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Abstract:The dynamic user-optimal route choice problem has been successfully solved by
both link-based and path-based algorithms. The former algorithm embeds the Frank-Wolfe
algorithm during the solution procedure whereas the latter contains a path-based algorithm
such as Gradient Projection in its solution process. The Frank-Wolfe (FW) algorithm is
economic in the use of computer memory but converges very slow at the neighborhood of the
optimal solution. The Gradient Projection (GP) method, on the other hand, requires more
computer memory but converges faster. For a comparison of computational efficiency
between the FW method and GP, see Chen and Chang (1998).

In this paper, a projection method which was originally thought of as a path-based algorithm
is revisited. With a hope of economic use of computer memory, the mapping concept of
projection method is therefore realized by the (link-based) FW method instead, hereafter
referred to as the Hybrid method. Two versions of the Hybrid method are described and
demonstrated with numerical examples. The results show that the dynamic equilibrium
conditions for dynamic user-optimal route choice can be satisfied, however, the expected
benefits of using less computer memory are not readily obtained. To fully exploit the
advantages of the Hybrid method, determination of the parameter settings that associated
with the so-call new travel time function such as the contraction operator needs more
research.

1. INTRODUCTION

The dynamic user-optimal (DUO) route choice problem can be regarded as a generalization of
its static counterpart by incorporating flow propagation constraints into the model. The DUO
route choice problem has been successfully formulated as a discrete time model using the
variational inequality (VI) approach and solved by both the link based and path based
algorithms (Chen et al., 1998). The former algorithm such as diagonalization method embeds
the Frank-Wolfe (FW) algorithm during the solution procedure whereas the latter contains a
path-based algorithm such as the gradient projection (GP) method. The FW algorithm is
economic in the use of computer memory but converges very slow at the neighborhood of the
optimal solution. The GP method, on the other hand, requires more computer memory but
converges faster.

A Projection method which was originally thought of as path-based algorithm (Nagurney,
1993) is revisited. With a hope of economic use of computer memory, the mapping concept of
projection method is therefore realized by the (link-based) FW method instead, hereafter

Journal of the Eastern Asia Society for Transportation Studies, Vol.3, No.6, September, 1999



296
Huey-Kuo CHEN and Shu-Yurn HSIAO

referred to as the Hybrid method (HB). Two version of the Hybrid method are proposed and
compare with the current two methods for the DUO route choice problem.

In the following, the DUO route choice problem is first described and the corresponding
equilibrium conditions are elaborated in Section 2. Two versions of the HB method are
presented in Section 3 and demonstrate with a numerical example in Section 4. Intensive
comparisons of the four solution algorithms are made in Section 5. Finally, concluding
remarks and suggestions are given in Section 6.

2. EQUILIBRIUM CONDITIONS AND MODEL FORMULATION
2.1 DYNAMIC USER-OPTIMAL CONDITIONS

Assuming O-D demands are fixed and time-dependent, the DUO route choice conditions state
for each O-D pair that the actual route travel times experienced by travelers departing during
the same interval are equal and minimal. In contrast, the actual route travel time of any unused
route for each O-D pair is greater than or equal to the actual used route travel times. In other
words, at equilibrium, if the flow departing from origin » during interval k over route p toward
destination s is positive, i.e., /" (k) >0, then the corresponding actual route travel time is

minimal. On the contrary, if no flow occurs on route p, ie., A, (k)=0, then the

corresponding actual route travel time is at least as great as the minimal actual route travel
time. These equilibrium conditions can be mathematically expressed as follows:

o =" (k) ifh;" (k) >0
c ("){ (b i o Vrspk M
where
i (k) ZZC (0)om. (1) Vrs.pk ?)
a"(k)= mlkn{cp (k)} vr,s 3)

2.2 VARIATIONAL INEQUALITY FORMULATION

The DUO route choice problem is equivalent to finding a solution u* € Q such that the
following VIP holds.

ZZc (fu()-u:()]20 vue Q* @)

where Q* is a subset of Q with &, (f) being realized at equilibrium, ie.,

(00

(=07 (t)) Yr,s,a, p.k,t . The symbol Q denotes the feasible region that is delineated

below by flow conservation, flow propagation, nonnegativity, and definitional constraints.

