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Abstract:The dynamic user-optimal route choice problem has been successfully solved by

both link-based and path-based algorithms. The former algorithm embeds the Frank-Wolfe

algorithm during the solution procedure whereas the latter contains a path-based algorithm

such as Gradient Projection in its solution process. The Frank-Wolfe (FW) algorithm is

economic in the use of computer memory but converges very slow at the neighborhood ofthe

optimal solution. The Gradient Projection (GP) method, on the other hand, requires more

computer memory but converges faster. For a comparison of computational efficiency

between the FW method and GP, see Chen and Chang (1998)

In this paper, a projection method which was originally thought of as a path-based algorithm

is revisited. With a hope of economic use of computer memory, the mapping concept of
projection method is therefore realized by the (link-based) FW method instead, hereafter

referred to as the Hybrid method. Two versions of the Hybrid method are described and

demonstrated with numerical examples. The results show that the dynamic equilibrium

conditions for dynamic user-optimal route choice can be satisfied, however, the expected

benefits of using less computer memory are not readily obtained. To fully exploit the

advantages of the Hybrid method, determination of the parameter settings that associated

with the so-call new travel time function such as the contraction operator needs more

research.

I.INTRODUCTION

The dynamic user-optimal (DUO) route choice problem can be regarded as a generalization of
its static counterpart by incorporating flow propagation constraints into the model. The DUO

route choice problem has been successfully formulated as a discrete time model using the

variational inequality (VI) approach and solved by both the link based and path based

algorithms (Chen et al., 1998). The former algorithm such as diagonalization method embeds

the Frank-Wolfe (FW) algorithm during the solution procedure whereas the latter contains a

path-based algorithm such as the gradient projection (GP) method. The FW algorithm is

economic in the use of computer memory but converges very slow at the neighborhood of the

optimal solution. The GP method, on the other hand, requires more computer memory but

converges faster.
A Projection method which was originally thought of as path-based algorithm (Nagumey,

1993) is revisited. With a hope of economic use of computer memory, the mapping concept of
projection method is therefore realized by the (link-based) FW method instead, hereafter
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referred to as the Hybrid method (HB). Two version of the Hybrid method are proposed and

compare with the current tw'o methods for the DUO route choice problem.

In the following, the DUO route choice problem is first described and the corresponding

equilibrium conditions are elaborated in Section 2. Two versions of the HB method are

presented in Section 3 and demonstrate with a numerical example in Section 4. Intensive

comparisons of the four solution algorithms are made in Section 5. Finally, concluding

remarks and suggestions are given in Section 6.

2. EQUILIBRIUM CONDITIONS AND MODEL FOR]VIULATION

2.I DYNAMIC USER-OMIMAL CONDMONS

Assuming O-D demands are fixed and time-dependent, the DUO route choice conditions state

for each O-D pair that the actual route travel times experienced by travelers departing during

the same interval are equal and minimal. In contrast, the actual route travel time of any unused

route for each O-D pair is greater than or equal to the actual used route travel times. In other
words, at equilibrium, if the flow departing from origin r during interval t over routep toward

destination s is positive, i.e., ni'@)>0, then the corresponding actual route travel time is

minimal. On the contrary, if no flow occurs on route p, i.e., h;'(k)=0, then the

corresponding actual route travel time is at least as great as the minimal actual route travel
time. These equilibrium conditions can be mathematically expressed as follows.

,iir'"[ll=i Yrspk

where

";' 
(k)= 

? I":0) o":,rQ\ vr,s. p, k

r" (k) = T'X{";'(r)} vr,s

2.2 VARIATIONAL IITEQUALITY FORMTJI.ATION

The DUO route choice problem is equivalent to finding a solution u* e O such that the

following VIP holds.

Vu e C)* (4)

with 6f*(t) being realized at equilibrium, i.e.,

(U::*(,) = a:ir@) ,Y r,s,a, p,k,l . The symbol O denotes the feasibte region that is delineated

below by flow conservation, flow propagation, nonnegativity, and definitional constraints.

