THE EFFECTIVENESS OF NON-IIA MODELS
ON TIME CHOICE BEHAVIOR ANALYSIS

Akimasa FUIIWARA Yusuke KANDA

Associate Professor Oriental Consultants Co..Ltd.,
Graduate School for IDEC 3-5-7 Hisamoto, Takatsu-ku, Kawasaki
Hiroshima University Kanagawa, 213-0011, Japan
Kagamiyama 1-5-1, Higashi-Hiroshima, Fax: +81-3-3409-7551

739-8529, Japan E-mail: yusuke77@mx91.tiki.ne.jp

Fax: +81-824-24-6921
E-mail: afujiw@hiroshima-u.ac.jp

Yoriyasu SUGIE Toshiyuki OKAMURA

Professor Research Associate

Graduate School for IDEC Graduate School for IDEC

Hiroshima University Hiroshima University

Kagamiyama 1-5-1. Higashi-Hiroshima, Kagamiyama 1-5-1, Higashi-Hiroshima.
739-8529, Japan 739-8529, Japan

Fax: +81-824-24-6919 Fax: +81-824-24-6922

E-mail: ysugie@hiroshima-u.ac.jp E-mail: tokamura@hiroshima-u.ac.jp

Abstract: This paper aims to confirm the existence of similarity and heteroscedasticity among
alternatives and to examine the effectiveness of new discrete choice models that can relax the
IIA property of MNL model with the context of time choice. As an empirical study. two
non-IIA models are estimated t0 describe the arrival time choice behavior under the flex-time
working hours, those are Paired Combinatorial Logit (PCL) model and Heteroscedastic
Extreme Value (HEV) model. The continuous arrival time is categorized into three different
discrete alternatives with various time periods and time lengths of alternatives in order to
observe the influence of time categorizes. The estimation results of the PCL and HEV models
show that the similarity and heteroscedasticity are ineligible in case of time choice.
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1. INTRODUCTION

MNL (Multinomial Logit) model, based on the random utility maximization theory. has a very
simple and intuitive form of choice probability. It leads to the fact that the MNL model is
often applied to travel behavior analysis and travel demand forecasting. because of its
computational convenience. The MNL model supports the restrictive [IA (Independence of
Irreverent from Alternatives) property based on some assumptions.

One of the assumptions is the IID assumption, which assumes the random components of
utility functions of different alternatives are independent and identically distributed with
Gumbel. Hence, it has been pointed out that the biases in estimated parameters arise
frequently.

Consider the modeling of travel time choice behavior. The curve fitting methods including
regression models and duration models have often been employed to describe the observe
distribution, while the individual decision making process cannot be tackled with any theories
such as random utility maximization, and transport policies are insensitively evaluated based
on the models. This is why discrete choice models are commonly used to predict the time
choice behavior.

The sequential time categories seems dependent each other, because the levels of services are

variant in series and are almost equivalent between the moments before and after a boundary
of time categories. Moreover, the differences between estimated and observed time choice
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results may strongly depend on the definition of time categories. If most respondents face the
a}mve boundary problem, the errors will not be identical and independent across the
alternatives.

In this paper, we aim to confirm the existence of similarity and heteroscedasticity among time
choice alternatives and to examine the effectiveness of new discrete choice models that can
relax the IID assumption of MNL model on time choice. First, in Chapter 2, we review and
summarize non-IIA models recently developed. Secondly, we explain two non-IIA models,
namely PCL model and HEV model in detail. Finally, in chapter 4, we apply the two models
to analyze time choice behavior to examine their effectiveness.

2. DISCRETE CHOICE MODELS WITH FLEXIBLE ERROR STRUCTURE

Various models have recently been developed in order to relax the IID assumption fully or

partially. These models are roughly classified into three categories by the following relaxing

approach; 1) relaxing the assumption of independent and identical distribution, 2) relaxing the

gssuglgption of independent dxljstribution, and 3) relaxing the assumption of identical
istribution.

(1) Models relaxing the assumption of independent and identical distribution

The most general models, without any restrictive assumption on error structure, are the MNP
(Multinomial Probit) model and the MXL (Mixed Logit) model.

The MNP model allows a flexible structure for the covariance among the random
components of the alternatives. However, this model re(}uires high-dimensional multivariate
normal integration of the order of the number of the alternatives in the choice probability
expressions. Several efficient simulation methods, which ag_})roximate the high-dimension
integration, have been developed since 90’s. (eg. Yai et.al. 1997)

The MXL model is a more flexible logit model with random-coefficients, but does not support
the ITA property. The various distributions of the coefficients in utility function can provide
not only heterogeneity over respondents, but also correlation and heteroscedasticity among
alternatives.

