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ABSTRACT

Two stochastic global optimization methods, simulated annealing_ (SA) and a gerctic
algorithm (GA), ire appEd to 6e combining traffic signal control and assignment Foblem
seiting globally optiririrt eigpal s€ttings and an equilibrium flow-pattern. The two mc6ods
am at 6vercoining the rionconvexlty of the ploblem. A local search- algorithm. is
implemented. An-iterative appoach to perform assignment and contnol oplinization
saiuentially finds munrally consfuem poimi. Lint pafcmare is deccribed bY $e lebstel
cufr,e. OD-marix is assurieC tixeAani green time rirtbe are docision variable.s. For fre otal
time minimization policy constrained by uscr equjlibrium, tlrc foul appr-oaches arc
implemented. ttumeticat drmparison is perforrcd on different size ret*otts u different OD
tevbb. Tte demasd bvel and netwoft size affect the relative perfomance of the approaches.

Whib local and iterative ccarphes conyerge fast, SA ard GA reduce tlrc risk of stalling in low
quality solutions.

r. INTTODUCTION

From tbc uansporation plrnning persp€ctiye, traffic assignment modelsare used to forecast
networt flos-oaterns, commonly assuming ffrat crpacitfox decided by nerwort supply
param€te$ srrcfr as eigrul senings are fired during a slrort time period with a.given particular
brigin-destination mitrix (OD)-. On the ottrerf,an( noq jhe transponation engineering
peripective, networt flow pauerns are cornmonly assumed fixed during a short time period
ind control parameteni arb optimizcd in order to improve some performance index for
prevailing flbw patterns. Ttrb input flow patterns must either be obscrved or forecast
through raffic assignment

The two processes, traflic assignmont and signal optiqiza$o& EIe usually dealt with
separately, however, the processes muhrally influence each other. This mutual interaction
cair Ue exlticitty consider6d by effective integration o_f tltese-two processes, ptoducin_g $q.s9
catted cofofined control and 

-assignment 
prorblem. \f,lrcn drivers follow Wardrop (1952)'s

first prirrciple, i.e., user equilibrium (UE) flow, the problem is called rhe equilibrium
ne$drk trathc signal setting pmblem, which is normally notrconvet-and.obtaining explicit
gradient infonnati6n for any giadiem based algorifim application is dlfficult'

Changing signal settings may stimulate OriversJ.o_adjust route choices; however, changing
flow ha! s,igg"rt rc-sening-Sgnats. Allsop (1974) first noted the necessity of combing
signal cilcui-a[ions and ra-ffic-assignment by_pointing oul !ha.t rctwork traffic-ro]tilg
aciording ro Wardrop's frst principle is dependent on sigE! timings mdshould idcally. be
rcgarded=simulUneously wilh signal timing. Gartner Onfl- suppgry.d the same poi{tt.
Alhop suggestcd ur iteiuive procedure to solve such a problem, which decomposed the
problim iiio trro well-recearched eubproblems as in Figure t. The assigrment uses link
irerfonnarce frmaions derived by dre si-gral optimization zubprobbm. Signd optimization-is
'perfonneO with flow pattcrns provided through the assignment subproblem. In Qe
ii63ature, this is called the lterative Optimizetion and Assignment Procodure, or simply
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Iterative Approach. The procedure continues until-it conve-rges to a. solution, which is called
mutually coisistent becaulse the flow is at UE and the signal sening is optimal.

Allsop's conceptual algorithm was extended by Allsop andCharlesworth (1977) on a six-
intersi:ction neiwork. -Quite distinct mutually consistent solutions, i.e., different flow and
green time patterns, weri found but indicated similar total network travel times. Tan et al.
(tgZq) expiessed UE flow patlern as a set of constraints and suggested an Augmented
Lagrairgiair Method for solutions. However the method is inappropriate for large networks
because of path enumeration.

