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Abstract I Yen's loopless,K-shortest-path algorithm has been widely used for networks that

are comprised of negative link costs. However, it's computational time is usually lengthy,

especially for large networks. The generalized Floyd (GF) algorithm, on the other hand, is

efficient due to arithmetic operations of matrices for I shortest paths but at the high risk of
generating looped paths.

In this paper, the GF algorithm is modified to avoid generating looped paths by applying
node recurrence check and then compared with Yen's K-shortest-path algorithm by means of
numerical examples. The results show that the modified generalized Floyd algorithm (MGF)
is superior in terms of computation time, but inferior in terms of memory requirement. The

computational complexity analysis also support the experimental results.

l.INTRODUCTION

K-shortest-path algorithms are for each O-D pair to find k shortest paths by which many real

transportation network problems such as disaster rescue and/or evacuation, freight
transportation, origin-destination estimation, are applicable. In recent years, Yen's loopless
K-shortest-path algorithm was perhaps the most frequent one being applied in the area of
transportation planning. A comparison between Yen's loopless K-shortest-path algorithm
and several other algorithms has been made with respect to number of additions, number of
comparisons, and memory requirement (Yen, l97l) as shown in Table l. Yen's algorithm
outperforms in all three performance measures, however, its computational complexity
indicates that the computation time is proportional to the fourth order of the total number of
nodes in a network. For real urban networks which are usually large in the number of nodes,

this computational requirement is rather demanding and thus is not acceptable. Reducing the
computation time by lowering the magnitude of order with respect to the total number of
nodes is a thrust. A hybrid of Clarke's and Yen's methods is such an attempt (Perko, 1986).
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Source: Yen (1971)

In addition to the K-shortest-path algorithms compared by yen (1971), a lot more K-
shortest-path algorithms can be found (or readily induced) in the area of network flow
optimizations. Notable examples are double sweep, generalized Floyd, and generalized
Dantzig algorithms (Evans and Minieka, 1992) and a generalization of TabourlerJtez:y Rtt
four algorithms employ arithmetic operations of matrices to find k shortest paths, which is
generally efiicient. However. in their original forms, undesired looped paths may be
generated during the solution procedure. To retain computational efficiency pertaining tL the
arithmetic operations of matrices and in the meantime avoid generating undesired-looped
paths, a modification for the above mentioned four K-shortest-path algorithms is needed.
For the purpose of illustration, only the generalized Floyd algorithm is modified and then
makes a comparison with Yen's algorithm.
In the following, Yen's algorithm is presented in Section 2 A modified generalized Floyd
(MGF) algorithm is introduced in Section 3. Comparisons of Yen's and MGF algorithms are
made and numerical examples provided in Section 4. Finally, conclusions and suggestions
are given in Section 5.

2. Yen's Algorithm

Yen's K-shortest-path algorithm generates t shortest paths by means of selecting the
loopless shortest path from a candidate list (2. ). The paths in the candidate list (L.) are
deduced from the incumbent shortest paths that already stored in the shortest path set l, .

The algorithmic procedure iterates between adding the i-st shortest path into l, and
generating new candidates into /-., till all /r shortest paths have been found. Upon
termination, the first t shortest paths are guaranteed. The time-dependent extension of yen,s
algorithm (Chen and Feng, 1998) can be summarized as follows:

Yen's Algorithm
For each O-D pair r.r and time interval /r, do the following.

Step0: Initialization.
Let r = l. Search for a shortest path over the time-space network based on the
temporarily fixed link travel times [-; (r)] If we havs less than K and more than

Journal of the Eastern Asia Society lbr Tiansportation Studies, Vol.3, No.6, September, I 999

Table l. computational complexities of K-shortest-path algorithms

Algorithm
Approximate Number of Necessary Ratio of Other

AIgo's Operations
to Yen's Operation

Additions Comparisons Memory Address

Yen's KN1 KNO N2 +KN I

Pollack's Nr' Nr 
rJ+2 N1 +KN NT ' /K

Bock, Kantner
and Haynes' t[';'] lir1,ogril N2+KN Very large

Clarke, Krikorian
and Ransans'

Difficult to speci$

Sakarovitch Qtllprlt to speci$,
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one paths, we assign any arbitrary one of these paths to be p'i (*) and store it in

Zi'(f) (the list of r( shortest paths); the rest of these paths are stored in Z.."(f)

(the list of candidates for (rrl)st shortest paths). Otherwise, if we have only one

such path, it is pi: (f ) which to be stored in Li (tc) .

