetaileda-p'a+y

derivations of LtrRtr, arrd LtnMr, can be referred to Laih's work (1994)'

In Figure l, l'and fr are two important time spots that need to make some discussions.

Let,s discuss /' first. Because a bottleneck is fully utilized throughout the queuing period

ft u,t ,,) ,the last person who will not pay the toll before ,* arrives at his workplace just before

the first person who will pay the toll at r*. This means that both of them have almost the

same schedule delay costs. iecause the queuing cost to the latter is zero, and also because

both have the same commuting cost in equilibrium, the former must incur a queuing costlhat

is equal to the amount of the toll p, and consequently must depart p I a earlier' Therefore,

there are no departures during the period [f',f.) . The interval between t' and tt in Figure

1 therefore is pl a.

Discussing t# is similar to t' . Because the last person who will pay the toll just before t_--

must have the same commuting cost as the first person who will not pay the toll when the toll

is lifted on ,-, and also because the queuing cost to the former is zero, the latter must incur a

queuing cost that is p higher than the former. This is impossible unless the latter has queued

for a period of p I a before l-. Therefore, we may consider that there is a mass of departing

commuters wait at a temporary parking area somewhere in front of the tollgate entry to the

bottleneck from ,o to t-. Then they will enter the bottleneck after l- without paying the toll.

Consequently, the interval between tn and t- in Figure I is p I a '

Values of the toll and departure times appearing in Figure 1 are listed in Table l. Because the

value of /, is assumed to be zero for simplicity, the values of tu, T, t*, t-, i and to,

listed in Table 1 *" ( ,' -J-f{))earlier than those appeared in Laih's work (1994).----- --- t 0*Y\t ))

Table 2 illustrates equilibrium results for all departure intervals under the optimal single-step

toll scheme. Note that there exists a blanket departure time interval [r',t*) because nobody

departs during this time period that we have mentioned before. Commuters from groups B, C

ahd D depart during the tolled period lt',t-). Except for group D, which avoids paying the

toll, groups B and C will pay the toll to cross the bottlcneck. Groups A and E do not need to

puy iir" toll because they depart during the no toll periods. Moreover, only groups A and B
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Cost or Toll

TC" =a.To"

=r(t')

p =TC" l2

tet'7 t*fto i t- tq, DepartureTime

Figure l Equilibrium Queuing Costs & Schedule Delay Costs in the No Toll & Optimal Single-Step Toll Cases
Departure rate

asl(a- 13 t

s

2asl(a+y
asl(a+1

l, t' I t t r t t tt, DcpartureTime

Figure 2. Equilibrium Departure Rates in the No Toll & Oprimal Single-Step Toll Cases
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will anive at their workplaces earlier than the work start time because they depart before the

departure time f . These results are ananged as columns (I)-(III) in Table 2.

Because equilibrium will be achieved as long as all commuters have the same commuting
costs throughout the queuing period, TC(t) =TC(tr) and TC(t) =TCA.,) are two equilibrium

conditions for all early and late arrivals at work, respectively. Equilibrium conditions for
groups A, B, C and D (or E) in Table 2 then can be expressed as equations (l), (2), (3) and (4),
respectively:

(1)

(2)

(3)

(4)

a.re@+ 9b' -Q +rnQ)))= B.i, ror t, <t st'
a'Tn@+0b'-0*rr(r))* p=B'i, for r* 3t<i

a'rn@+ rl! +rou)-il+ p = yQo, -t'), for i <r <r
a.rn@+rl!+rnft)-fl--y(to,-t'), for r# <t<t- or t- <t<tq,

b' -Q *rn$) in equation (l) or (2) indicates the time periods for commuters arriving at

work early (i.e.,Tr). On the other hand, lQ+fnft)-l] in equation (3) or (a) indicates the

time periods for commuters arriving at work late (i.e.,I, ). The values of TC( r) ail TC(t r,)
are B.t' ^a y Qt-t'), respectivelybecause /c =0 and Ta(q) =Tr(to, ) =0.