Dickson (l9El) and Smittr (1979) noted that the above ilerative method is not egaranteed to
converge even ro a local optimum. Sheffi and Powell-(1983) suggested a local search
methodllogy and solved a-small network problem with a_simplified link performance
function. Sririth (19?9) proposed a new signal control policy P6 with a capacity maximizing
property, which is different from conventional delay mi-nimization or Webster's
iquisaniration policy (1958). Smith and Van Vuren (1ry3) anqlyre.d the-convergenc-g 1ttd
uriiqueness of Solutions by the iterative approach for a large collection of-control-p-olicies.
They showed that the lihk performance functions and the control_policies. fecl-1fe
convergence and uniqueness bf mutually consistent solutions. Van Vuren and Van Vliet
(1992) performed a comprehensive experimental study.

Cantarella et al. (1991) described the behavior of the iterative procedure graphically.
Cantarella and Sforza (1995) included an offset optimizer in the iterative procedure. Gartner
and Al-Malik (1996) introduced a simultaneous approach for both route choice behavior and

optimal signal setting by representing signal co!trol variat-les as equivalent flow variables at
two phase operating in-tersbctions. Yang and Yagar _(1995) developed a- gradient descent
algorithm to utilize *re sensitivity analysis procedure. In this paper, the following notation is
used,

CL cycle length;
1," green time ratio for intersection link or movement a;

sa saturation flow rate for intersection link or movement a;

ta travel time on link or movement a;

to free flow travel time of nonintersection link;

xa flow on link or movement a.

2. OBJECTIVES, ASSUMPTIONS AND FORMULATION

2.1 Objectives

The main objectives of this study are to compare the iterative search with the local search,

simulated anieating and a genetiC algorithm for the equilibriumnennork-rafficsignal seuing
problem at different demand levels and in different size networks regarding solulign quality
^and 

convergence pattern. Sheffi and Powell's local search was improved to be able to solve
complex signal sihemes in large networks and to adopt comprehensive link perform-ance

curvLs as wE[ as their modifiedBpR type curve. Two stochastic global searches, simulated
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annealing and a genetic atgorithm werg qdoptPd to accommodate the nonconvexity of the

proUt"rn-unO they-seek to find (near) global optimal solutions'

2.2 Assumptions

To keep the Droblem manageable, the following assumptions are made:.
^" *-. 

frJionroi poticy-for signal settings ii otal ravel time minimization:
. riuriic .ssi'griii6"G uE it"ioi-siute with fixed oD. Driver route choice rule is

minimum tire p"jU Jfi"tion io ttrat drivers follow deterministic UE. The Frank-

Woffe aforittrni (1956) is used to solve the U.E-floy problem:
. Webster's n dGrii, OrtW function is selected for intirsection delay T.qd"tT.g Tq
mti.ir" time is assuired constant. Webster's curve is incompatible with the

Frank-wolfe orgoritt ' *t en flow exceeds- capacity sincg the algorithm-co-ntuing u

series of all-oi-"nothing assignments, which niay dause-flows on some links to be

more than th;it;d;;?t ou?ng the iterations"Thus, link costs must be defined

it rorgr,*t *,r-*t,it. n6* iegiSn. The lineq adaptation to combine deterministic

quJuiing-inO Wib.t"r's curvE at some flow level where the two curves show the

same slole is chosen to resgl.ve this problem;
.Gt-il;otktffiiiifi ;t"iirteo.c'tion9ar9lvespgatep{":-i':t:-9iis-S::Jf:l
i{t&i o"rtytically into the theoretical relationslips benveen tlow and control

iu*-niit"nhii ,il! !-i-iU"gq prope.ty..esolved. .Gieen E: to the design. signal

parirmerer -i-.iii"'i"ngtr, i.'rs.'o.6d fixed. All phases are protected and phase

sequences are exogenous'