Flow conservation constraint:

Zh;‘(k) = (7"(k) vr,s, k 5)
P
Flow propagation constraints:
up, (1)=hy (K)o (1) Vr.s.a,pk.t (6)
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Y. 6m(t)=1 Vrspacpk ™
Fa()= {08} vrsaphs ®
Nonnegativity constraint:

hP(k)=0 Vrspk o)
Definitional constraints:

w()=ZETHE0) var (10

rs p k
c;:(k) = Zan(t)J‘:;k(t) Yr,s, pk a1

3. SOLUTION ALGORITHMS
3.1 THE GENERAL ITERATIVE SCHEME

The iterative scheme seeks to determine u* € Q < R”, such that
c(u*)r(u—u*)zo Yu eQ (12)
where ¢ is a given continuous function from Q to R" and Q is a given closed, convex set.

The feasible region Q is also assumed to be compact and the function c(u) continuously

differentiable.
Assume that there exists a smooth function

Flu,u™): QxQ R” (13)
with the following properties:
() F(uu)=c(u) YueQ
(ii) for every fixed u,u” € Q, the nxn matrix V F (u,u’") is symmetric and

positive definite.

Any function F (u, u” ) with the above properties generates the following (Dafermos, 1983).

The General Iterative Algorithm
Step 0: Initialization
Start withan u’ € Q. Set m=1.
Step 1: Construction and Computation
Compute u™"' by solving the variational inequality problem (VIP):
F(u"'”,u"'Xu—u"’”)ZO YueQ (14)
Step 2: Convergence Verification
If |[u™' —u” [< &, for some £>0, a prespecified tolerance, then stop; otherwise, set
m=m+1and go to Step 1.

Since V F' (u, u’") is assumed to be symmetric and positive definite, the line integral f F (u, u” )dx
defines a function z(u, u” ) ‘Qx Q> R suchthat, for fixed u” € Q, z(O, u"') is strictly convex and
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F(u,p)=V.z(u.p) (15)
Hence, VIP (12) is equivalent to the strictly convex mathematical programming problem
migzu,u”’) (16)

for which a unique solution u™"' exists. The solution to expression (16) can be computed
using any appropriate algorithm. If there is, however, a special-purpose algorithm that takes
advantage of the problem's structure, then such an algorithm is usually preferable from an
efficiency point of view. Of course, inequality (14) should be constructed in such a manner so
that, at each iteration m, this subproblem is easy to solve.

Note that if the sequence {u’"} is convergent, i.e., u” — u*, as m — o, then because of the
continuity of F' (u, u” ) inequality (14) yields

c(u*)r(u—u*):F(u*,u*)(u—u*)ZO YueQ a17)
and, consequently, u* is a solution to VIP (12). A condition on F (u,u"'), which guarantees
that the sequence {u'"} is convergent is found in Nagurney (1993).

Note that function F (u,u’”) approximates c(u) at point u” during the iterative process. In

the case of nonlinear approximation, the following equation results (and hence the
diagonalization method):

F(u,u'"):(---,F,(u,u”’).---)T:R"—)R" (18)
where

F,(u,u’"): c,(u,’",---,u,"_’, U, ,u,’f,,---,u;”) Vi (19)
In the case of linear approximation, the following equation results (and hence the projection
method):

1
F(u,u’”):c(u’")+—G(u—u'") (20)
P
where contraction operator p > 0, matrix G is fixed, symmetric and positive definite.

Other approximations for c(u) at point u” are possible, such as Newton method, quasi
Newton method, symmetric Newton method, linear Jacobi method, the interested reader may
refer to Harker and Pang (1990) for details.

3.2 THE PROJECTION METHOD

The optimal solution for a VIP is at the fixed point defined as u*=AM/, (u *) in which
M;:Q—Q designates a G norm continuous mapping function. If the current solution
u” € Q is not optimal, the contractive mapping of M, (0) on Q generates a better solution,
ie, u™' = MG(u’"). The resulting sequence {u’"} is Cauchy and converges to the unique
fixed point characterized by an optimal solution, according to Banach fixed point theorem
(Smith, 1979).