Equilibrium queuing costs (EQC ' a.To" O), for groups A-E, listed in column (IV) of Table

2 are obtained according to equations (lF(4). As shown in Figure l, the equilibrium queuing

costs for groups A-E under the optimal single-step toll scheme are thick lines t rK , t* I ,

tf , n and Ztr,,respectively.Theslope of \K and lY forallearlyarrivals ir 4=,
a- p'

which is the same as the slope of the equilibrium queuing cost $ onA ) to all early arrivals in
the no toll case. Note that there is no thick lines of equilibrium queuing costs through the
departure period [rlr.) since no one departs during this period. Therefore, the length ofthe
queue is reduced to zero at /*. On the other hand, the slope of If , tZ *rd 4, for all late

arrivals i" ?- ,which is the same as the slope of the equilibrium queuing cost ( Mrn ) to alla+r
late arrivals in the no toll case. Note that the equilibrium queuing costs incurred before and

after t-, for group D in Figure l, are Jt- and toZ, respectively. The former is the
decreasing equilibrium queuing costs from p to zero, spent at the temporary parking area to
avoid entering the bottleneck during the tolled period [to,t-). The latter is the increasing

equilibrium queuing costs from zero to 94 <tn"height of Z in Figure l), spent to enter rhea+r
bottleneck free after /-. Consequently, the total equilibrium queuing cost for group D is Z
1:tr + t21.

The equilibrium departure rates (EDR) for groups A-E in column (V) of Table 2 are obtaine<l

by using the corresponding equilibrium queuing time (Tn"(t)). Figure 2 shows the EDR
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distributions for both the no toll and the optimal single-step toll cases. The two cases €ue

shown as the dotted line area and the shadowed area, respectively. Certainly, the total

departure is "N" for each of the two cases.

In the no toll case, the equilibrium queuing costs (a .To" (t )) for all early and late arrivals in

Figure 1 ar" N *rd Mtr., respectively, and the slopes for the former and latter *" of 
;a-0

*d ffi, 
respectively. Accordingly, their marginal departure ,u,", 

[= 

*+') -,

F ^ *d -ys , respectively. Since the bottleneck is fully utilized through the queuing
q-0 d+y
period, EDR for the early and late arrivals in the no toll case are therefore equal to

^ (=r*-Al 
^a 

* (=r--Jl-], respectively. See the dotted line area in
a- P\ a- P) a+y\ a+Y)
Figure 2.

The EDR for the optimal single-step toll case is somewhat more complicated than the no toll

case. Firstly, because toK and trM in Figure I coincide during [fr,t'), the EDR for this

departue period is the same as that in the no toll case. Secondly, since there are no departures

during [r',r-), the EDR is zero for this departure period. Thirdly, because the slopes of tt I
and It- in Figure I are the same as the slope of tN nd Mtt, respectively, the EDR for

the two periods 1r',f ; and [ir-) are -9- and :-, respectively. Note that there exist
a-p a+y

group D commuters who depart during the tolled period l{ ,t- ) but decide to enter the

bottleneck free after ,-. Because the departure time period for group D overlaps with the

departure time period for group C, also because the marginal departure rate for group D is

equal to ^ 1rin"" the slope of tZ eq*ts 4), the EDR for the deparnue period- a+y a+y

l/,r)in Figure 2 therefore becomes 

-29- 

Finally, 4 *a Uta nFigure I coincide
d+y

during It-,r0, ], so the EDR for this departure period is also 6a+r

The sizes of departures listed in column (VI) of Table 2 are computed by multiplying the

lengths of departue intervals and corresponding values of EDR together. The fomer can be

obtained from column (II) by using the related values listed in Table l, and the latter are

already shown in column (V).

3.2 Equilibrium Departure Time Switching Decisions

Section 3.1 showed the distribution differences in the equilibrium departtue rate before and

after pricing a queuing bottleneck with the optimal single-step toll. However, these results
give no idea as to investigate commuters' departrue time switching decisions if the bottleneck
is tolled. This Section solves these problems by comparing the equilibrium schedule delay
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costs for both the no toll and the optimal single-step toll cases.