2.3 Formulation

The policy to minimize the total travel time induces the following equilibrium network traffic

signil setling problem, Pl.
pi: z=!t"(x",1,").x" (la)

subject to:

r'oin<1,<)tto
x-UE
x20 and iu20

Since there is a unique feasible equilibrium flow vector x* for any feasible

uniquely decided by )', Pl can be transformed to P2'

p2: ,=lt"(xl(i),1").xi(1.) Qa)

a

subiect to:

),.in < ),, ( fmax (2b)

x20 and ?u20 Qc)

For simplicity, x* will be denoted-by L. Tryo difficulties in solving Pl or P2 have been

iiaffifrr;6irtioneO tii,itnllg8Sj.'.rittt, due to the ProqPry nonconvexitv,.z mav have

;;y 6J.i;ffi*. ifl.;-*i-iiuoi"r,t 6ased search will find onlv a local minimum'

Soo'no, , *quires tnowiei"j" oio'o putt"m, which is not easily developed for large realistic

ilffkr. frJit"*tir" appioach hasbeen the most practical altemative strategy.

3. ALGORITHMS

3.1 Two Global Searches

3.1.1 Simulated Annealing

(1b)
(1c)
(1d)

)u, i.e., x* is
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Kirlpatrick et al. (19t3) proposed an algorithm, based on a strong analogy of the annealing
prooess, to some NP+omplete combinatorial optimization problems. This analogy is called
simulated anneding (SA). Vanderbilt and Louie (19M) extended SA to continuous
optimization problems. Energy lcvel, E, in a thermal process is a surrogate for an objective
function vdue in optimizetion. Possible configurations or states in annealing are comparable
to feasible solutions in optimization. If an annealing process properly continues with
cooling, a low encrgy configrration is realizcd, f,rhich is comparable to a desirable optimum
in optimizarion. If urcaling is fast such as querrching, ttte solid cannot reach the low energy
configuretion. Instead, it may form a locally defected meta-stable configuration, which is
comparable to a local opimum.

SA consists of two major elernents-the Metopolis algorithm (Metropolis et. al., 1953) and
cooling. Firet, for a givca control parameter (temperature), SA repeats the search by
gercnting rrcw candidete solutione atld updating the best solution until accepted solutions
propcrly re.lizc $e Gibbs distibution. Second, the control parameter is decreased and the
seerch continues with rrylating the besr configuration. Redrcing the parameter is called
cooling, wtrich plrys m inputant role in SA. The best currcnt solution may not be updated
at every step tccetrse SA accepts worr candidarcs ebchasticrlly es well as better ones. This
stochrctb aoceping uphill seps provides a chance to escape from a local optimum and
makes the best solUion eveoEally cloce to a globd optimum. For global optimization, SA
has proven to be a powerfrrl nunerical tool and is considcred an elegant example of a
physical cmcept impond to otls scicnoe fields.

Hajek (19t8) derived necessary and sufficient conditions for the asymptotic global
convergeDce of SA defined on diecrete space using the Markovian property of SA.
Vanderbilt rnd Louie (19t4) developed the first SA study to examine continuous
optimization problems. Bclisle (1992) derived a condition under which SA, defined on a
continuou domain, conrrerges in a6itnuity s[Dall neighborhoods of global optima regardless
of the cooling rrrc. Because Vandertilt and louieb algorithm restrics the search domain
during drc procedure, Belisle's convergence tteorem is not necessarily satisfied. Hence it
will find solutions close to a global optimum but not necessarily find the optimum.
However, rctaxing the rcsriction may rcquirc much more computational effort. Vanderbilt
and touie's test, on tte everage, &lrecfrEt global optima in 80% of their trials and always
found u least local optima- The dctriled mechrnisrn of Vanderbilt urd Louie's SA to solve
P2 isd*ribedrcrt

Thc crrrcnt split lornd dre random step AXo dcirb lotl rs folloss:
It+l =I'+AIo
aI! =e.u
u = (u1,u2,...,u1)

where, each uniform disribution u,

(3)