It may be convenient to interpret the mapping function M|, (-) as two consecutive stages. In
the first stage, the current solution u™ € Q is mapped into the Euclidean n-dimensional space
R" at u™ - pG"c(u"’) and then, in the second stage, project back into the feasible region
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through the G norm operation P ; (u"' - pG“c(u'” », resulting in a better solution u™" € Q.
This procedure may be expressed as follows:

= MG(u”'):PQVG(u"' —pG"c(u'")) 1)
where p is the contraction operator and £, (0) is the projection operator defined by the

minimum distance between the current and the improved feasible solution through the G norm
operation. That is

ug}ligo u™! —(u"’ - pG"c(u”')) g (22)
By definition [x|, = (xTGx)IE , we have:
min l(u"'*')’Gu"'+l +(pc(u"')—Gu"‘)’u"'+1 (23)

W™ 2

Since matrix G is symmetric and positive definite, then by Green theorem, the optimization
problem (23) is identical to the following VIP:

(c(um)%c(w )] fa-u™)>0 o9

In fact, VIP (24) is essentially equivalent to VIP (14) with new travel time function defined by
equation (20). The derivation can be derived as follows:

(c(“m)+%G(u"”' - u"')jr (w-um)

= (pc(u”‘)+ G(u"”I — u’"))T (u = u”‘”) (25)
= (Gu™" +(pelo™)- Gu™)) (u-u"")
= E(u”’*' Xu —u"’*')z 0

where
)= %Gu "1y 26)
hy = c(u’")—%Gu”’ @7)

The projection method may be better understood by a graphical illustration shown in Figure 2.

u™-pGle(u’)

u?-0 G'e(u?) l

u'-pGle(u')
s

Figure 1: Solution Procedure of Projection Method

Journal of the Eastern Asia Society for Transportation Studies, Vol.3, No.6, September, 1999



300
Huey-Kuo CHEN and Shu-Yurn HSIAO

We start from an initial solution u' € Q from which the point u' — pG"c(u‘)e R” in the

Euclidean space is mapped. This point then projects back to the feasible region through the G
norm operation, resulting in u” € Q. Similarly, the current solution u’ is mapped into the

Euclidean space at u’ — pG"'c(uz)e R" from which a projection onto the feasible region is
performed through G norm operation, resulting in u* € Q. This process continues until the

optimal solution u* is obtained.

3.3 HYBRID METHOD

The Hybrid method (HB) basically adopts the mapping concept of the Projection method but
accommodate the link-based FW method, in contrast with a path-based method as it originally
attempted, for the network equilibrium subproblem of the DUO rout choice problem. The
proposed HB method is expected to be advantageous of using less memory at the price of
longer execution time. The solution procedure of the HB method may be described as follows:

Hybrid Method
Step 0: Initialization.

Step 0.1: Let m=0. Set 73() = NINT|c,, (1)} Va,1.
Step 0.2: Let »=1. Find an initial feasible solution {u:, (t)} Compute the associated
link travel times {c,‘, (t)} ‘

Step 1: First Loop Operation.
Let m=m+1. Update the estimated actual link travel times by

(1) = NINT[(1- 7)) + s ()] Vat (28)
where 0 <y <1. Construct the corresponding feasible time-space network based on the
estimated actual link travel times.

Step 2: Second Loop Operation.
Step 2.1: Let n=1. Compute and reset the initial feasible solution {u"(t)}, based on

a

the time-space network constructed by the estimated actual link travel times
{‘r:' (t)} .

Step 2.2: Fix the inflows for each physical link other than on the subject time-space
link at the current level, yielding the following optimization problem:

min z(u)= ZZJ ( ") ul(2) -l (1 - 1), a))da) (29)

or,

min ("’“)TG "’*'+(pc( ) Gu"’)ju’"*l

e )

T Tk, +rE[ 0Tt 0.0

(30)

Flow conservation constraint:

Journal of the Eastern Asia Society for Transportation Studies, Vol.3, No.6, September, 1999



where

Step 3:

301
Hybrid Algorithm for Dynamic User-Optimal Route Choice

Y hy(k)=q"(k) Vr.sk 31)
P

Nonnegativity constraint:

h;’(k) >0 Vr,s,pk (32)

Definitional Constraints:

ul (6) =y (k)o,5(1)  Vr.s.a.p.kt 33)