Flow conservation constraint:

4o; tol = q^ (k) Yr.s.k

Flow propagation constraints :

ui,o(t) = h; (k)6:""(t) Yr,s.a, P,k.t

";.@{::':t:l

4l':tX,"(,)-,;{,)l-o
where Q* is a subset of O

(l)

a)

(3)

(5)

(6)
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la;(t)=t vr,s,p,a eP,k 0)

a;.O = {0,4 Yr,s,a,P,k,t (8)

NonnegativitY consffaint:

h;(k\>o vr,s,P,k (e)

Defi nitional constraints:

u.(t)=Zz>h;(rc)a;oQ) Ya,t (ro)
6pk

,;(k)=Zlc.(t)a;nQ) vr,s,P,k (ll)

3. SOLUTION ALGORITHMS

3.T THE GENERAL ITERATTVE SCHEME

The iterative scheme seeks to determine u* e Cl c R", such that

c(u*)'(u-u*)>o Vu eC) (12)

where c is a given continuous function from c) to R' and o is a given closed, convex set

The feasible region O is also assumed to be compact and the function c(u) continuously

differentiable.
Assume that there exists a smooth function

F(u,u'):OrC)r+ R'

with the following proPerties:

(13)

(D r(u, u) = .(r) Vu e C),

(ii) for every fixed u,u'€O, the nxn malix V.f(u,u') is symmetric and

positive definite.

Any function f(u, 
"- ) with the above properties generetes the following @afermos, 1983).

The General lterative Algorithm
Step 0: Initialization

Start with an uo e O . Set rz = I .

Step l: Construction and Computation

Compute u'tr by solving the variational inequality problem (VIP):

F(.-.',r'Xr-r'*')>o Vueo (14)

Step 2: Convergence Verification

If lu'*'-u'l<a, for some e>0, a prespecified tolerance, then stop; otherwise' s*

m=m+landgotoStepl.

Since V,F(u,u') is assrmed to be qrmmeuic and positive definite, the line integral f t(","'Lt

definesafunction r(r,u-),C)xOp R srchthat,forfixed u'€C), ,(.,u')isstrictlyconvexand
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Hence, VIP (12) is

T}T'(,,'
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V,z(u, p) (ls)
equivalent to the strictly convex mathematical programming problem

') (16)

for which a unique solution u"'*r exists. The solution to expression (16) can be computed
using any appropriate algorithm. If there is, however, a special-purpose algorithm that takes
advantage of the problem's structure, then such an algorithm is usually preferable from an
efficiency point of view. Of course, inequality (14) should be constructed in such a manner so
that, at each iteration zr, this subproblem is easy to solve.

Note that ifthe sequenc. {u'} is convergent, i.e., u' -+ u * , as m -+ o , then because ofthe

continuity of f (u, u' ), inequality ( l4) yields

c(u *)'(u-, *)= F(u*,u*[u- u*)> o vu eCt (17)

and, consequently, u * is a solution to VIP (12). A condition on F(u,u'), which guarantees

that the sequence {u'} ir convergent is found in Nagurney (1993).

Note that function r(r,r-) approximates c(u) at point u- during the iterative process. In

the case of nonlinear approximation, the following equation results (and hence the
diagonalization method)

F(u,u-)= ( ,C(r,r')-..f R' -+ R'
where

4G'r')= ",(ui,"',ui,,u,,ui,,"',ui\ vi
In the case of linear approximation, the following equation results (and hence the projection
method).

F(r,,"')=.(,')*i.(u - r') Qo)

where contraction operator p > 0, matrix G is fixed, symmetric and positive definite.

Other approximations for c(u) at point u- are possible, such as Newton method, quasi

Newton method, symmetric Newton method, linear Jacobi method, the interested reader may
refer to Harker and Pang (1990) for details.

3.2 TIIE PROJECTION METHOD

The optimal solution for a VIP is at the fixed point defined as u*= M"(u*), in which
Mo.{l-+O designates a G norm continuous mapping function. If the current solution

u' e C) is not optimal, the contractive mapping of M n(.) on C) generates a better solution,

i.e., u'*' = ttto(r'') The resulting sequence {u''} ir Cauchy and converges to the unique

fixed point characterized by an optimal solution, according to Banach fixed point theorem
(Smith, 1979).

It may be convenient to interpret the mapping function M.(.) as two consecutive stages. In

the first stage, the current solution u- e C) is mapped into the Euclidean n-dimensional space

Rn at u^ -pC '"(u'') and then, in the second stage, project back into the feasible region
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through the G norm operation P^o (u' - pC-'.(u'), resulting in a better solution u'*' € C) .

