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Abstract: This paper develops deterministic queueing models, using user equilibrium theory,
to explore queueing properties at a bottleneck with various step-toll schemes under fixed,
flexible and staggered working schedules. The results have shown that the benefit brought by
optimal step-tolls under flexible working hours is more than the ceiling of fixed working
hours. The fees for optimal step-toll schemes under staggered working hours should be lower
than those under fixed working hours. At optimal step-tolls, it appears that some commuters
would be reluctant to pass through the toll station at the transitions from higher step-tolls to
lower ones. Introducing suboptimal step-tolls will completely remove such “reluctant queues”
at the cost of slight loss in systems performance.

1. INTRODUCTION

The idea that congestion tolls could reduce congestion appeared as early as in Pigou’s literature
(1920). In the past few years, some papers discussed the congestion tolls based on marginal
cost pricing principles (e.g., Morrison,1986) which implicitly assuming that the length of peak
hour is exogenous and that traffic flow is uniform over the peak hour. It fails to treat the
commuter’s departure time decision, which is one of the major factors for causing congestion.
The other approach, based on user equilibrium principle, makes the departure time decision
endogenous, was developed by Vickrey (1969). There were quite a few papers (e.g.,
Hendrickson et al., 1981; de Palma ef al., 1986; Lan et al., 1987, Braid, 1989; Arnott ef al.,
1990, 1993; Laih, 1994; Chen et al., 1995) using Vickrey’s approach to deal with congestion
toll issues, but in which a fixed working hours was assumed in the analysis.

Limited attention has been received on the impact of flexible/staggered working hours on
traffic congestion. Although Henderson (1981), D’Este (1985), and Jovanis (1981) erected
theoretical models or applied simulation techniques in exploring the benefits of
flexible/staggered working hours on dispersing traffic congestion, their analytical assumptions
are different from those used in the above-mentioned papers on congestion tolls and user
equilibrium models. Consequently, their results are not easily compared. Lan et al. (1999)
utilized a user equilibrium model to evaluate the effect of flexible/staggered working hours on
traffic congestion, but did not factor congestion tolls into the analysis.

Theoretically, there are four types of road tolls: (i) no toll; (ii) a uniform toll; (iii) a coarse toll,
or called “single step-toll” (Laih, 1994); and (iv) a time-dependent toll (Arnott et al., 1993).
Among these, uniform tolls utilize the same toll rate regardless of whether demand is at peak.
Consequently, they neither affect commuters’ departure times nor reduce the concentration of
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trips during peak hours. The optimal settings for time-dependent tolls have been investigated
by Vickrey (1969), Hendrickson ef al. (1981), and Amott et al. (1990). However, their
investigations did not address alternative work schedules. To fill such gaps, this study will
examine the rates and types of congestion tolls under alternative work schedules. The main
purpose is to gain some insights of the effectiveness of various tolls under alternative work
schedule systems on the commuter departure times, dispersal of peak-hour trip demand, and
traffic congestion reduction at a single bottleneck.

2. VARIOUS STEP-TOLLS UNDER FIXED WORKING HOURS

Following previous studies (e.g., Laih, 1994; Arnott ef al., 1993), the commuter’s travel cost
Ui(t) composed of fixed costs (p), queueing delay costs incurred at the bottleneck, early
schedule delay costs, late arrival costs, and congestion toll F(t) are factored into the equation:

Ui(t) = prari(t)+Bhi®)+ypiO+F (). )

Where ri(t), o respectively denote queueing delay and its unit cost, hi(t) , B denote early
schedule delay and its unit cost, pi(t) , y denote late schedule delay and its unit cost. Because
fixed travel cost (p) does not affect the results of the analysis, this paper sets p=0. When
choosing departure times, commuters seek to reduce their travel costs to the lowest possible
level. Thus, if each commuter’s travel cost is identical, one will have no way to reduce one’s
travel cost by varying departure times to reach the desired user equilibrium.

2.1 Optimal Step-tolls

In the case of single step-toll, assume that the bottleneck in time period (t;, t;°) is levying a flat
congestion toll Fy and no toll in other periods (tg, tj) and (&, t;*). Under user equilibrium
conditions, the travel cost for each commuter can be expressed as Gg.

Ui(t)y=ouri(t)+Bhi(t)+ypi(t)+ Fa1 = Ga1 V i 2)

Figure 1 depicts the equilibrium curve A(t) of cumulative arrivals at the bottleneck. At the
earliest departure time t; commuters experience the longest early schedule delay, while at the
latest departure time t;* commuters incur the largest late schedule delay, but at neither point do
commuters experience queueing delays. They also avoid paying the toll. At departure times t;
and t; commuters suffer an early and late schedule delay, respectively. At both times, toll
payments are required but there will exist no queueing delays. According to user equilibrium,
the following simultaneous equations are obtained:

B(x1+Xx2+tX3+X4+X5)= Gai
oxaHB(X3+Xa+xs5)= Gal
B(x3tx4txs)+ Far= Ga
o(x4+x5)+ Fa= Gai
¥X6+Fa1= Gal
a(Xs+Xe)tHyXe= Gal
Y(X6+X7)= Gal
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(x1+x2+x3 X4 X5 HX6HX7)U=N.