6_“;‘.’(([) = {0’1} vr’s’a’p7k’t (34)

u,() = XX X (K)o (0)  Vat (35)
s p k

2 (k)= e (t)05(r) Vr.spk (36)
n 1 ”

h:(t): Ca (t)—;Zg,,bub (t) Va,t (37)

b

where 0 < p < 2v/u . (Lis any lower bound over u of the minimum eigenvalue of the

symmetric part of the Jocobian l:?i' and v is any upper bound over  of the maximum
u

T
eigenvalue of the positive definite symmetric matrix [%:l G’ [%} . &, Is the element
positioned in the a" row and 5" column of matrix G.
2=~ Y w0+ 1) Var 68)
P b

Third Loop Operation.
Solve for the solution, {u:”(t)}, in optimization problem (30)~(36) by the FW

n+l

method. Compute the resulting link travel times {ca (t)} .

Step 3.1: Let u'(f)=u}(t).Va,t, and set /=1. Compute the new link travel times
o}

Step 3.2: Search for the shortest path for each time-dependent O-D pair based on the
new link travel times {5 - (t)} and perform all-or-nothing (AON) assignment,

resulting auxiliary flow pattern {pf, (t)} The search direction becomes:
d =p'-u (39)
Step 3.3: Determine the step size a” using the bisection method.
. - uy (t)+aldy n 0 -
min z(a ) = ; Zr: jo c, (ua (), u2(2),--ul (e 1), w)a’w (40)
or,

(f."i{‘, %(um)T Gu™ + (pc(ul) _ Gu')r u!
(41)

Ars (,)(; O, |+ ST O 10 T a0
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Step 3.4: Update the link inflows and calculate the corresponding link travel times
{c:*' (t)} :

wl (1) = ul () + X (pL() - w(f))  Vat (42)

Step 3.5: Covergence check for the third loop operations.

1+1 it
0 SO - @vas
ua

e ()= ¢, (1), Va,t, continue; otherwise. let /=/+1, go to Step 3.2.
Step 4: Convergence Check for the Second Loop Operation.

n+l L
If u)"' (f) ~ u (), Va,z, w()-u() <¢&,,Va,t go to Step 5; otherwise, set r=n+1,

u;ﬁ»l (t)
goto Step 2.2.
Step 5: Convergence Check for the First Loop Operation.
If 77'(f) = NINT] [c;'+1 (t)], Va,t stop; the current solution is optimal. Otherwise, set 7=n+1,
and go to Step 1.
u*-0Gle(u”)

u?’-p G 'e(u?)

u'-0G'lc(u')

Figure 2: Solution Procedure of Hybrid Method

The NK X NK symmetric positive definite matrix G in equation (30) (and throughout the paper) is the

Jacobian matrix of the travel time function. For simplicity, it is set as a multiple of an unity matrix, i.e.,

G=aX[I], a>0. Symbol X is the maximum number of time intervals by which all the departures must

have reached at their destinations. NV is the total number of physical links. The contraction operator p

in equation (30) (and throughout the paper) must be set in the range of [0, 2—”} so as to optimally
|4

converge (Defamos, 1980). Note that g is any lower bound over # of the minimum eigenvalue of the

symmetric part of the NK X NK Jocobian [%:l and v is any upper bound over # of the maximum

8
eigenvalue of the NK X NK positive definite symmetric mamx[%} G‘[%] Except for the

T
respective diagonal elements. {%} G {Z" } and [ZI" } all the off-diagonal elements are zero-

a a a
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valued. To reduce computation effort, the two matrices with dimensions NK X NK matrix are first
decomposed into N smaller matrices with dimensions K % K matrix and then calculate eigenvalues

independently. We first chose p = # for the first version of HB (hence named HB1) to guarantee
v

convergence, though not necessarily converging fast. An alternative approach, hereafter referred to as

HB2, is simply set the contraction operator as a constant, for example, p =0.5.

4. NUMERICAL EXAMPLE

A simple network shown in Figure 3 is used for testing. This test network contains of 6 links
and 5 nodes, in which nodes 1 and 3 are the origins, node 5 is the destinations, and nodes 2 and
4 are intermediate nodes.

Figure 3: Test Network 1

The assumed time-dependent origin-destination (O-D) demands are shown in Table 1.