Qt)
This procedure may be expressed as follows:

,-*' = Mo(t')= P*o(r'-Pc-'"(r')
where p is the contraction operator and Pn.o(o) is the projection operator defined by the

minimum distance between the current and the improved feasible solution through the G norm

operation. That is

"PilJl'^' 
-(" - r"-'"('")ll.

By definition llxll" = (*'Cr)', we have:

.*["](u'.' I co'.' * (p"(r' )- c,' I u'*'

Since matrix G is symmetric and positive definite, then by Green theorem, the optimization

problem (23) is identical to the following VIP:

["1.,").r"fu,*r 
-,.))'1, -o'*'), o

In fact, VIP (24) is essentially equivalent to VIP (14) withnsw travel time function defined by

equation (20). The derivation can be derived as follows:

[.1,-).r.1,"' 
-,'))'1, - u'.')

= h(u')* G(u'*' - u'y (u - r'.' )

= (cr'.' *(p"(r')-cu')I(, -r'*')
= E(r'"' [u - u'.')> o

where

E(u-.')= lcu'.' +hi'

ni' = "(,')- )""^
The projection method may be better understood by a graphical illustration shown in Figure 2.

u'- p G-rc(u')

u2- p G-rc(u2)

ur- p Q-rs(ur)

Figure l: Solution Procedure of Projection Method
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Q3)

Q4)
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Q6)

Q7)



300
Huey-Kuo CHEN and Shu-Yurn HSIAO

We start from an initial solution u' €O from which the point ur -pC-'.(u')e R' in the

Euclidean space is mapped. This point then projects back to the feasible region through the G

norm operation, resulting in u2 e O. Similarly, the current solution u2 is mapped into the

Euclidean space at u' - pG-'c(u'). R' from which a projection onto the feasible region is

performed through G norm operation, resulting in u3 e O. This process continues until the

optimal solution u* is obtained.

33HYBRIDMETHOD

The Hybrid method (HB) basically adopts the mapping concept of the Projection method but
accommodate the link-based FW method, in contrast with a path-based method as it originally
attempted, for the network equilibrium subproblem of the DUO rout choice problem. The

proposed HB method is expected to be advantageous of using less memory at the price of
longer execution time. The solution procedure ofthe HB method may be described as follows:

Hybnd Method
Step 0: Initialization.

Step 0.1: Le-. nfl .Set ri(r) = NINlc.,Q)], V",,

Step 0.2: Let n:1. Find an initial feasible solution t :@1. Compute the associated

link travel times {cl(r)} .

Step 1: Fint Loop Operation.
l-e/.. tn-a fil . Update the estimated actual link travel times by

,:(t)= 
"rr40 

- r)ci'Q)+r:@l Ya,t (28)

where 0 <y <1. Consfiuct the conesponding feasible timespace network based on the

e,stimated actual link travel times.

Step 2: SecondLoop Operation.

Step 2.1: Let n:7. Compute and reset the initial feasible solution {r:{r)1, based on

the time-space network constructed by the estimated actual link travel times

{,:{,)\
Step 2.2. Fix the inflows for each physical link other than on the subject time-space

link at the current level, yielding the following optimization problem:

min {u) : Z, ["'"' 
) 

c,(ui (r), ui (z),. .', ui Q - t), ap ro
at

,Tlil";(..'.' f cu'.' * b"(u- )- co-I u'*'
(30)

=ZZZ"lQ)s,
brl

Flow conservation constraint:
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4o;to\=4^(k) 
Yr,s,k (3r)

NonnegativitY consfi"int:

h;(k)>o vr,s,P,k Q2)

Definilional Constraints:

ui*Q)=n;(r)o;;(t) Yr,s,a,p,k,t (33)

a;rl()= {0,0 Yr,s,a,p,k,t Q4)

u.(t)=|,zzh;(k)6&(t) Ya,t (3s)

6Pk

";(k\=Zlc"(t\d;r(t) 
Yr,s,P,k (36)

where

h:Q)=":@-)Zs*u;Q) Ya,t Q7)

where 0 < p < 2v / tt. 1z is any lower bound over r of the minimum eigenvalue of tlrc

symmerric part of the Jocobian l*) ^y 
is arry upper bound over z of the madmum

lou )

eigenvalue of the positive definite symnretric ",.* [*]'a'1il' 8, is the element

positioned inthe/ row and Ds column ofmtix G'

d:Q)=)Zs*,1@+h:Q) Ya,t (38)

Step 3: Third LooP OPeration.