Mass Point Logit (MPL) model which was proposed by Sugie et al. (1999) is also a kind of
MXL model, in which several mass points separate the error distribution.

(2) Models relaxing the assumption of independent distribution

All models in this group belong to GEV model family (McFadden, 1978). The advantage of
the GEV models is to maintain closed-form expressions for choice probabilities.

The simplest model that permits covariance in error components is called as. NL (Nested
Logit) model. The NL model has a logsum parameter that determines the correlation in
unobserved components among alternatives in a nest, while the model cannot deal with the
correlations among alternatives in the other nests.

PCL (Paired Combinatorial Logit) model has a more general form of correlations among
alternatives than NL model. This model allows differential correlations across all pairs of
alternatives. The degrees of correlations are measured by unknown similarity parameters.

CNL (Cross-Nested Logit) model has also more general. In this model, an alternative needs
not be exclusively assigned to one nest as in the nested logit structure, and an alternative
appears in multiple nest in a same level with different weights defined as allocation
parameters.

GNL (Generalized Nested Logit) model has the most general structure, because of combining

the above characteristics of the PCL and CNL models. The model has similarity parameters
among possible all pairs of alternatives and allocation parameters of all nests. The GNL model
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corresponds to PCL model when all allocation Farameters are constrained to be equal, while
the model also becomes CNL model when all similarity parameters are constrained to be
equal.

The NL, CNL, and GNL models all require a priori specification of the hierarchical nest
structure. More alternatives respondents have, more possible structures exist. However, only
PCL model can avoid such a burdensome task. The PCL is the most suitable since it is
difficult for analysts to predetermine the appropriate correlation structure. Consequently, the
PCL model is employed in the rest of this study.

Table 1. Models with non-independent and non-identical error distribution

Multinomial Probit (MNP) model (Daganzo, 1979)
=V v i
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S: error variance-covariance matrix
Mixed Logit (ML) model (McFadden et. al., 1997)
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Mass Point Logit (MPL) model (Sugie et. al., 1999)
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Table 2. Models with non-independent but identical error distribution

Nested Logit (NL) model (McFadden, 1978)
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P, : Choice probability of alternative i in nest j and k (j; lower nest )
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@ : Structure parameter (Similarity parameter)

Paired Combinatorial Logit (PCL) model (Chu, 1989)
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Cross-Nested Logit (CNL) model (Vovsha, 1997) :
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Table 3. Models with independent but non-identical error distribution
Heteroscedastic Extreme Value (HEV) model (Bhat, 1995)

&=+

Pi = J. HF[Bj(Vi—Vj+€i)]€if(9igi)d€i (12)
g=—w j#i,jeC

r cumulative density function

0; scale parameter of alternative /

Oddball Alternative model (Recker, 1995)

wlien) gty Yoy vies
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(3) Models relaxing the assumption of identical distribution

Several models that allow non-identical random components have been proposed. HEV
(Heteroscedastic Extreme Value) model is an alternative of these discrete choice models. The
main virtues of the HEV model are its allowance of different variance of error term across
alternatives. Unlike the NL model, the model does not require the prior partitioning of the
choice set into mutually exclusive branches '

Oddball Alternative model permits the random utility variance of one “oddball” alternative to
be larger than those of other alternatives. This model has a closed-form for choice

robabilities. However, it is restrictive in requiring that all alternatives except the one oddball
Eave identical variance. Therefore, the HEV model using in this study is more flexible rather
than the Oddball Alternative model.

3. MODEL CHARACTERISTICS
a) PCL model

PCL model is derived from GEV function by referring Chu (1989). The GEV model can be
derived from following function.