Since the equilibrium queuing costs for all departure intervals under the optimal single-step
toll scheme have been derived, the conesponding values ofequilibrium schedule delay costs

(ESDC) required to achieve the equilibrium commuting cost ?nC" (= h, 
r ,rl) 

"un 
u.

easily obtained as shown in column (VII) of Table 2. In Figure 1, ESDC are drawn as doubled

lines ll( , Wi , iL, -rG and GB for groups A-8, respectively. The slope of AK and

i, a4,which is the same as the slope of rt for all early arrivalsWi fu all early arrivals ,o 
o * 

, wur!, r. !,e i

inthenotollcase.Ontheotherhand,theslope of iL, "IG and GB for alllatearrivalsis
ol 

,which is also the s€rme as the slope of ftr for all late arrivals in the no toll case.
a+r

ESDC to groups A and B is the equilibrium early cost B .Tr" (t) . On the other hand, ESDC to

other groups C, D and E is the equilibrium late cost, T.Tr" (t). Therefore, the contents bf the

equilibrium commuting cost ( 7C" ) to groups A-E under the optimal single-step toll scheme

can be shown as a.Tr"(t)+F.Tr"(t), a.Tr"(t)-lF.TE"0)+p, a.Tr"(t)*r.Tr"1t1+p,

a.Tn" 0)*r .Tr" (t) and a.Tr" (Q+y .Tr" (t) , respectively.

Because the congestion toll derived from our model is simply the money cost to the toll payer
required to save the same amount of queuing costs, the equilibrium schedule dilay cost (i.e.,

either the early cost, 0 .Tr" (t) or the late cost, / .Tr" (t)) in the optimal step toll case must

be the same as that in the original no toll cise to maintain the equitibrium commuting cost

(TC"). For this pulpose, all homogeneous commuters with the same values of 0 and f
therefore will not alter their original preferred arrival times at work in the no toll case if the
bottleneck is tolled. All commuters' equilibrium deparnue time switching decisions then can
be investigated by the above principle. We call it "the permanent schedule delry costs
principle" . The detailed discussion of all commuters' departure time switching decisions will
be made below accompanied with Figures 1 atd2.

First, group A commuters will not alter their original departure times in the no toll case when
the bottleneck is priced with the optimal single-step toll. This is because the equilibrium early

costs 4( in the no toll and optimal single-step toll cases coincide during the deparnue
peiod (r,t'). The part of tot'a'a in Figure 2 represents those commuters of group A.
Obviously, their departure interval is indifferent in both the no toll and the optimal single-step

t<ill cases. Next, because the equilibrium early cost (lVi ) iir the optimal single-step toll case

and the equilibrium early cost (K7) in the no toll case are two identical and parallel lines,
group B that originally depart during the period (t',f ) in the no toll case will shift all their
departures to the period 1r.,i ) in the optimal single-step toll case. Therefore, the dotted line
xea t7ba' in Figure 2 will move to the shadowed part of f fdc. Similarly, because the

equilibrium late cost (El in the optimal single-step toll case and the equilibrium late cost
(il) in the no toll case are two identical and parallel lines, group C that originally depart
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during the period [f,t') in the no toll case will shift all their departures to the period [f,r- ) in
the optimal single-step toll case. Therefore, the dotted line area Tt'ge in Figure 2 will move

to the shadowed part of it- hf . Finally, because both the equilibrium late costs ft *ra 6
in the optimal single-step toll case coincide with the equilibrium late cost 17B; in the no toll
case, groups D and E will not alter their original departure times in the no toll case if the

bottleneck is priced with the optimal single-step toll. This supports the conclusion, which we

have made in Section 3. l, that the total equilibrium departure rate for the period I r' , t- ) in the

optimal single-step toll case i, 2^ 
. Because the l" floor of lt' ,t- ) has been occupied by

a+r
group C, the shadowed part of ghkj in the 2"d floor of lt' ,t- ) and t- t r,ih in Figure 2 indicate

groups D and E commuters, respectively.

4. COMMUTERBEHAVIORIN THE OPTIMAL MULTI.STEP TOLL CASES

Because the methods to derive departure time values, some equilibrium results and departure
time switching decisions for the optimal multi-step toll cases are similar to the optimal single-
step toll case that we have mentioned in Section 3, this Section shows only these results
without providing detailed derivations.