Solve for the solution, {r;.'(r)}, in optimization problem (30)-(36) by the FW

method. Compute the resulting link travel times {cl.'(r)}'
Step 3.1: t* u'.(t)=u,(t),Yo,t, and set /=1. Compute the new link travel times

F;t'l}
Step 3.2: Search for the shortest palh for each time-dependent O-D pair based on the

new linktravel times F; (rD *a perform all-or-nothing (AO1D assignment,

resulting auxiliary flow pattern lp:ti The search direction becomes:

d, : p, _ u, (39)

Step3.3:Determinethestepsizea"usingthebisectionmethod.

.g,"1,2(a"; 
= ZIl;""'"'ot t,('i(r)'ui(z),"'ui(t -r),at\ao G0)

or'

,gi1, 
j(r'.' )' cu'.' + (nc(u'; - Gu')' u'.'

= I44,i.' 0{r,;.' {, )", ) 
. 

44'10{ n': (') - > r *', ('))'0 "
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Step 3.4: Update the link inflows and calculate the corresponding link travel times

{cj.'(r)} :

u']'(t)= 
"',(t)+ 

t'(r',(,)- "',@) va,t

Step 3 .5. Covergence check for the third loop operations

rr tffp<e,,Ya,t, let ui" (t'1= uf'(t),Va,t and

":"(t)= 
c'.-'(t),vo't, continue; otherwise. let I = I +1, go to Step 3'2'

Step 4: Convergence Check for the Second Loop Operation.

tf ui^ (t) * ui(t),Ya,t , X##9 a e ,,Ya,t go to step 5; othenruise, sd. r=n+l,

go to Step 2.2.

Step 5: Convergence Check for the First Loop Operation.

tt riQ)= xmTlcl.'(t)\va,t stop;theernentsolutionisopimal. ottrerwise, sy'rrr*1,

andgoto St€p l.

G-rc(u')

u2- o G'' c(u2)

ur- 0 G'r c(ur)

(42)

'' F*arible R.gioo
(0)

' -.1a.., a'-t -/"

Figure 2: Solution Procedure of Hybrid Method

The trKxiK qymmetric positive definite matrix G in equation p0) (and throughout the paper) is the

Jacobian matrix ofthe travel time firnction. For simplicity, it is set as a multiple of an unity matria i.e.,

Gz X [I, a > 0. Symbol r( is the maximum number of time intervals by which all the departures must

have reached at their destinations. ly'is the total number ofphysical links. The contraction operator p

in equation (30) (and tkoughout the paper) must be set in the range of l r.Al so as to optimally
I v)

converge @efamos, 1980). Note that p is any lower bound over z ofthe minimum eigenvalue ofthe

symmetric part of the AKxIK Jocobian [4] anA u is any upper bound over n of the mardmum
la,)

eigenvalue of the AKxIK positive definite symmetricrn"ui.[*l'c 'l+] Except for the
la,) - la,)

respective diagonal etements. I *)' " [ +1-o [9-l, ail the oftdiagonat etements are zrro-
la," ) lA. ) 1tu" )
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valued. To reduce computation effo4 the two mafices with dimensions IKXIK matrix are first

decomposed into N smaller matrices with dimensions r(XK marrix and then calqrlale eigenvalues

independurtly We first chose p = L fo' the first version of HB (hence named HBI) to guarantee

v
convergence, though not necessarily mnverging fas. An altemative approac[ hereafter referred to as

fmZ, is simply sa the contraction operator as a constant, for examplg P = 0'5 '

4. NUMERICAL EXAMPLE

A simple network shown in Figure 3 is used for testing. This test network contains of 6 links

and 5 nodes, in which nodes I and 3 are the origins, node 5 is the destinations, and nodes 2 and

4 are intermediate nodes.

Figure 3: Test Network I

The assumed time-dependent origin-destination (o-D) demands are shown in Table I

Table l. time-dependent origin-destination (o-D) demands for Test Network I

o-D
pair

Departure Interv4
k:r k=2 k=3 k:4

l-5 l5 5 0 0

3-5 0 0 l0 20

(;)
).<

o

The adopted dynamic travel time function is arbitrarily constructed as follows.