G(K.Yp,--.Y,) Kb, ¥, 20 (15)

which is non-negative, homogeneous of degree one, approached infinity with any vi,
i=12,..,n and has kth cross-partial derivatives which are non-negative for odd k and
non-positive for even k. Su;;po’se a given function which satisfies such three conditions
defines a probability function for alternative i as

p NG, Y, Yy) (16)
1 ’
G(1. Yy, Y,)

where G; is the first derivatives of G with respect to Y;. The transformation, Y =exp(V,),
whqrp V; represents the obse;vabh; components of the utility for alternative i, is used to ensure
positive Y;. The PCL model is derived from the function G:
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n-1n

Ul-g, . /-0, 8%
G(Yl,Y2,~--,Y,,)=ZZ{Y,- S ¢ f (17)
i=li#j
where the double summation includes all pairs of alternatives in the choice set and o; isan
index of the similarity between alternative i and j. The PCL model is consistent with random
utility maximization if the conditions, 0<o <1, are satisfied for all pairs. If o, =0 for all
alternative pairs, the PCL model collapses to the MNL model.

Substituting equation Eq. (17) into Eq. (16) and using the transformation of ¥; gives the
probability of choosing alternatives i as

/ / R
D exp exp | +exp
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F = = (18)
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Eq. (18) corresponds to Eq. (9) by substituting @;; into 1-o0y; and by canceling out a .
This expression can be rewritten as

B = 2 PuigPy (19)
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where £, is the conditional probability of choosing alternative i given the chosen binary pair
and P; 1s the unobserved probability for the pair of alternative i and j.

b) HEV model

HEV model supposes that the random component of utility function is distributed
independently but not identically. The CDF for each random comBonent is the type I extreme
distribution with zero mean and scale parameter 6,. Hence, the CDF of the random error term
and the choice probability of alternative i are written as

F (&) =exp(-exp(- 6;¢;)), (21)
&=+
B= [ TIFl;-v;+a)bif(6ic)de: 22)

g=—w j#i,jeC
The probabilities and derivatives must be evaluated numerically, as there is no closed form for

the integral. This model has one-dimensional integral, so that Gauss-Laguerre quadrature is
required for parameter estimation. (Bhat, 1995)
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4. EMPIRICAL STUDY
(1) Data Characteristics

A questionnaire survey was conducted for full time workers in the office, which has
introduced the flex-time working hours in Hiroshima, 1997, in order to analyze workers’
commuting behavior under the working hours. The number of effective responses came to
301; that was 96.2% of whole samples.

Figure 1 shows the observed distribution of workers’ arrival time at office. The respondents
fulfilled the perceived arrival time in minute. The average of office arrival time indicates 8:56
a.m., which 1s in the peak of the distribution.

Number of respondents
90
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10

o
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’

4

Figure 1. Distribution of observed arrival time

For the sake of applying discrete choice models to this arrival time choice data, the following
subordinate worl?s are needed. First, the reported continuous arrival time is sliced off into
three discrete categories. Three different cases with the combination of various time periods
and time lengths of alternatives are defined in order to investigate the influence of time
categorizes on the similarity and heteroscedasticity (Fig. 2).

The alternatives 2 and 3 have a common boundary of categories at 9:00, which is equal to the
peak of the responded time distribution in Cases I and 2, while they have a different boundary
at 9:30 in Case 3. Stronger similarity might appear between the error components of the
alternatives 2 and 3 in Case 1 and 2, since many responses would shift to another sequential
alternative if the time is re-categorized only a few minutes later. Moreover, to compare the
influence of difference of time length, the range of the alternative 2 in Case 1 is set up to 60
minutes, whereas 40 minutes in Case 2.
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Figure 2. Definitions of arrival time categories

Table 4. Number of corresponding responses to categories

Alt. 1 Alt. 2 Alt. 3
Casel 14 (5%) 167 (55%) 120 (40%)
Case2 25(8%) 156 (52%) 120 (40%)
Case3 57 (19%) 228 (76%) 16 (5%)
(% in parentheses)

Figure 3 shows the proportions of respondents’ commuting modes and marriage status. More
than half of workers travel to their office by car, and the other 20 percent of workers use
gublic transportation (train, bus or tram). Concerning the individual marriage status, less than

0 percent of workers are single, so that a fifth of workers have no constraint on time choice
by their household members.

The relationship between the workers’ arrival time and age is shown in Figure 4. Younger
workers tend to arrive at the office later.