(4)

(5)

is independently and identically distributed on rhe

interval [-J5,J3] (i.e., with zero mean and unit variance), I is the number of independent

decision variables (here, the total number of phases - total number of junctions), and the
matrix Q scales u. The resulting u holds a probability density h(u) which is constant inside a

hypercube of volume (r{3)' and zero outside. Q and the covariance matrix s of A}.n are

rclated by (6):

s = Q.Qr. (6)
Q crn be obtained from s via an inverting procedure such as the Choleski decomposition. Q
and u decide Alun using (4) and A).,n decides ),n+l using (3). Therefore, the decision of s
should be compbed before starting the next search set. Vanderbilt and Louie proposed a
methodology for deciding the next s by tle frst and second moments of the walk segment,
vandwas
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,(n+l) - X, *tn) 0)
pM

The growth factor 1 is chosen >1 so that a free random walk on the (n+l)-th set would

cover, on average, ./[ times as much space in each direction as on the n-th set iterations.

The whole procedure is shown in Figure 2.

Step 0: Set m=0, n=1, and assume ,(n), [m;n) and temperature c(n)- 
Set p, I and acooling schedule.

Step 1: Inverting procedure to get Q(n) by (6)
(Inner loop begins)

Step 2: Set m=m+l and generate u(t;o)

Step 3: Calculate Art(m;n) - q(n) ' o(un)

Step 4: Calculate the new point Io* - [m-l;n) * 6/m;n)

Step 5: Solve UE with )un'*. Calculate F(xo"*,)'o'*)

And evaluate the new point by the Meropolis criterion

If the new point is accepted, 2g(m;n) - lnew

otherwise, [m;n) - [m-ln)
Siep 6: Renrm to SteP 2 until m=M
(Inner loop ends)

Calculate n(n), *(n) and s(n+l) unbss converged

Set the new c(o*l) (s(n+t1 < c(o))
Set n=n+l, m{ and return to Step I

3.1.2 Genctic elgorithm

A genetic algorithm (GA) isa stochastic algorithm bascd-on the principle of evolution and

suftval of u[ fiuesr 
'Rccently 

GA has recelved cqrsiderable attention regarding is potentid

as an ootimization techniqne ior complex problems. A basic form of GA was described by
Goldbrire (1989) and GLn and Chen (i997). GA has the following user-specified
oarameteh is shown in Table l: clossover rate, mutation rate, population size and maximum

iinerarion. orrc more parameter is the length of the encoded decision variable srings, which
depends on the required precision.

The P2 can be easily evaluated by the above GA format_ry in figurc 3. Each chromosome

ieprerents a signal sening in the rietwort and needs one UE assignment to find flow and the

snirem ravel fime. Wtrel the fiuress is calculared in Step 4, scaling is required bocause the

daret ti*e is a negative utility and inzersely proportionalto the fiure-ss. .In this pap€r, a

simple linear scalirig is utilizeti. The followirig two major advantages of GA can be pointed

out 
-regarding 

this applicarion.

. Mutation rate = 0.01

. Substring length for a gre€n split = Tbitsa

. Population size = lffi. Miximum generations = lfi)
places precision after the decimal

Journel of thc Eestern Asia Sociay tbr TtansErrtation Studies, !b1.3, No.5, September, 199)
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. GA searches the entire domain for the ergodicity of evolution operators, which
makes GA very effective at performing global searches;

. With minimal mathematical requirements, GA can handle various kinds of objective
functions and constraints defined on discrete, continuous, or mixed search
domains.