The solutions are: x;=[(a-B)/(af) Far1; xo= Far/a 5 x3=[(a-B)/(aB)](Gai-Fai);

Xe={ [(Y/o)+1][B/(B+)J(N/p)}-[(a+2y)/(ay)]Far;
xs=[(cty)/(oey)]Far-[B/(B+7)IN/p); x6=[B/(B+1)I(N/p)-Far/y; X7=Fary.

The equilibrium travel cost for each commuter is Ga1 = [By/(B+y)](N/n), which is identical to
the equilibrium cost under no toll conditions (G,) by Lan et al. (1999). This result shows that
commuters can trade off queueing delays against tolls, as long as congestion tolls do not
increase overall travel costs. Moreover, the slope of the curve of cumulative early arrivals at
the bottleneck is m;(t) = [o/(a-B)]p, arriving late is my(t) = [o/(a+y)]p. Total queueing delay,
W, is defined as the area bounded by the cumulative arrival and departure curves in Figure 1,
which is expressed as:

Wai = (1/2){[2(B+1)/(oBY))(FarW)-(2/00)FurN+(B/a)[y/(B+1)IN/)}. G)

Setting the first order condition of Wy to zero yields the optimal toll rate (Far)):

Fai"=(1/2)[(BY)/(B+NIN/p). Q)

Note that the qptimal toll F,;'is a half of the travel cost Gp under no toll conditions.
Substituting Fa; into equation (3) yields the total queueing delay under optimal toll rate
conditions:

*

Wai" =(1/4)(B/o)[y/(B+7)I(N/p). Q)

Notice that Wy, is also a half of the total queueing delay under no toll conditions (W;) by Lan
et al. (1999). From the results displayed in Figure 1 it can be seen that the time toll collection
commences at tj =tq+(1/2)[y/(B+y)](N/p) and terminates at ;= tg+{1-(1/2) [B/(B+Y)]} (N/p).
Our results are exactly the same as Laih (1994) who utilized completely different approach
with complicated mathematics to derive optimal step-tolls under fixed working hours. This
type of single step-toll will create three queueing peaks, as shown in Figure 2. The times of
occurrence of the first twos are at teH(1/2)(1-p/o)[y/(B+y)I(N/p) and tgH[1-
(B/20)][y/(B+y)I(N/p) and both have identical maximum queue lengths:

Qa1"=(1/2)(B/a)[y/(B+1)IN. (6)

Note that Qal‘ is also a half of the maximum queue length under no toll conditions (Qp) by Lan
et al. (1999). The third queueing peak occurs at tg+{1-(1/2)[B/(B+y)]}(N/n) which coincides the
time of termination of toll collection. The queue length for the third peak is (1/2){By/
[(o+y)(B+y)]}N which is shorter than the first twos. The existence of third queueing peak is due
to a portion of commuters unwilling to pay the toll waiting temporarily in front of the toll station
until the toll has returned to no toll status before passing through. We refer such queues as
“reluctant queues.”
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In the case of two step-tolls, assume that in both periods (t;, tx) and (t’, t;°) a flat congestion toll
Fa is levied, and in time period (tk, t) a higher flat congestion toll Fy is collected, while at all
other times no toll is collected. The equilibrium curve of cumulative arrivals reaching the
bottleneck A(t) is depicted in Figure 3. Using the same method, equilibrium travel cost is Go=
[BY/(B+y)J(N/p) which is identical to G, under no toll conditions. The slope of the curve of
cumulative early arrivals is m(t)= [o/(a-B)]u, late arrivals is my(t)=[c/(cr+y)]p. The optimal
toll rates are Fa1"=(1/3)Ga=(1/3)[(By)/(B+1)](N/p) and Fay “(2/3)Gaz—(2/3)[(BY)/(B+Y)](N/u)
Total queueing delay is Wy —(1/6)(B/a)[y/(B+y)](N2/p) =(1/3)W,. Toll rate Fai' begins at
ti=tg+{(1/3)[y/(B+y)]}(N/p) and F.  begins at tk—tq+{(2/3) [Y/(B+y)J(IN/w)}; then Fa'
terminates at ti’=tq+{1-(2/3)[B/(B+y)]} (N/u) and Fa' terminates at t*=tg+{1-(1/3)[B/(B+1)]}
(N/w). Such two step tolls produce five queueing peaks. The queue lengths of the first three
peaks are identical and can be expressed as Qa2 =(1/3)(B/ox) [y/(B+y)IN=(1/3)Qp, while for the
other two peaks equal to (1/3){By/[(c-+y)(B+y)]}N, which are shorter than the former three.
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Figure 3. Equilibrium arrival pattern for optimal
two step-tolls under fixed working hours
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If we expand to n step-tolls, equilibrium travel cost is Ga,= [By/(B+y)](N/p), total queueing
delay and maximum queue length are, respectively, Wan =(1/2)[1/(n+1)](B/cx) [¥/(B+)I(N*/p)
and Qan =[1/(n+1)](B/ct)[y/(B+y)] which are [1/(n+1)] of those for no toll conditions. The
optimal toll schemes are Fa =[1/(n+1)][(By)/(B+)IN/p), Fu'=2Fa’, F'=3 Fa, ..,
Fan =nFa = [0/(n+1)][(By)/(B+y)](N/p). Our results confirm the conclusions reached by Laih
(1994), that for n step-toll schemes, the largest possible reduction in system queueing delay is
n/(n+1).