PROPOSITION l, concerning to investigate how many commuters will or will not pay the

toll to cross a queuing bottleneck, is developed as follows:

PROPOSITION * -!- of all commurers (N) will pay the toll under the optimal n-srep bll
n+l

schemes. The number of toll payers who qrrive at.work early (including on-time) or late are

"'r ' ! o, . "' !,'-! , , respectively. on the other hand, the remaining -)- oS o11(n+t)(B+y) (n+l)(B+y) ' ' - n+l
commuters will not pay the toll to cross a queuing bottleneck. The number of these commuters

who arrive at work early or late are . -ll - or !..\ , , respectively.
(n+t)(F +y) rn -1)(B +y)

Departure time shifu from the no toll case to the optimal multi-step toll schemes are shown as

Table 3. Theses results are also obtained according to "thc permanent schedule delay costs
principle" that we have mentioned in Section 3. PROPOSITION B, concerning to investigate
how many groups of and what kind of commuters will make departure time switching
decisions, is developed as follows:

PROPOSITION B: n groups of early anivals and qlso n groups of late arrivals will alter their
original departure times in the no toll case if a queuing bottleneck is priced with the optimal
n-step tolls. Moreover, commuters that will or will not alter their original departure times are
the same as those who will or will not pay the tolls, respectively, to cross a queuing
bottleneck

Finally, PROPOSITION C, concerning to investigate how long will the toll payers (or
departure time shifters) delay their original departure times in the no toll case, is developed as

follows:

Joumal of the Easlern Asia Society for Transportation Studies, Vol.4, No.3. October. 2001
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PROPOSITION C; New departure time periods to commuters who pay the first step toll p

under the optimal n-step toll schemes will be formea -22- hours later than their original
a(n +l)

departure time periods in the no toll case. In addition, departure time period delays to other

toll payers who pay 2p, 3p, ..... ,np are 2,3, ....., n times longer than the first step toll

payer.

5. PRACTICAL IMPLICATIONS AI{D CONCLUSIONS

This paper has provided a methodological framework to forecast detailed commuter behavior

if a queuing road bottleneck is priced with the optimal single- and multi-step toll schemes.

This kind of research is rare to find in the field of transport economics because it is difficult to

objectively forecast some uncertainties in commuters' altemative decisions if the congestion

toll is considered to put into practice. These uncertainties including how many and what kind

of commuters will or will not pay the toll to cross a queuing bottleneck, and what are the

changes in commuters' departure pattems compared with the no toll case.

Some conclusions obtained from this paper, and practical implications of these conclusions

are illustrated as follows:
(l) Table 3 has shown regular departure time shifts for types II and III commuters from the

no toll to the optimal n-step toll cases. The total number of them it -a of all commuters
n+l

(M). They will not only alter their original departure time in the previous no toll case, but also

pay the tolls to cross a queuing bottleneck in the optimal n-step toll cases. On the other hand,

the remaining --]- oi all commuters will neither alter their original departure time nor pay" n+l
any tolls to cross a queuing bottleneck. The above information has two practical implications.
Firstly, it allows policy makers to estimate the toll revenue, which are paid by all departure

time shifters, before implementing the optimal step toll scheme. Therefore, it is a useful

information for the authorities to budget the policy of levying the optimal step tolls to a

queuing bottleneck. Secondly, it implies that the general characteristics of commuters
(including percentages of different sexes, average ages, average wages, etc.) who will or will
not pay the optimal step tolls become predictable in the present no toll case. Take the optimal
l-step toll case of Table 3 for example. The general characteristics of commuters who neither

alter their original departure times nor pay any tolls to cross a queuing bottleneck can be

investigated by surveying Types I and IV commuters who depart during the early anival
period [tr,t') and the late arrival period [I',/r, ], respectively, in the present no toll case. On

the other hand, the general characteristics of commuters who are both the departure time
shifter and the toll payer can be investigated by surveying Types II and III commuters who

depart during the early arrival period 1r',i; and the late arrival period [f,r" ], respectively, in
the present no toll case.