Table 1: time-dependent origin-destination (O-D) demands for Test Network 1

O-D Departure Interval

pair k=1 k=2 k=3 k=4
1-5 15 5) 0 0
3-5 0 0 10 20

The adopted dynamic travel time function is arbitrarily constructed as follows.
¢,(1)=1+001(u, (1)) +001(x, (1)) Va1 43)
where u,(¢) denotes inflows on link a during interval #, and x, (t) indicates the number of

vehicles on link a during interval 7.

The convergence criteria for the three loops are summarized in Table 2. In the first loop, the
stopping criterion requires that the actual link travel times must be equal to the corresponding
discretized link travel times. If the number of iterations exceeds 30, the algorithmic procedure
is terminated and no convergent solution is available. In the second loop, the stopping criteria
requires for each time-space link that the inflow difference between two consecutive iteration
must be less than a tolerance of 0.00003. Otherwise, the solution obtained at iteration 1300 is
deemed as optimal. In the third loop, the stopping criteria requires for each time-space link
that the inflow difference between two consecutive iteration must be less than a tolerance of
0.003. If the optimal solution cannot be obtained within 100 iterations, the last solution is
taken for the subsequent use.
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Table 2: Convergence Criteria for the Three Loops

First Loop Second Loop Third Loop
Convergence ()= ul' (()-u’(t) ul (t)-ul(r)
Criterion NINT[c, ()] u; (1) u, (0)
<0.00003 <0.003
Maximum Number of 30 1300 100
Iterations

attributed to round-off errors.

A computer program coded with 7urbo ct++ 3.0, compiled with small mode, was
executed on Pentium-100 with 32M RAM. The route travel times for the test network 1 by the
four algorithms are summarized in Tables 3~6. The equal and minimum route travel times
imply that the dynamic equilibrium conditions are completely satisfied. Slight differences are

Table 3: Route Travel Times for Test Network 1 by Diagonalization Method

Route Departure Interval

k=1 k=2 k=3 k=4

1—-2—->3—->4—>5| 58632 8.0928 NA NA

1->3—>4—5 5.8631 8.0928 NA NA

1->2—>3—-5 5.8635 8.0946 NA NA

1—-3—5 5.8634 8.0946 NA NA
3—4—5 NA NA 3.5882 5.7320
3—5 NA NA 3.5885 5.7338

Table 4: Route Travel Times for Test Network 1 by Hybrid Method (HB1)

Route Departure Interval

k=1 k=2 k=3 k=4

1->2—-3—->4—->5| 58628 8.0923 NA NA

1>3—->4->5 5.8624 8.0921 NA NA

1>2—>3—5 5.8642 8.0951 NA NA

1—-3—5 5.8638 8.095 NA NA
3—>4—5 NA NA 3.5876 5.7314
3-S5 NA NA 3.5890 5.7343
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Table 5: Route Travel Times for Test Network 1 by Hybrid Method (HB2)

Route Departure Interval

k=1 k=2 k=3 k=4

1—>2—>3—>4—>5| 5.8646 8.0900 NA NA

1—>3—>4—5 5.8641 8.0988 NA NA

1—-2-—>3->5 5.8626 8.0875 NA NA

1—>3—5 58621 | 8.0963 NA NA
3—>4->5 NA NA 3.5894 5.7344
35 NA NA 3.5874 5.7319

Table 6: Route Travel Times for Test Network 1 by Gradient Projection Method

Route Departure Interval

k=1 k=2 k=3 k=4

1->2—>3—>4—>5| 5.8634 8.0938 NA NA
1—>3—>4—5 5.8634 8.0938 NA NA
1—-2—->3—>5 5.8634 8.0938 NA NA
1-3—5 5.8634 8.0938 NA NA
3—>4-5 NA NA 3.5884 5.7330
3—5 NA NA 3.5884 5.7330

5. COMPUTATIONAL EFFICIENCY

To compare computational efficiency among the four algorithms ,four more test networks, as
plotted in Figure 4~7, were used. The assumed corresponding time-dependent O-D demands
are tabulated in Table 7. The other parameters settings are identical to those given in section
4. The used performance measures are threefold: total execution time, computer memory
requirement, and quality of solution.