2.2 Suboptimal Step-Tolls

Notice that optimal step-tolls produce reluctant queues. This paper proposes “suboptimal”
step-tolls, depicted in Figure 4, to eliminate the reluctant queues. As the toll rate reaches the
nth step (the highest rate), it remains unchanged until time (t™) and then instantly drops to no
toll status. Assume that prior to time t; no toll is collected at bottleneck, but after time t; a flat
congestion toll Fy,; is collected. Under user equilibrium, the equilibrium curve of cumulative
arrivals at the bottleneck A(t) is shown in Figure 5. At the earliest departure time t; commuters
experience the largest early schedule delay, while at the latest departure time t;’ commuters
incur the highest late schedule delay. At both times, neither queueing delay nor toll payment is
incurred. At t; commuters avoid queueing delay, but they experience early schedule delay and
must pay a toll. The equilibrium travel cost is Goi={[By/(B+y)I(N/w)+[B/(B+y)]Fb1} which is
greater than that of no toll conditions by the amount of [B/(B+y)]Fb1. Furthermore, the slopes of
both early and late cumulative arrivals at the bottleneck can be obtained by m,(t)=[a/(c-B)]p
and my(t)=[o/(a+y)]n. The optimal toll rate for suboptimal step-tolls scheme is
Foi =[(By)/(B+2y)](N/p), higher than that of optimal step-tolls by the amount of
(172){(B)/[(B+y)(B+2y)]}(N/p). Total queueing delay under suboptimal toll scheme is
Wb|'=(1/2){(By)/[a(B+27)]}(Nz/p) =[(B+y)/(B+2y)]W, , lower than that of no toll conditions
by a ratio of [(Wp-Wbl')/W p]=Y/(B+2y). Toll collection begins at time ;= to+ [y/(B+2y)I(N/p)
and continues through the peak traffic period until t= tq‘+Fb1'/y. This will prevent the
formation of reluctant queues. Additionally, as Figure 5 demonstrates, two queueing peaks
exist with the same size equal to Qb1‘=(By)/[a([3+2y)]N= [(B+Y)/(B+27)1Qp.

N
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Figure 4. Illustration of suboptimal three step-tolls Figure5. Equilibrium arrival pattern for suboptimal
gu gu q

single step-toll under fixed working hours

A suboptimal toll can be expanded to n steps by using the same approach. Total queueing delay
and maximum queue length, respectively, are Wen =(1/2){(By)/[ap+ou(n+1 )y]}(N2/ W) and
Qb =(BY)/[ctB+a(n+1)y]N, lower than those of no toll conditions by a ratio of ny/[(B+(n+1)y].
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The suboptimal toll schemes are Fo;'={(By)/[B+(n+1)yI}(N/), Foa'=2Fu1", Fo3'=3Fe1,...,
Fon =nFp1 =n{(By)/[B+(n+1)y]}(N/p), while equilibrium travel cost is {[(n+1)By)}/[B+(n+1)
y]}(N/p). In sum, compared with no toll conditions, a suboptimal single step-toll under fixed
working hours can reduce total queueing delay and maximum queue length by a ratio of
Y/(B+2y); for two step-tolls the ratio is 2y/(B+3y) and for n steps it is ny/[f+(n+1)y]. However,
under suboptimal single step-toll, the equilibrium travel cost is higher than that of no toll
conditions by a ratio of B/(B+2y), whereas for two step-tolls the ratio is 2p/(B+3y), and for n
step-tolls is np/[B+(n+1)y]. As n approaches infinity, the ratio turns out to be p/y. The highest
toll is then Fp, =P(N/p), which is the ceiling of the suboptimal congestion toll.