""(t)=l+0.01(2.(r))'+oor(x,(r))' 
Yq,t G3)

where z,(/) denotes inflows on link a during interval t, and x"(t) indicates the number of

vehicles on link a during interval l.

The convergence criteri-a for the three loops are summarized in Table 2' In the first loop' the

,topping criierion requires that the actual link travel times must be equal to the corresponding

disietiedlirktraveitimes. If the number of iterations exceeds 30, the algorithmic procedure

is terminated and no convergent solution is available. In the second loop, the stopping criteria

requires for each time-space link that the inflow difference between two consecutive iteration

must be less than a tolerance of 0.00003. Otherwise, the solution obtained at iteration 1300 is

deemed as optimal. In the third loop, the stopping criteria requires for each time-space link

that the inflow difference between two consecutive iteration must be less than a tolerance of

0.003. If the optimal solution cannot be obtained within 100 iterations, the last solution is

taken for the subsequent use.
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Table 2: Convergence Criteria for the Three Loops

First Loop Second Loop Third Loop
Convergence

Criterion
,,Q)=
NINrlc,Q)l

ui" k)-"iQ)
":Q)

< 0.00003

,i'@-u'"k)

''.Q)
< 0.003

Maximum Number of
Iterations

30 1300 100

304
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A computer program coded with Turbo c++ 3.0, compiled with small mode, was
executed on Pentium-|00 with 32N'{ RAM. The route travel times for the test network I by the
four algorithms are summarized in Tables 3-6. The equal and minimum route travel times
imply that the dynamic equilibrium conditions are completely satisfied. Slight differences are
attributed to round-off errors.

Table 3: Route Travel Times for Test Network I by Diagonalization Method

Route Departure Interval
k:r k:2 k:3 k:4

l+)+l+1,+J 5.8632 8 0928 NA NA
l+l-{+J 5.8631 8.0928 NA NA
l+)+J+J 5 8635 8.0946 NA NA
l-3--5 5.8634 8.0946 NA NA
3-4-5 NA NA 3 .5882 5.7320

3-5 NA NA 3.5 885 5.7338

Table 4: Route Travel Times for Test Network 1 by Hybrid Method (HB I )

Route Departure Interval
k:r k:2 k=3 k=4

1+2+3 >4+5 5.8628 8 0923 NA NA
l+l+{+J 5.8624 8.0921 NA NA
I +2+3+5 5 8642 8 0951 NA NA
l-3-5 5.863 8 8 095 NA NA
3-4--5 NA NA 3.5876 5.7314
3-5 NA NA 3 5890 5.7343
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Table 5: Route Travel Times for Test Network I by Hybrid Method GB2)
Route DeDarture Interval

k=r k=2 k:3 k --4

l+)+J+{+J 5.8646 8.0900 NA NA
l+J-{+J 5.8641 8.0988 NA NA

l+)+J+J 5 8626 8.0875 NA NA

l-3-5 5.8621 8.0963 NA NA

3-4-5 NA NA 3.5894 5 7344

3-5 NA NA 3.5874 5.7319

Table 6: Route Travel Times for Test Network I by Gradient Projection Method

Route Departure Interval
k --1 k:2 k:3 k:4

l+)+)+{+J 5.8634 8.0938 NA NA

l+l+{+J 5.8634 8.0938 NA NA

l+/+j+J 5.8634 8.093 8 NA NA

l-3-5 5.8634 8.093 8 NA NA

3-4-5 NA NA 3 .5884 5.7330

3--5 NA NA 3 .5884 5.7330

5. COMPUTATIONAL EFFICIENCY

To compare computational efficiency among the four algorithms ,four more test networks, as

plotted in Figure 4-7, were used. The assumed corresponding time-dependent O-D demands

are tabulated in Table 7. The other parameters settings are identical to those given in section

4. The used perfbrmance measures are threefold: total execution time, computer memory

requirement, and quality of solution.

The total exmttion time is recorded by acormulating the CPU times for all modules, but the VO times

are not inctuded. The computer memory requirement is calq.ilated by adding up the memory usage for

the main module and the srbroutine that consumed the computer memory units most. The quality of

solution is mea,s.red by the maximum difference, 6.* , between the largest and the smallest used route

travel times for all tim+dependent O-D pairs. In general, the larger the value of t-o , the better quality

ofthe solution is.