Mode for | 3 ‘others |
commuting | | public  (15¢)
transportation’ 7
(22%)
Marriage status not single(84%)
0% 20% 40% 60% 80% 100%

Figure 3. Commuting mode and household
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arrival time

age
[m20-29

M 30-39
0 40-

0% 20% 40% 60% 80%  100%

Figure 4. Relationship between office arrival time and age

Figure 5 shows the relationship between office arrival time and commuting travel time.
Workers who have shorter travel time tend to arrival at the office later, because they have less
risk of travel delay. It is found that individual socio-demographic characteristics and the level
of travel services significantly affect on the time choice behavior.

arrival time commuting
= travel time
3% e wo
ol [ -30 min
H -60 min
-90 min
[J-120 min
-150 min

0% 20% 40% 60% 80% 100%

Figure 5. Relationship between office arrival time and commuting travel time

(2) Model Estimation and Discussions

The PCL and HEV models are estimated in three different cases in order to examine the
influences of time categories on the similarity and heteroscedasticity of alternatives in Figure
2. The estimation results of the MNL, PCL and HEV models are shown in Table 5, 6 and 7,
respectively. These models can be estimated by using MLE, similar to the conventional MNL
models. It 1s not required to employ any complicated simulation procedure.

The PCL and HEV models are superior to the MNL model in terms of the log-likelihood ratio.
Some estimated parameters show inconsistent effects (ie. unexpected positive or negative
signs of parameters). For instance, the estimated parameters of marriage status ‘single’
dummy are positive in Cases 1 and 2, but negative in Case 3, and the signs of parameters of
‘commuter by public transportation’ dummy are variant over cases. These results turn out that
some public transportation users and single workers have a tendency to be included in
different alternatives by different definitions of time categories.

Regarding on the estimated results of similarity parameters, all similarity parameters

excluding o, in Cases 2 and 3 are statistically significant. It is, therefore, found the time
categories are not independent.
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Table 5. Estimation results of MNL model

Variable Case 1 Case 2 Case 3
Category characteristics

Time boundary between Alt. 2 and 3 9:00 9:00 9:30

Time length of Alt. 2 60 min 40 min 60 min
Commuting travel time 0.485 -0.495 -0.494
(hour) (-2311) (-2479)" (-1.804)
Commuter by car 0.343 0.537 0.078
(dummy) (1.200) (1.916) (1.363)
Commuter by public transportation 0.329 -0.050 0.174
(dummy) (1.025) (-0.164) (0.492)
Age 0.045 0.078 0.041
(year) (2.065) (4.360) (3.120)
Single 0.044 0.056 -0.453
(dummy) (0.127) (0.160) (-1.094)
Constant for Alt. 2 4290 5.149 3.050

(3.522) (5.897) (5.265) "
Constant for Alt. 3 3.907 4.720 0.297
(3.184) (5.419) (0.482)

Initial Log-likelihood -330.680 -330.680 -330.680
Maximum Log-likelihood -244.348 -259.324 -197.010
Adjusted Log-likelihood ratio 0.251 0.205 0.396
Number of samples 301 301 301

(t-statistics in parentheses; *: significant at 5 %; **: at 1%)

Table6. Estimation results of PCL model

Case 3

Variable Case 1 Case 2
Category characteristics
Time boundary between Alt. 2 and 3 9:00 9:00 9:30
Time length of Alt. 2 60 min 40 min 60 min
Commuting travel time -0.430 0.451 0.375
(hour) (-2.499) (-2.997) (-3.113)
Commuter by car 0.306 0.528 0.177
(dummy) (1.591) (2.382) (1.125)
Commuter by public transportation 0.417 -0.330 0.156
(dummy) (1.613) (-1.593) (0.694)
Age 0.033 0.050 0.033
(year) (2.308) (3.861) (3.448)
Single 0.061 0.124 -0.403
(dummy) (0.372) (0.442) (-3.104)
Constant for Alt. 2 35537 3.526 2520
(5.517) (5.053) (6.046)
Constant for Alt. 3 3.543 3.816 1.183
(5.802) (5.768) (2.596)
Similarity parameter
o1y 0.126 0.252 0.105
(2.578) (1.715) (0.673)
on 0414 0.787 0.630
(3.778) (4.600) (3.058)
oy 0.909 0.855 0.690
(13.427) (12.888) (2.518)
Initial Log-likelihood -330.680 -330.680 -330.680
Maximum Log-likelihood -243.621 -258.033 -195.779
Adjusted Log-likelihood ratio 0.255 0216 0.398
Number of samples 301 301 301

(t-statistics in parentheses; *: significant at 5 %; **: at 1%)
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In order to analyze the influence of time length of alternatives, we compare the results of Case
1 and 2. Commonly, the t-value of o 3, which indicate the similarity between the alternatives
2 and 3, is significant. These statistics seem to stem from that the responded office arrival
time was concentrated close to the boundary between the alternatives 2 and 3. If the definition
of sequential time categories is shifted by a few minutes later, many respondents will move to
another sequential alternative. This is a reason why the similarity between two alternatives
highly occurred. Hence it is required to employ the PCL model dealing with the unavoidable
similarity among alternatives

In order to analyze the influence of different time period definitions, we compare the
estimation results of Cases 1 and 3. The comparison of the parameter estimates and t-statistics
indicates that higher similarity would occur when the boundary of categories is set up to close
to the peak of the distribution of responded time. The similarity parameter o 53 is
significantly higher in Case 1, but not in Case 3.