Table 1 summarizes the system performance under fixed working hours with optimal and
suboptimal step-tolls. Generally, system performance is the best under optimal step-tolls, but
the problem of reluctant queues emerges during the transition from higher to lower congestion
tolls. Suboptimal step-tolls can eliminate this problem, but the corresponding system
performance is slightly less effective than the optimal ones. Under the optimal step-tolls, peak
period at the bottleneck begins at time t; and ends at tg', just as under no toll conditions;
however, under suboptimal step-tolls, peak period begins and ends earlier. Traffic peak will
shift earlier if more steps of the toll schemes are introduced.

Table 1. System performance of various step-tolls under fixed working hours

Toll schemes Toll rate Travel cost Total queueing delay [Max. queue length
No toll — [BY/(B+NIAN/) | (172)B/o)ly/(B+11X | (B/a)[y/(B+1)IN
(A /)
Optimal step-tolls Far = [1/(n+1)] X [BY/(B+y)I(N/p) (172)[1/(n+1)] X [1/(n+1)] X
(A2) _[B;/}SB:‘Y)](N/H) (B/)[Y/(B+NIN/p) | (B/)[y/(B+Y)IN
FnZ = al
Fur'= [0/(@+1)] X
[BY/(BH](N/p)
Suboptimal step-tolls |Fy, ={(By)/[B+ {[(n+D)BYV[B+ (172)(B/o){y/[B+ (B/o)/ {y/[B+
(A3) (DY} (N/p) (n+ 1Y} (N/p) (n+H1y]}(N"/p) (n+1)yI}N
Fyz = 2Fy
Fun =n{(B1)/[B+
(n+ 1)y} (N/W)
Benefit from optimal — 0 [n/(n+1)] [n/(n+1)]
step-tolls
(A1-A2)/Al1
Benefit from Sub- - -nB/[B+(n+1)y] ny/[B+(n+1)y] ny/[B+n+1)y]
optimal step-tolls
(A1-A3) /A1

3. VARIOUS STEP-TOLLS UNDER FLEXIBLE WORKING HOURS

3.1 Optimal Step-Tolls
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In the case of single step-toll, assume that a bottleneck between time period (tj, t;*)is subject to
a flat congestion toll F.;, but at other time periods (g , tj) and (t;, tq") no toll is collected. Let e
represent the duration of flexible time period. If e < (1/2)(N/p), the curve of cumulative
arrivals at the bottleneck A(t) is shown in Figure 6(a). Using the same approach, we obtain the
equilibrium travel cost Gc1 = [By/(B+y)](N/p-¢) which is identical to that of no toll conditions
(Gy). The slopes of both of early and late cumulative arrivals at the bottleneck are my(t) =
[o/(at-B)]p and my(t) = [a/(oi+y)]p. The optimal toll rate is Foi =(1/2)[(By)/(B+y)](N/p) which
is a half of equilibrium travel cost under no toll conditions with fixed working hours (Gp).
Notice that Fe," is independent of the duration of the flexible working time period. The total
queueing delay and maximum queue length under optimal toll rates are respectively Wi
=(1/2)(B/o)[y/(B+1)] [(1/2)(N*/)-¢’] and Qe1"=(1/2)(B/a)[y/(B+y)IN. Additionally, there is
still the phenomenon of reluctant queue with length (1/2){By/[(a+y)(B+Y)]}N.

When e 2(1/2)(N/p), the curve of cumulative arrivals at the bottleneck is shown in Figure 6(b).
The times at which toll collection begins and ends coincide with the starting and ending points
of flexible working hours. Equilibrium travel cost is Gei= [By/(B+y)][(N/p)-¢], identical to
either the optimal toll rate (Fei") or the equilibrium travel cost under no toll conditions (Gy)
obtained by Lan et al. (1999), implying that under flexible working hours a fixed congestion
toll (Fcl') is a perfect surrogate for the cost of queueing delay under no toll conditions (Gy).
Total queueing delay under optimal step-tolls is Wo' =(1/2)(1/w)(Blo)[y/(B+)I(N-ep)’,
maximum queue length is Qc1 =(B/a)[y/(B+y)](N-ep) and reluctant queue length is

{(BYV/[(a+r(B+NIFN-ep).

N - e >
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of com- of com-
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" N |
‘i‘ﬁ_ AN e x|
tq t t'-e * t° % Time tq t=t'-e t'=t t, Time
(a) When e<(1/22)(N/p) (b) When e(1/2)(N/p)
Figure 6. Equilibrium arrival pattern for optimal single step-toll under flexible working hours

In the case of two step-tolls, two flat congestion tolls are collected, F1, Fe2, respectively, where
Fe, > Foi. When e < (1/3)N/p, equilibrium travel cost is Ge=[By/(B+y)](N/p-€). The optimal
toll rates are Fei =(1/3)[(By)/(B+y)I(N/p) and Fe2 =(2/3)[(By)/(B+y)]I(N/p). Total queueing
delay under the optimal step-tolls is W' =(1/2)[(By)(op+ay)][(1/3)N/p-e’p], while
maximum-queue length is Qe =(1/3)[(By)/(ap+ay)]N. When e > (1/3)N/p, the times at which
congestion toll Fa. begins and ends again coincide with the starting and ending points of the
flexible work hours, the equilibrium travel cost is Ge=[BY/(B+Y)[(IN/p)-€]= Fe = Gy. This
means that Fo,' is a perfect substitute for the cost of queueing delay under no toll conditions.
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*

The optimal toll rate for F, is (1/2)Fq . Total queueing delay is W,
=(1/4)(1/u)(B/o)[y/(B+)I(N-ep)’, maximum queue length is Qc2™=(1/2)(B/ct)[y/(B+1)](N-ep).