4)
?It

t.t"t ft

Step 1: Generate the initial population of splits in binary bit b(l) in random,

wnere lu(t)l is the population size Nn and b

Step 2: Decode all elements of b(o) to get I!o)

Step 3: Perform UE with decoded green splits it(,") in St"p Z
Calculate the total travel time of each flow pattern

Step 4: Calculate the fitness of each flow pattern
Step 5: Select signal settings for the next generation with the fitness

Step 6: Perform the crossover operation with p"

Step 7: Perform the mutation operation with p.
Step 8: If n=Nmax or convergence obtained, stop;

otherwise, set counter n = n+l and go to step 2
Figure 3 Genetic algorithm

3.2 Local Search

When performing a local search for P2, computing the gradient of z must be considered first.
Typical terms of the gradient of.zue given by

is the partial derivative of the equilibrium flow on a link with respect to the

green split on another. Because it is not possible to derive this term analytically, Equation 4
is very difficult to use directly. Sheffi and Powell suggested an numerical approximate

method. In (8), one more noticeable term is #. It could *t " fr severely and give

very different values depending on the )', location due to the linear adaptation of Webster's
curve. Here nro different methods can be devised, analytical and numerical.

The above approach contains both analytical and numerical terms. Thus it is also natural to
use a full version of numerical gradient estimation to avoid bothersome differentiation of
some complex delay functions as,

Y 
=z("',)'r 

+ A,"')- z("',)'t"") 
(9)

EIr- A
Sheffi and Powell suggested, although not tested in their work, a simplified gradient
approximation for a large network by assuming that the main gradient portion of stage k
comes from stage k itsef. L€e (l99S) found that the numerical local searches are most stable
among other local search variations. Thus this research chose the numerical local search as
shown in Figure 4.

= 
? {[,",,.",r.), 

]," ) + ." t^tY]*P]. .. r^l & 
rreD *r
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Std il fpCite: calculate travel time f6r given splits and perform UE assignment'
dz -,,, .

Step 2: Gradient calculation: calculate ;U O, t l
Direction determination: decide descent direction and maximum step size.

Find an optimu:n step size and update splits.
Return to Step 1 until stopping criterion is met
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3.3 lterative Procedure

The iterative optimization and assignment procedure (tOA) is a heuristic approach {tdilg
mutually consistent points instead of a local or global optimal' The-dgmain space, (x,i"),

constitutes vectors of now and splits. By fixing either one, the IOA decomposes the

problem into two subspaces,(x,)u6r) and (**,I), and solves them alternatively. (x,l'6*)

relates to the traffic assignment to iaintify flow pattern assuming control variables fixed, and

(*opl) signal optimization to optimize control variables assuming flow pattem fixed.

Smith and Van Vuren (1993) introduced the concept "pressureu for the signal optimizqtiqn.
p;ffire il defined *iri ifrut ir au pressore of sigei in an intersection are balanced, the

control obiectives ar" 
"inieuiA. 

mus', Oepending on-ttre control objectives, the real form of

#*!;"";ffil Af[i"t.-r*4" 166t syitem tiie minimization p6licv, the link pressure of

iVebster's formula is explicitly derived as follows:

_ &"(x",1.")_x"cL(l-}")* *"r" __+ (10)-*"-5f-=El-- z, p"i" -*")' 2')u2"s"

['-tJ
Notice that Equation (10) is not a stage pr-essure but a.link pressye: At- 91"gtt^'::Y^':J:
;LIA;A byfimming'tn6 pressure of the Unts which belong to that stage (i.e.' recerve the

risht-of-wivl. Sv .*ipplng-green from less pressured stages to more pressured stages'

grircn splits'aie adjusted aird moved to be balanced'

3.4 Chain Rule for complex Multiphase signal and Maintaining Feasibility

The eradient I o the rate of total travel time change with respect to the green time ratio
' dtr"

change of movement a. In signal control, however-, green time can be changed .stage by

.iigiii.tfr.itf,.n ,ou".*i Ui rore*.nt. Thus, whei the signal control is.complex, such

that one movement t r.irii gi..o Ou.ing more than one stage, a. $aEg.gradient is actually

11;q;ffi.--i), tf," ifr"in n te, tfr'e stage grailient can be calculated with (11).