;>=;)
ITtt
l _ -_t^\ l.:.:.1\
4H61,' \ .,,. ,/

, '.glJ

Figure 4: Test Network 2
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/ \ l:l: !'::r!'l:\ / \( 7 l-------+ll:i'ii[:iiii.l---- 9 )\ ./ \r/ \../
Figure 6: Test Network 4

T'\T\. I'.,
(,-H,,.L{,,H
l' \\ -l- 

". 
l- ".-L \.r '1 J-. \.,(,,H,OH,,X

fi*r" Z' f"rt NLork

Table 7: Time-Dependent O-D Demands for Test Networks 2-4

Test

Network
O-D Pair DeDarture lnterval

lFl lc=2 k--3 lr-4
Network 2 l-6

2-6
20.0
NA

NA
20.0

15.0

NA
NA
15.0

Network 3 l-6
2-6

25.0
NA

NA
15.0

NA
NA

NA
NA

Network 4 l--8
4-8

15.0

NA
NA
NA

20.0
NA

NA
10.0

Network 5 L-12
2-12

10.0

NA
NA
NA

NA
15.0

NA
NA

The computational efiiciency of the four algorithms is compared with the five test networks in
terms of three performance measures, which are summarized in Table 8.

Figure 5: Test Network 3
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Table 8: Computational Efficiency among the Four Methods

Test

Network
Measure Aleorithm

DG HBl T{B2 GP

Network I

Iotal Execution Time (sec) 136 98 140.33 147 42 4.34
Maximum Difference of
Used Route Travel Times

0.0018 0.0029 0.0025 0

Memory Requirement
(bvte)

11120 29858 t3472 14120

Number of Time Intervals 20 20 20 20

Contraction Operator Varied 0.7

Iterations of the First Loop
(Time per Iteration, sec)

7
(re.s7)

7
(20.05)

7
(21.06)

7
(0.62\

Iterations of the First Loop
(Time per Iteration. sec)

I 300
(0.01s)

I 300
(0.01s)

I 300
(0.016)

42
(0.01s)

Network 2

Total Execution Time (sec) 334.73 415.72 3 50.33 l.l5
Maximum Difference of
Used Route Travel Times

0.0013 0.0097 0.0029 0.0001

Memory Requirement
(bvte)

13760 36258 t6704 17044

Number of Time Intervals 22 22 22 22

Contraction Operator Varied 0.3

Iterations of the First Loop
(Time per Iteration, sec)

l3
(25.7s\

l5
(27.71

l3
(26.9s\

l3
(0.08)

Iterations ofthe First Loop
(Time per lteration. sec)

l 300
(0 020)

1300
(0.02 r )

I 300
(0.021)

5

(0.017)

Network 3

Total Execution Time (sec) 67.14 69.56 72.53 0. l6
Maximum Difference of
Used Route Travel Times

0.0209 0.001 0 001 0 0001

Memory Requirement

&we)
8120 13974 9880 9676

Number of Time Intervals l0 l0 l0 l0
Contraction Operator Varied I

Iterations of the First Loop
(Time per lteration, sec)

6

l l.r9)
6

l 1.59)
6

12.09\
6

@.a27
Iterations of the First Loop
(Time per Iteration, sec)

1300
(0.009)

I 300
(0.009)

I 300
(0.009)

5

(0.009)

Network 4
Iotal Execution Time (sec) t97.64 198.30 206 65 31 43

Maximum Difference of
Used Route Travel Times

0.001I 0 002 0 0009 0 0001

Memory Requirement
(bvte)

I 5000 27004 I 8328 11264

Number of Time lntervals l5 l5 l5 l5
Contraction Operator Varied 0.3

Iterations of the First Loop
(Time per Iteration, sec)

7

o8.23\
7

08.33\
7

(29.52\
7

@.49\
Iterations of the First Loop
(Time per lteration, sec)

I 300
(0.022\

1300
(0.0221

I 300
(0.023)

42
(0.01l
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Network 5

f otul P*""ution !rng-(seg) I15.99 105.00 l18.68 1.10

Moi.u. Difference of
Used Route Travel Times

0.0006 0.002 0.0002 0.0001

Memoty Requirement
(hvte)

21296 31566 26288 23116

Number of Time Intervals t2 t2 t2 t2

Contraction OPerator Varied 1.0

Iterations of the First LooP
(Time per lteration, sec)

4
(2e.00)