(2) New departure times to all optimal n-step toll payers will be later than their original
departure times in the no toll case. Departure time delay to the l"' step toll ( P ) payer equals

2o

;rr*r. Departure time delays to other toll payers including the 2d step toll (2p1payer, 3'd

Joumal of the Eastern Asia Society tbr Transportation Studies. Vol.4. No.3. October,2001
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step toll (3 p) puy"r, ""', n'n step toll (np) payer are 2, 3,....., ,? times longer than the first step
toll payer. This implies that the higher step tolls a commuter pays, the longer his new
departrue time will delay when compared with his original departure time in the no toll case.
Therefore, one can enjoy more leiswe time at home in the morning before he goes for work
than lre would be in the original no toll case if he pays higher tolls in the optimal multi-step
toll cases.
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APPENDICES : Definition of All Notations

:Total number of auto-commuters who have to cross a bottleneck to reach their workplaces;
Capacity of the bottleneck (measured by the traffrc flow);
Departure time from home, also arrival time at the bottleneck;

: A fixed work start time for all commuters;
: Time at which queue first forms;

: Time at which queue disappears;

Departure time at which allows one to arrive at work on time in the no toll case;
Departure time at which allows one to arrive at work on time under the optimal step toll
scheme;
The optimal fine toll;

p:The optimal single-step toll, or the l't step toll (the lowest toll) under the optimal multi-
step toll schemes;

t-: Time that starts the levying of the optimal single-step toll, or time that starts the levying
of the l"'step toll under the optimal multi-step toU ,"h"."r;

/**: Time when the l" step toll stops and the 2"d step toll is levied under the optimal multi-
step toll schemes;

/**. : Time when the 2'd step toll stops and the 3'd step toll is levied under the optimal multi-
step toll schemes;

r- : Time when the (n- I ) 'h step toll stops and the n'h step toll is levied under the optimal z-
step toll schemes ;
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,' : The start time when no one departs until /* under both the optimal single- and multi-step

toll schemes;

/': The 2nd start time when no one departs until ,*'under the optimal multi-step toll

schemes;

,' : The 3'd start time when no one departs until ,*** under the optimal multi-step toll

schemes;

/' 
1 

: The nth start time when no one departs until ,. 'under the optimal n-step toll schemes;

r-l : Time when the n'h step toll finishes and the (n-l)'h step toll restarts under the optimal n-

step toll schemes;

r--- : Time when the 3'd step toll finishes and the 2nd step toll restarts under the optimal multi-

step toll schemes;

t-- : Time when the 2od step toll finishes and the l't step toll restarts under the optimal multi-

step toll schemes;

t-: Time when the optimal single-step toll finishes, or time when the l't step toll finishes

under the optimal multi-step toll schemes;

,i : Time when some departures start waiting at the temporary parking area until /- to avoid

paying the optimal iingle-step 1oll, or time when some departures start waiting at the

temporary parking area until ,- in order to pay the (n-l)d step toll under the optimal n-

step toll schemes; 
^.t

/##: Time when some departures start waiting at the temporary parking area until r-" in

order to pay the (n-2)'h step toll under the optimal n -step toll schemes; 
,.,

,oo': Time when some departures start waiting at the temporary parking area until I- in

order to pay the (r-3)-'h step toll under the optimal n-step toll schemes;

/ol : Time when some departures start waiting at the temporary parking area until t- in order

to avoid paying any toll under the optimal n-step toll schemes;

t.,t2,t3...r,: Departure times during [fr,i] used to show early arrivals' departure time shifts

in detail from the no toll to the optimal multi-step toll cases;

tt,,t..,t3,.'./,,: Departure times after f used to show late anivals'departure time shifts in

detail from the no toll to the optimal multi-step toll cases;

Q : Time period spent waiting in the queue;

1". : Time period spent at the workplace before the work start time;

7', : Time period by which the work arrival time exceeds the work start time;

a : Penalty cost per hour for the time period spent waiting in the queue;

6: Penalty cost per hour for the time period spent at the workplace before the work start

time;

7 : Penalty cost per hour for the time period by which the arrival time at work exceeds the

work start time;
IC: The commuting cost (per vehicle) incurred due to bottleneck queuing.

Superscript "e": Equilibrium, e.g., TC" , Te" , TE" , TL" .
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