The total execution time is recorded by accumulating the CPU times for all modules, but the I/O times
are not included. The computer memory requirement is calculated by adding up the memory usage for
the main module and the subroutine that consumed the computer memory units most. The quality of

solution is measured by the maximum difference, ¢_,, , between the largest and the smallest used route

travel times for all time-dependent O-D pairs. In general, the larger the value of &_,, , the better quality
of the solution is.
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Figure 5: Test Network 3
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Table 7: Time-Dependent O-D Demands for Test Networks 2~4

Test O-D Pair Departure Interval _

Network k=1 k=2 k=3 k=4
Network 2| 1—6 20.0 NA 15.0 NA
26 NA 20.0 NA 15.0

Network 3| 1—6 25.0 NA NA NA
26 NA 15.0 NA NA

Network 4| 1—8 15.0 NA 20.0 NA
48 NA NA NA 10.0

Network 5| 1—12 10.0 NA NA NA
2= NA NA 15.0 NA

The computational efficiency of the four algorithms is compared with the five test networks in
terms of three performance measures, which are summarized in Table 8.
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Table 8: Computational Efficiency among the Four Methods

Test Measure Algorithm
Network DG HBI1 HB2 GP
Total Execution Time (sec)| 136.98 | 140.33 | 147.42| 4.34
Network 1{Maximum Difference of 0.0018 | 0.0029 | 0.0025 0
Used Route Travel Times

Memory Requirement 11120 | 29858 | 13472 | 14120
(byte)

Number of Time Intervals 20 20 20 20
Contraction Operator - Varied | 0.7 -
Iterations of the First Loop| 7 7 7 7

(Time per Iteration, sec) |(19.57)|(20.05)|(21.06)| (0.62)
Iterations of the First Loop| 1300 | 1300 | 1300 42
(Time per Iteration, sec) [(0.015)(0.015)](0.016)](0.015)
Total Execution Time (sec)| 334.73 | 415.72|350.33 | 1.15
Network 2|Maximum Difference of 0.0013 | 0.0097 | 0.0029 | 0.0001
Used Route Travel Times

Memory Requirement 13760 | 36258 | 16704 | 17044
(byte)

Number of Time Intervals 22 22 22 22
Contraction Operator - Varied | 0.3 -
Iterations of the First Loop| 13 15 13 13

(Time per Iteration, sec) | (25.75)[(27.71)[(26.95)| (0.08)
Iterations of the First Loop| 1300 | 1300 | 1300 5
(Time per Iteration, sec) |(0.020){(0.021)|(0.021)|(0.017)
Total Execution Time (sec)| 67.14 | 69.56 | 72.53 | 0.16
Network 3|Maximum Difference of 0.0209 | 0.001 | 0.001 | 0.0001
Used Route Travel Times

Memory Requirement 8120 | 13974 | 9880 | 9676
(byte)

Number of Time Intervals 10 10 10 10
Contraction Operator - Varied 1 -
Iterations of the First Loop| 6 6 6 6

(Time per Iteration, sec) [{11.19)|(11.59)](12.09)] (0.027)
Iterations of the First Loop| 1300 | 1300 | 1300 3
(Time per Iteration, sec) [(0.009)|(0.009)]|(0.009)|(0.009)
Total Execution Time (sec)| 197.64 | 198.30 | 206.65 | 31.43
Network 4|Maximum Difference of 0.0011| 0.002 | 0.0009 | 0.0001
Used Route Travel Times

Memory Requirement 15000 | 27004 | 18328 | 17264
(byte)

Number of Time Intervals 15 15 15 15
Contraction Operator - Varied| 0.3 -
Iterations of the First Loop| 7 7 7 7

(Time per Iteration, sec)  |(28.23)](28.33)|(29.52)| (4.49)
Iterations of the First Loop| 1300 | 1300 | 1300 42
(Time per Iteration, sec) [(0.022)](0.022)|(0.023)[(0.011)
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Total Execution Time (sec)| 115.99 | 105.00 118.68| 1.10
Network 5|Maximum Difference of 0.0006 | 0.002 | 0.0002 | 0.0001
Used Route Travel Times

Memory Requirement 21296 | 31566 | 26288 | 23116
(byte)