Expanding the step-toll schemes to n steps, and when e < [1/(n+1)](N/p), the equilibrium
travel cost is Gen=[By/(B+y)](N/p-e), identical to that of no toll conditions. Optimal toll rates
are Fo'<[1/(n+ D][BY/(B+)I(N/W), Feo'2Fer’,..., and Feo'=nFar"=[n/(n+1)] [By/(B-+nIN/b).
Total queueing delay under optimal toll schemes is We, =( 172)(Bla)[y/(B+7)]
{[V/(0+1)](N*/p)-¢’u}, and maximum queue length is Qco =[1/(n+1)](B/c))[y/(B+y)]N. When e
2 [1/(n+1)]N/p, equilibrium travel cost is Gen=[By/(B+y)](N/pi-¢). The optimal toll schedules
are Fcl'=(1/n)[By/(B+'y)](N./p-e), Fe'=2F;,..., and Fep =nFe,"=[By/(B+y)](N/p-¢). Here the
times at which the toll Fe, begins and ends coincide with the starting and ending points of
flexible time period, thus Fe,  is equivalent to the equilibrium travel cost. Total queueing delay
under optimal toll schemes is Wc,,‘=[1/(2nu)](B/a) [y/(B+y)](N-ep)?, maximum queue length is

Qen=(1/n)(B/c)[y/(B+y)](N-ep).
3.2 Suboptimal Step-tolls

In the case of single step-toll, assume that at a bottleneck prior to time tjno toll is collected, but
after tja fixed congestion toll Fy is collected. When e < [(B+y)/(B+2y)](N/p), the equilibrium
curve of cumulative arrivals at the bottleneck A(t) is depicted in Figure 7(a). Equilibrium travel
cost is Ga1=[By/(B+y)I(N/pu-e)+[B/(B+y)]F a1, slightly greater than that of no toll conditions by
[B/(B+Y)]Fa1. The optimal toll rate for suboptimal toll scheme is Fd,'=[(ﬁy)/(B+2y)](N/u)
which is independent of the length of flexible work hours. Total queueing delay under the
suboptimal toll scheme is Wai" =(1/2)(By/a){[1/(B+2y)](N"4w)-[1/(B+y)]e’u} and maximum
queue length is Qd|‘=(By)/ [o(B+2y)IN. Collection of the above suboptimal step-tolls begins at
G tHy/(B+2)](N/b) and ends at £7= " +{B/(B+2y)I(N/w). When e [(B+)/(B+21)](N/p),
collection of the congestion toll begins at time t;= t;+ (N/p-¢) and ends at t* = tq*+ Fai/y. Under
these conditions commuters will not be late for work, and the termination of flexible time
period is concurrent with the end of peak traffic. The curve of equilibrium cumulative arrivals
at the bottleneck A(t) is shown in Figure 7(b). Equilibrium travel cost is Gai=B[(N/p)-€], while
the optimal toll rate is Fai"=B[(N/u)-¢]. Total queueing delay is Wa;"=(1/2)(1/1)(B/oc)(N-ep)®
and maximum queue length is Qd1'=(B/a)(N-ep.).
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(a) When e<[(B+y)/(B+2y)](N/p)

(b) When e[(B+y)/(B+2y)](N/p)

Figure 7. Equilibrium arrival pattern for suboptimal single step-toll under flexible working hours
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In case of n step-tolls and when e < {(B+y)/[B+(n+1)y]}(N/p), the equilibrium travel cost is
Gan=[BY/(B+1)IN/p-e)+[B/(B+1)]Fan , suboptimal tolls are Far ={BY/[B+@+ 1y} N/p),
Fi =2F41 »..., and Fgn =nFa ={nBy/[B+m+1)y]}(N/p). Total queueing delay is
Wan=(1/2)(B/o)) {y/[B-++ 1 )y]} ON*/p)-(1/2)(B/t)/[y/(B+y)]e’p and maximum queue length is
Qan =(B/o)/{y/[B+(n+1)y]}N. When e 2{(B+y)/[B+n+1)y]}(N/p), the equilibrium travel cost
will be Ga=P(N/p-€), suboptimal toll schemes are Fd1‘=(l/n)B(N/p-e), Fd2‘=2Fd1',..., and
Fdn‘=nF d1'=B(N/p-e). Here Fd,,‘is equivalent to the travel cost, and the toll collection period
and flexible time period start and end concurrently. Total queueing delay under suboptimal

tolls is Wan =[1/(2n)](B/ct)(1/p)(N-ept)* and maximum queue length is Qun =(1/n)(B/a)(N-ep).