d,= f I (11)

"'i 
ax"

where d, is the gradieni of stage t and S, is a set of the movements that receive green during

stage t. io sare space, the detailed proof is omitted'

Finally, when an intersection has N stages, at least one stage green time ratio must be

a;;ia;,i uy tre otter N-r-it"gtt._TheTonner and the latter are call-ed-dependent and

indeoendent ,tue", ,"tp".tiu"fi. 
-fo 

maintain the feasibility of SA and GA, indepen-dent

-ii"Irii"'ri',i;E ilii'ue aeiifeo nrsr and then the depenient stage green time will be

"ii8"r":i.o'6vi[" 
i"dip""AJristage grcentime-s. Howev&, the newlyggngrateg Bfen.$p9s

i[ il6#"6Oio fraintain-ttiffirititity. Thus, retrials are required when the feasibility

violation is detected.
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4. EXPERIMENT

4.1. Experimentrl Scheme

To compare the IOA, local and global searches, four example netrrorts in Figrne 5,6 andl
were chosen. Figure 5 contains nvo simple networks denoted by "W", and "2x1." Frgure
6 is a medium size networt denoted by ,MED", having 10 zone cenuoide and l l ignalited
intersections under multiphase operation with overlapping movcments, ()total phases, 108
intersection links and l5t total links. Figure 7 is a network located in Austin, Texas, USA,
denoted by "AST", consisting of 2l zone centroids and tl signalized intersections under
multiphase operation with overlapping movements, 83 total phases,257 intersection links
and323 lotd links.

Network congestion can affect fte relative performance of he algorithms. Fire different OD
demand levels from I to 5 are selected so duttheirnetwort wide volume prcapacity ratios
show 0. 1, 0.3, 0.5, 0.7 and 0.9, respectively. Initial con$ol seftrg is on imporoot factor of
solution quality because of the problem nonconvefity. 12 differpnt iniiial scrings are
selected. Therefore the experiment has 640 rcpetitione for erch networt rnd 2560 total
cases. When any numerical approxirnation is involved for gradientcalctlation, A is set to
0.05, which means 3 seconds when the cycle leogth is 60 secoads. If A is too smdl, Ore

derivative estimate is subject to roundoff noise; whereas if A is too large, it no longer
measures the local gradient According to the test, 3 seconds was an aeeropriaE A value.

4.2 Experlmcnt Rccullr

Means of totdtnveltimesarp sunmdredinTabb? (Eadrtrblecdlrarlrris fremcanof the
32 different initial seuings). Tho te* ralue of each rew (i.e.. acrcss 6e dgorithns) are
shadowed. The results vary acrcee the networts. The means by tb tOA ere rulatively
worse than those by the ofrer algorithme for tte YV and ?xl octwortf. fbe phenomenon,
however, becomes reverscd as fre netr,qt dze increrses. Thc IOA ouoerforms the other
searches in the AST networt, speciatly at high demand levels. Generi[y, the deviation
grows as nenyort size increasec or as demand increases. The two global searches did not
always find best solutions becarse of the finite iterations in real implemcntrtion.

This relatiye performance that the IOA is strong at high demand in a large network while
local searches are strong at high d€mand in acmall networt is illustrated in Frgure t urd can
be ascribed to the following:

When tlp ncttrort is nnelt. drcE may be very few distinct local solutiqrs, which can
bc found by lad cearchcs. Althongh the mutually consistent solution is inrinsically
suboptimal, for the small networt, it is quite similar to drc local solutions when
demand level h low, and as demand gro\f,s, the differmce grows. On the other
hand, for the largc netrvort, tlrere may be many local or quasi-[ocd solutions. Thus,
any local search can be easily trapped to wome solutions if tlre initist solution is not
in a good domain neighbothmd. Since the iterative appoach includes a signal
optimizatioo procedure, it finds a gmd solution $owing small total travel time,
which may not be muudlyconsistent until convergene, wheflrct dre initial solution
is in a good tEighbortood or noL Tben 6c Eearch drifrs to furd a muurally cmsistcnt
point. lVhen dre networt is big and &mand is high, there may bc many muunlly
consistent points so that it is likely to find one around the signal optimized point.