Number of Time Intervals 12 12 12 12
Contraction Operator - Varied | 1.0 -
Iterations of the First Loop| 4 4 4 4

(Time per Iteration, sec) (29.00) [ (26.25) | (29.67) | (0.28
Tterations of the First Loop| 1000 | 1000 | 1000 9
(Time per Iteration, sec) (0.029) [ (0.026) | (0.030) [ (0.032

The results show that:

1. Total execution time: The GP method outperforms the other three methods. The DG, HBI,
and HB2 algorithms are ranked the second, third and fourth respectively, but about the same
order of magnitude. The DG method embeds the FW method during its solution procedure.
Since FW method is known to be slow at the neighborhood of the optimal solution, therefore,
a longer execution time results. The HB method, either version 1 or version 2, requires a
computation for the new travel time functions at each third loop iteration, which inevitably
involves lots of KxK matrix operations. For the HB1, more arithmetic operations are needed
for computing the value of the contraction operator. For the HB2, the contraction operator is
set as a constant by taking one of 0.3, 0.5, 0.7, and 1 values to save the computational time for
calculating eigenvalues of the matrices. However, the constant contraction operator may
deviate from the optimal value largely and hence offset the benefits of fewer arithmetic
operations.

2. Memory requirement: The most economic use of computer memory is attributed to the DG
method. Nevertheless, its magnitude is about the same order as for the GP and HB2 methods.
The most memory-demanding method is attributed to the HB1 in which computations for the
values of the new travel time functions and the contraction operator involve many KxK matrix
operations. The lower the value of K, the less computational effort is needed in calculating the
corresponding eigenvalues.

3. Quality of solution: Of the four methods the GP results in the most accurate solution, and the
method of HB2, DG, and HB1 are ranked as the second, third, and fourth, respectively.

6. CONCLUDING REMARKS

In this paper, the two versions of the HB method were proposed to solve the DUO route
choice problem. Though the HB method had performed better for the static user-optimal
route choice problem, unfortunately, this result cannot readily apply to its dynamic
counterpart. None of the three performance measures, i.e., total execution time, memory
requirement, and quality of solution is preferable to the DG and GP methods. The slow
convergence of the HB method may be attributed to the improper settings for the contraction

2 . . . ; .
operator p € |:O, —’u} and matrix G (an approximation of Jacobian matrix of the travel time
v

function), with which an intensive computation effort is needed. Higher memory requirement
is mainly due to the matrix operations for calculating the maximum and minimum eigenvalues.
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Lower degree of precision for the final solution is common to any solution procedure that
embeds the FW method. Before a conclusion assertion can be made about the computational
efficiency of the HB method, the following issues need to be further explored:

1. How to determine the optimal settings for the contraction operator p and matrix G,
considering their combined effect in the second term of the new travel time function

za(u;)zca(uyl)%c(u:_u;-l).

2. How to compute the eigenvalues of a large matrix efficiently? Is there any approach other than
that proposed in this study?

Moreover, the computational requirements of different types of travel time functions (Harker
and Pang, 1990) need to be compared for real size transportation networks.
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APPENDIX

Symbols used in this paper are summarized as follows:

c.(1)
c; (k)
G
(k)

=~

V)\'EN

w )

(1)

v, (t)
x, (1)

87 (1)

7.(0)
7[" ( k)
Q

0

- link designation
- travel time for link a during time interval ¢

- travel time for route p between O-D pair s during time interval £

- symmetric, positve definite matrix

- departure flow rate on route p from origin 7 toward destination s during time
interval &

: node designation

- time interval designation which usually denotes the departure time interval for a
route

- total number of time intervals

: route designation

- origin designation

- destination designation

- vector of link inflow rates

- inflow rate into link a during time interval ¢

 part of inflow rate for link a during time interval 7 that is departing origin 7 over

route p toward destination s during time interval k
- exit flow rate from link a during time interval ¢

- number of vehicles on link a at the beginning of time interval 7
-1, if inflow rate on link @ during time interval 7 departs from origin 7 over route p

toward destination s during time interval ; otherwise, 0
: move size

- actual travel time for link a during time interval 7
- minimal route travel time between O-D pair 7s during time interval k

: feasible region
: contraction operator
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