The alternatives 1 and 3 are not sequential, nevertheless the similarity parameters o3 are
significant in all cases. This implies that there exist common unobserved variables, such as
preference and taste of activity time at home or office, in these two alternatives.

The scale parameters of the alternatives 3 are restricted to 1.0 in estimating HEV model. In
Cases 1 and 2, the estimated scale parameters ¢, of the alternative 1 are larger than 1.0,
while those of the alternative 2 are smaller than 1.0. This means that travelers who choose the
earliest time alternative are apt to change their choices more randomly. Besides, the estimated
scale parameters of ¢, and ¢, in Case | are higher than those in Case 2. The error variance
of the alternative 2 with wider length of time becomes larger. It is found that many
respondents concentrate on both boundaries of the time alternative 2. Consequently, the error
between the estimated and actual choices arises more frequently under such definition. The
estimated scale parameters in Case 3 show that @, is the largest and then ¢, follows. Hence,
this reflects the respondents tend to concentrate in the middle of time choice alternatives in
Case 3.

These results suggest that the heteroscedasticity among alternatives clearly exists in time
choice behavior and is affected by the time categories.

To sum up, if continuous time is categorized near the peak of distribution of observed time
choices, the similarity and heteroscedasticity cannot be ignored in this case study. The optimal
E[redetermination of the time categories is primarily required to avoid such problems.

owever, there still remain some non-IID elements after the optimal categories. From this
point of view, the application of flexible models, like the PCL and HEV models, is effective
1n averting the biases in the parameter estimates of conventional MNL model.

5. CONCLUSION

We summarized the non-IIA models that can relax the IID assumption fully or partially. Two
models considering the similarity or heteroscedasticity of alternatives are applied to time
choice behavior. The remarkable findings obtained from this study are as follows:

1. The IID assumption of MNL models is not maintained with the context of time choice
because the similarity and heteroscedasticity appear among time choice alternatives.

2. By comparing various cases of time periods and time lengths of alternatives, it is
confirmed that the degrees of similarity and heteroscedasticity variant over these cases.

3. The concentration of time choices to the boundaries of the predetermined time alternatives
causes the stronger similarity and heteroscedasticity.

However, it seems impossible for analysts to avoid the similarity and heteroscedasticity by
optimiziné the time categories prior to model buildings. Applying non-IIA models, like the
PCL or HEV model, will contribute to acquitting such burdensome problem and will enable to
estimate with less biases in the parameter estimates.
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Table 7. Estimation results of HEV model -
Variable Case 1 Case 2 Case 3
Category characteristics
Time boundary between Alt. 2 and 3 9:00 9:00 9:30
Time range of Alt. 2 60 min 40 min 60 min
Commuting travel time -0.104 -1.012 -0.348
(hour) (-0.144) (-0.931) (-1.154)
Commuter by car 0.101 0.632 0.165
(dummy) (0.144) (0.856) (0.485)
Commuter by public transportation 0.047 -2.212 0.553
(dummy) (0.137) (-0.552) (0.434)
Age 0.007 0.102 0.047
(year) (0.155) (1.466) (2.303)
Single 0.032 0.565 -0.371
(dummy) (0.133) (0.521) (-0.768)
Constant for Alt. 2 3.226 5.543 1.329 -
(1.500) (2.124) (1.609)
Constant for Alt. 3 3.091 5.603 3.386_,
(1.781) (1.785) (2.974)
Scale parameter ( 6, is fixed to 1.0)
6, 4.167 1.298 5.180
) 0.567 0.376 9.691
Initial Log-likelihood -330.680 -330.680 -330.680
Maximum Log-likelihood -243.314 -258.010 -195.575
Adjusted Log-likelihood ratio 0.257 0.217 0.399
Number of samples 301 301 301

(t-statistics in parentheses: *: significant at 5 %: **: at 1%)
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