The system performance under optimal and suboptimal step-toll schemes.are summarized in
Table 2. Under the same condition, the optimal step-toll always results in better performance
than the suboptimal toll schemes, but leads to the problem of reluctant queues. Such queues

Table 2. System performance of various step-tolls under flexible working hours

Toll schemes Toll rate Travel cost | Total queueing delay | Max. queue length
No toll == [BY/(B+NI(N/p-e)| (172)(B/a)ly/(B+N] | (B/o)ly/(B+1)] X
(AD X_(N/p-e)(N-+ep) (N-ep)

Optimal step-tolls [Fe; = [1/(n+1)] X [BY/(B+NI(N/p-e)| (172)(B/a)y/(B+Y)] [/(n+1)] X
(A2) IBY/(BNIN/) X [+ DIN7p)- | (B/oly/(B+NIN

Fe2 =2Fq ezp}
e<[1/(n+1)J(N/p)
For = [0/(n+1)] X
[BY/(B+NI(N/W)

Optimal step-tolls  [F.; =(I/m[BY/(B+)]  |[BY/(B+nI(N/p-e)| [1/Q2np)](B/e) X (Im)(B/o) X
(B2) X (N/pe) WEIMN-ew)® | EBHDIN-en)
et [

Fc..'=)[BY/(B+Y)](N/u-
[
Suboptimal step- |Fg; =By/[B++1)y] X |[BY/(B+I(N/p-e)|  (1/2)(B/o){y/[B+ (B/a)/{y/[B+
tolls (A3) (N/p) +HB/BMFan | @FDYONR)- (n+1)YIIN
Fo=2Fa (172)(B/o)/Ty/(B+)]
e<{(B+y)/[B+ X e’}
(n+1y]}(N/p) Fao =npy/[B+(n+1)y]
X (N/W)

Suboptimal step- Fa1 =(1/m)B(N/p-€) B(N/p-€) [1/(2np)](B/ot) X (1/n)(B/o)(N-ep)
tolls (B3) Fo =2Fa (N-ep)?
ex{(B+y)/[B+ L

(Y] FON/p) Fan =B(N/p-€)

Benefit [(A1-A2) = 0 [/(n+1)] X 1-[1/(n+1)] X

from  |/Al {1/[1-(ewN)*]} [N/(N-ep)]

optimal [(A1-B2) — 0 1-(1/n)[(N-ep)/ 1-(1/n)

step-tolls |/A 1 (N+ep)]

Benefit [(A1-A3) — -{np/[B+n+1)y] | {ny/[B+n+1)]} ¥ 1-(B+y)/[B+

from sub |/A1 X [N/(N-ep)]} {/[1-ewN)]} | (a+1)y]IN/(N-ew)]

-optimal [(A7 p3) = -Bly 1-(1/m)(1+B/y) X 1-(1/m)(1+Bry)

step-tolls a1 [(N-ep)/(N+ep)]
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are completely eliminated through suboptimal step-toll schemes. Table 2 shows that under
flexible working hours in comparison with no toll condition, when e<[1/(n+1)]N/p, total
queueing delay for optimal tolls can be reduced by a ratio of [n/(n+1)]{1/[ 1-(e;,|/N)2]}; when
e2[1/(n+1)]N/p it is reduced by a ratio of {1-(1/n)[(N-ep)/(N+ep)]}. Both ratios are greater
than that of fixed working hours, n/(n+1). If a suboptimal step-tolls is utilized, when
e<{(B+y)/[B+(n+1)y]}N/p, total queueing delay will be reduced by the ratio of
{ny/[B+(n+1)y]} {1/[1-(ep/N)?]}; when ex{(B+y)/[B+(n+1)y]}N/u the reduction ratio will be
1-(1/n)(1+B/y)[(N-ep)/(N+ep)]. Both reduction ratios are greater than that of fixed working
hours, (ny)/[B+(n+1)y]. In other words, the effectiveness of a step-tolls in reducing queueing
delay is more marked under a flexible work hours system than under a fixed work hours
system.