Two global searches require much more computational times and iteratioill0o stop thatr the
iferative and local searches as shown in Table 3. Thc local sesrch takes 3 to 5 itemrions to
converge rqd the IOA avereges ,i !o 15 iterations. Between SA end GA, SA is reletively
faster tban GA. Thc global searchcs, however, itlould bo uled for the limited crscs boculsb
of the slow convergence. Although tlre IOA rcquircs a Ut mre itcntionc tr n tte locel
search, the UE iterations involved in the optimum step size deciian of 6c locrl srdrcs are

Iournel of the Eastern Asie Saiety for Thmportelion Strdies, \b1.3, No.6, Sepeder, 1999
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not negligible as shown in Table 3. To reduce ttris local search compulational burden.many

searifr-atEorittrms utilize a streamlined method such as a predetermined.step size-or a limited
;"*fiffi mrmber of line searches. This study, however, does not include this. &r the

ottrertranO, the IOA also involves a line search for optiqal grcen swappqg decisions in the

;i;;Giimization procedure, which can be efficiently.perfolme$, Figure 9 shows the

oiiictive'vatge improvement by the numerical local searcli marginally decreases while the

iO'e rfro*s iome hump. Ttris trurnp is called a wrong way optimization, caused by no

consideration of flow ch-ange during conrol optimization.

cycle length = 60sec

lth = 0.01

It" =0.99

s = 2000vph

dist = o.5t3mile

speed= 35mph

to = 60.Oscc s= 4000vph

dist = 09t3mile

spced = 50nph

= 70.tsec

cycle lang0= f036s

Ifi = 0.01

lu =0.99
pathA-+l-+B
s= 2fl)0 vph

to = l5scc for erch

L3

+
path A-, 2 -rB
s= 4000vph

= lOsec for each linkpath C-t 2+ l -+ D

s= t000vph

= lOsec for erch littk

twor*s denoted bY "vY" ano "zxl'
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Mean of total travel time by the four searches
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Table 3 computing times, average iterations until convergence and UE assignment
repetitions of the local searcha

GAE

Zxl
MED
AST

7.5sec, 1932
2.2min, 37671
3lmin, 77240

aDigital AlphaStation ffi 5126 with Alpha EV5 processor
D(average CPU time, average iteration to converge)
c(average CPU time, average iterations to converge, average UE repetitions)
o(average CPU time, average iterations to converge)
e(average CPU time, average iterations to converge)

vergence pattern
objective value reduction between iterations for the 2xl network at ODlevel 3

5. CONCLUSION

The combined control and assignment problem is examined focusing on three different
app-roaches, stochastic B!gba1, gradient based and iterative approaches, under a planning
(off.-.line) perspective. The iterative approach was also codtid to compare the'solutioi
quality.

According to the comprehensive experimental test, when the network was small, the iterative
and local searches found good solutions simultaneously, but only at low demand levels.
Wren demand was high, the iterative approach failed to produce-good solutions. On the
other hand, when the network lva! big, as demand levbl became higher, the iterative
approach tended t9 find better solutions. Two stochastic global searches are slow but find
stable solutions when demand is low.

r.rewt

l.Ssec, 4.1
2.8sec, 8.3
5.lsec, 14.7

-.-vvYt v. r t

l.9sec, 5.1,2W
2.2*c, 3.0, 90
4.lsec, 3.0, 139

6.lsec, 492
35sec, 2044
l4min, 13952

* lofl 
-F 

numerical local

, 80

E 70
I oo

f^uou eq +o
o-30
i20
5 10to
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