4
(26.25\

4
(29.61\

4
(0.28)

Iterations of the First LooP
(Time per Iteration, sec)

1000
(0.029\

1000

rc.026\
1000

(0.030)
9

(0.032)

The results show that:

l. Total execution time: The GP method outperforms the other three methods' The DG' [IB1'

and HB2 algorithms are ranked the second, third and fourth respectively' but about the same

order of magnitude. The DG method embeds ttre FW metlrod during its solution procedure'

Since FW method is known to be slow at the neighborhood ofthe optimal solutioq thaeforg

a longer exeqrtion time resrlts. The HB metho4 either version I or version 2, requires a

L11p:utution for tly- nqv travel time functions at each third loop iteratiorL which inevitably

involves lots ofKxr( matrix operations. For the HBl, more arithmetic operations are needed

for computing the value of the contraction operator. For the HB2, the contraction operator is

set as a constant by takirg on" of0.3, 0.5, 0.i, and I values to save the computational time for

caloilating eigenvalues of the matrices. However, the constant contraction operator may

deviate from the ddrrrl value largely and hence oftet the benefits of fewer uithmetic

operations' 
.-r. .fl.^ 

-ad mnnnmin rrq ' atfiibuted to the DG
2. Memory requirement: The most economic use of computer memory $

method. Nevertheless, its magnitude is about the same order as for the GP and HB2 m*hods'

The rnost ,..ory-ain-aini method is attributed to the HBI in which computations for the

values of the new ravel time functions and the contraction operator involve many KxK matrix

operations. The lower the value ofK, the less computational effort is needed in calctrlating the

conesponding eigenvalues.

3. Qualrty of solution: Ofthe four methods the GP restlts in the most acslrate solutioq and the

method ofHB2, DG, and HBI are ranked as ttre second, third, and fourttr, respectively'

6. CONCLUDING REMARKS

In this paper, the two versions of the HB method were proposed to solve the DUO route

"t "ir" i,i"Uf!m. Though the HB method had performed better for the static user-optimal

route choice problem, unfortunately, this result cannot readily apply to its dynamic

tou*".p"a. Ntne of the three performance measures, i.e., total execution time, memory

,.qri*.|r,, and quality of solution.is preferable to the DG and GP methods. The slow

convergence of the tIB method may be aitributed to the improper settings for the contraction

oDeraror o .l0,4) and matrix G (an approximation of Jacobian matrix of the travel time

I v)
function), with which an intensive computation effort is needed. Higher memory requirement

is mainly due to the matrix operations f<rr calculating the maximum and minimum eigenvalues'
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Lower degree of precision for the final solution is common to any solution procedure that
embeds the FW method. Before a conclusion assertion can be made about the computational
efficiency of the HB method, the following issues need to be further explored:

l. How to determine the optimal settings for the contnction operator p and matrix G
considaing their combined etrect in the second term of tbe rcw favel time function

i"(ri)= ",(ui'')+lc(ul - ul-').

2. How to compute the eigenvalues ofa large matrix efficiently? Is there any approach other than

that proposed in this snrdy?

Moreover, the computational requirements of different types of travel time functions (Harker
and Pang, 1990) need to be compared for real size transportation networks.
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p
r
s

u
u,(r)

Symbols used in this paper are summarized as follows:

a '.link designation

".(t\ 
: travel time for link a during time interval 

'
"; 

(k) : travel time for route p between O-D pair rs during time interval /r

G : symmetric, positve definite matrix

h; (k) 
' 
j.punur. flow rate on route p from origin r toward destination s during time

interval t
j : node designation

k .. time interval designation which usually denotes the departure time interval for a

route
K : total number of time intervals

Huey-Kuo CHEN and Shu-Yurn HSTAO

route designation
origin designation
destination designation

vector oflink inflow rates

inflow rate into link a during time interval /

"irr(t) : part of inflow rate for link a during time interval , that is departing origin r over

route p toward destination s during time interval 't
,"(t\ : exit flow rate from link a during time interval I

,,(r) : number of vehicles on link o atthe beginning of time interval t

a:o(t) : l, if inflow rate on link a during time interval I departs from origin r over routep

toward destination s during time interval I otherwise, 0

a : move size

,,(t) : actual travel time for link a during time interval /

,^ (k) : minimal route travel time between O-D pair rs during time interval /r

O : feasible region

p : contraction operator
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