4. VARIOUS STEP-TOLLS UNDER STAGGERED WORKING HOURS

4.1 Optimal Step-Tolls

There are two types of staggered working hours systems, step-type and uniform-type (Lan ef
al., 1999). This paper will focus on the uniform-type staggered working hours system.
Commuters accumulated by starting work time form a llne with the slope w(w>p). The first
commuter starting work time is tpand the last starting work t". The time length between them is
d=t"-ty=N/o. In the case of single step-toll, a flat toll Fy, is levied during time period (t;, t;°)
while at times (tq, tj) and (t;°, t4°) there is no toll. The equilibrium cumulative arrivals at the
bottleneck A(t) is shown in Figure 8. The equilibrium travel cost is Gy =[By/(B+y)](N/p)(1-
Wo). The slope of cumulative early arrivals is m;(t) =w/[1-(B/o)(1-w/w)]; similarly, for the late
arrivals is my(t)=p/ [1+(y/a)( 1-p/w)]. Both slopes are identical to those of no toll conditions.
The optimal toll is Fyl -(1/2)[By/(B+y)](N/p)(1 p/co)—(l/’7)G Total queueing delay under
optlmal tolls is Wy, —(B/a)[y/(B+y)](1\12/p)(l p/m)—(l/Z)Wu and maximum queue length is
Qyi —(1/2)([3/a)[y/(B+y)]N(l -Wo)=(1/2)Q,". Where Gy, W,", Q," are respectively expressed
as equilibrium travel cost, total queueing delay and maximum queue length under no toll
condition (Lan ef al.,1999). Furthermore, there is still the problem of a reluctant queue with
length (1/2){By/[(a+y)(B+y)]}N(1-w/e). In the case of multiple step-tolls, equilibrium travel
cost, total queueing delay and maximum queue length are (1-p/w) times those of fixed working
hours.

4.2 Suboptimal Step-Tolls

In the case of single step-toll, assume that at a bottleneck prior to time tjno toll is collected and
after t;a flat congestion toll is collected. The equilibrium cumulative arrivals at the bottleneck
A(t) is shown in Figure 9. The equilibrium travel cost is G, =[By/(B+y)]N/p)(1-
p/u))+[B/(B+'y)]le, greater than that of no toll conditions by [[3/(|3+'y)]F21 The optimal toll rate
is Fo1 =[By/(B+2)I(N/p)(1-Wow). Total queueing delay is W, "={(B/)[¥/(B+2n)](N/p)(1- W)
and maximum queue length is Q= (B/a)[y/(B+2y)IN(1-p/w). In case of multiple step-tolls,
equilibrium travel cost, total queueing delay and maximum queue length are (1-ww) times
those of fixed working hours also.
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Figure 8. Equilibrium arrival pattern for optimal Figure 9. Equilibrium arrival pattern for suboptimal
single step-toll under staggered working hours single step-toll under staggered working hours

5. SENSITIVITY ANALYSIS

Following previous studies (e.g. Small, 1982; Lan ef al. 1999), assume o=$6.4/hr, p=$3.9/hr
and y=$15.21/hr, N=1800 commuters, each commuter drives one car and passes through a
bottleneck in order to reach the destination. The capacity of the bottleneck is p=900 cars per
hour. Under fixed work schedules, all commuters arrive at work at 9:00; under flexible
working hours, between 8:30 and 9:00; and under uniform-type staggered system between 8:30
and 9:00. Utilizing the analytic models for step-tolls, the system performance under three
different work schedules with various step-tolls are displayed in Table 3.

It is clear from Table 3 that optimal step-tolls generate reluctant queues. Though suboptimal
step-tolls do not produce reluctant queues, their performance are inferior to optimal step-tolls
scheme across the range of measures in this example. The results of these calculations are also
shown in Figure 10. The charts (a), (b), (c) depict the changes in queues through the bottleneck
at any moment throughout the morning rush hours for the fixed, flexible, and staggered
working schedules, respectively, with no toll, optimal single step-toll and suboptimal single
step-toll schemes.

The effects of bottleneck capacity, unit costs of queueing, early and late schedule delays on
total queueing delay are similar as the results of Lan et al. (1999). Thus, the following two
parameters including number of steps in step-tolls and the length of flexible/staggered time
will be discussed for sensitivity analysis. The effect of number of steps (n) in optimal and
suboptimal step-tolls on total queueing delay under alternative work schedules is shown in
Figure 11. Note that total queueing delay decreases as n increases, but the level of
effectiveness gradually drops off as n approaches infinity. Regardless of the work schedules
system in question, optimal step-tolls are always superior to suboptimal ones in total queueing
delay reduction, but the difference between the two schemes will become narrower as n
increases. In fact, one can easily show that as n approaches infinity, total queueing delay will
approach zero.

The results of varying e and d under single step-toll are shown in Figure 12. Under flexible

working hours with optimal step-tolls, when e<[1/(n+1)]N/p, total queueing delay (Wcl')
differentiated by e is OW,, ' /oe= -(B/o)[y/(B+y)]en; and when e>[1/(n+1)]N/p  the
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differentiation is oW, /de= -(I/m)(B/o)[y/(B+y)](N-ep). With suboptimal step-tolls the
respective differentiations are when e<{(B-+y)/[B+(n+1)y]}N/p then 8Wy, /de= -(B/o))[y/(B+Y)]
en; when e>{(B+y)/[B+(n+1)y]}N/p then dWq, /de= -(1/n)(B/o)(N-ep). Therefore, as the
length of flexible time (e) increases, its effect on reducing total queueing delay grows larger.

Under staggered working hours of uniform-type with the optimal step-tolls, total queueing
delay differentiated by d is 6Wy1‘/6d=-(1/2)[1/(n+1)]([3/a)[y/([3+'y)]N; with suboptimal step-
tolls the differentiation yields 6W11‘/6d=-(1/2)([3/a) {y/[1/(B+(n+1)y]}N; both are independent
of d. As d increases, the reduction rate of total queueing delay is greater under suboptimal
step-tolls than under optimal ones.

Finally, as e and d increase, total queueing delay will decrease accordingly. Regardless of the
working schedules system in question, as e=d=N/, total queueing delay will drop to zero.

Table 3. The results from examples

Work sl Items No toll Optimal step-  Subptimal step-
schedule tolls tolls
Starting work hour 9:00 9:00 9:00
Peak hour period 7:24~9:24 7:24~9:24 7:14~9:14
Fixed | Toll rate ($) — 3.1 35
work | Period of toll collection — 8:12~9:12 8:08~9:28
hours | Max. queueing delay (min.) 58 29 33
Travel cost ($) 6.2 6.2 6.9
Total queueing delay (veh-hr.) 873 437 486
Max. queue length (veh.) 873 437 486
Reluctant queue length (veh.) — 129 —
Starting work hour (flexitime) 8:30~9:00 8:30~9:00 8:30~9:00
Peak hour period 7:18~9:18 7:18~9:18 7:08~9:08
Flexible | Toll rate (8) — 3.1 35
work | Period of toll collection = 7:54~9:09 8:01~9:22
hours | Max. queueing delay (min.) 44 22 32
Travel cost ($) 4.7 4.7 5.4
Total queueing delay (veh-hr.) 819 383 432
Max. queue length (veh.) 654 437 486
Reluctant queue length (veh.) —_ 129 —_
Starting work hour 8:30~9:00 8:30~9:00 8:30~9:00
Peak hour period 7:18~9:18 7:18~9:18 7:10~9:10
Staggered| Toll rate ($) — 2.3 2.6
work | Period of toll collection —_ 8:06~9:06 8:03~9:20
hours | Max. queueing delay (min.) 44 22 24
Travel cost ($) 4.7 4.7 52
Total queueing delay (veh-hr.) 655 327 364
Max. queue length (veh.) 655 327 364
Reluctant queue length (veh.) — 97 —_
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Figure 10 Changes in queue length under alternative working hours with various tolls
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6. CONCLUDING REMARKS

Theoretically, according to previous literature it is possible to attain a state in which the
bottleneck queues are completely eliminated under user equilibrium. Practically, time-
dependent tolls necessitate not only advanced technology such as electronic toll collection
(ETC) employing automatic vehicle identification and contactless smart cards, but must take
into account the privacy rights as well as the willingness of citizens to accept the system.

Although step-tolls cannot completely eliminate queueing delays, they are effective in
ameliorating them. Laih (1994), in examining step-tolls, came to the conclusion that if single
step-toll is utilized, at most a half of the total system queuing delay will be eliminated, while if
n steps are utilized, the greatest possible effectiveness is n/(n+1). Laih et al. (1997) also
pointed out when a step-toll is employed, it is necessary to constructa “waiting lane” in front of
the toll-station to accommodate the “reluctant queues,” those who are unwilling to enter the

station during the transition period between higher and lower tolls. The design and operation of

such toll-stations may be complex and difficult.

This paper has developed analytic queueing models to examine queueing properties at a single
bottleneck under optimal and suboptimal step-tolls with fixed, flexible, and staggered working
schedules. The results of fixed working hours under optimal step-tolls are exactly identical to
those of Laih (1994) who used completely different approach, confirming the accuracy of our

analytic models.

Regardless of the types of work schedules, it is found that system performance is the best under
optimal step-tolls, but reluctant queues will appear as tolls transition from higher to lower
levels. Under fixed working hours, optimal n step-tolls can reduce total queueing delay and

maximum queue length by a ratio of n/(n+1) in comparison with no toll conditions. As the
number of steps in step-tolls approaches infinity, congestion at the bottleneck disappears
completely, equivalent to a time-dependent toll proposed by Vickrey (1969). To avoid
reluctant queues, this paper recommends the adoption of suboptimal step-tolls, although they
are not as effective as optimal step-tollsacross the range of system performance measures.
Under fixed working hours, suboptimal step-toll can reduce total queueing delay and

maximum queue length by a ratio of ny/[B+(n+1)y] in comparison with no toll conditions.
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