Step 1: Routes Augmentation.
Step l.l:Let rer+l.
Step 1.2: For each of i = 1,"',bnode(s), where l(l)e p: ,(k), do the following:

Step l .2.l: For each of .i = 1,2," ' ,r - l , check if the subpath consisting of the first l

nodes of p: ,(k) in sequence coincide with the suopath consisting of

the first I nodes of pi @) in sequence. If so, temporarily set c'(t)= n ,

a = (t, anode(r))e pi (r); otherwise, make no changes.

Step 1.2.2: Apply a shortest path algorithm to find the shortest path from node r(r)

to node s, allowing it to pass through those nodes that are not yet

included in the path. Note that the subpath from I to l0) is nil,"(f),

the root of p,f,,."(/c);and the subpath from i(l) to s is Sili."(r), ttre

spur of piit..@) Note R,i:).- (r)n s1;,. (r) = {,(r)}',(,) € p: (k)

Step 1.2.2'. Find pi',1.. (r) uyloining R,i:).. (fr) and ,S,ii1.. (r). rnen add pi",;" (&) to

L:(k) Note that it is necessary to store only the i(-fr+l shortest

p,iir" (t)', in Li (tc) .

Step 1.2.3: Place the time-space link costs that temporarily set to infinity by their

original values.

Step 1.3. Find from L;(tc) tne path(s) that have the minimum path travel time. If the

path(s) found plus the path(s) that already in Li @) exceed K, we are done.

Otherwise, denote this path (or an arbitrary one, if there are more than one

such paths) by p,i (/c) and move it fron Li @) to zi (r)--teaving alone the

rest ofthe paths in L;(k) Then go to Step l.l.

3. MODIFIED GENERALIZED FLOYD ALGORJTHM

The idea underlying the generalized Floyd algorithm is identical to that underlying the Floyd

algorithm (Floyd, 1962), except that addition is replace by generalized addition and

minimization is replaced by generalized minimization (Evans and Minieka, 1992). These

operations are performed not on single numbers but on sets of k distinct numbers that

represent the lengths of paths. As mentioned above, this algorithm is computationally fast

but may generate looped paths during the solution procedure. To avoid generating looped

paths and in the meantime retain its computational efficiency, the original generalized Floyd

ilgorithm has to include additional checks on node recurrences, hereafter referred to as the

,oain"a generalized Floyd (MGF) algorithm. The steps of the MGF algorithm may be

stated as follows:

Journal oflhe Eastern Asia Sociely tbr Transportation Studies, Vol.3, No.6, September, 1999



Heuy-Kuo CHEN and Cheng-Yi CHOU

MGF AQortthm

Step0: Initialization.
Let h=O.Initialize a path cost matrix Ci and a path trace matrix Pr

[{"]' 
. rl',..., "'i ) @:', ":' ....." )' ) 

... (c1" . c\" ...., c'fi 
I

a, _ | 
tr,'' ,rl' , ,r'r') @l' ,r1' . .c?) --- 1ci" ,ci' ....,c'{)l

| : ".(ci,ci. .c'r)". : 
I

l{";', ci',...,c1 ) (cf , ci',...,ci,' ) ... @i", "i",..'4 ) l
p' =f1p',ri',..,p'l)@i',pi',..,pi,)-..@i',pi',,p'i)l e)

Each vector c' contains & shortest paths directing originating from node I to node

7. In the beginning, the link cost between nodes I and 7 is entered as the first
component, cl, and the rest K-l elements are temporarily filled with infinitive.

Similarly, each vector p' contains K elements denoting the intermediate nodes

that precede node.7 from i for the current .t( shortest paths. If the /r-st shortest path

has not generated, then the corresponding element is temporarily filled with node

number l, which will be updated later.

Step l: Recursive Operations.
Let h: & + l. Perform the following generalized additions and minimizations.

pr - [pr-r e c] o r'' (3)

Ifshorter loopless paths are found, update the matrices C and P accordingly.
Otherwise, continue.

Step 2: Termination Check.
If two successive matrices cu and c' are identical, then stop with optimal solution

P' . Otherwise, go to Step l.

ln equation (3), generalized additions and minimizations are performed. Assume
a=(a,,a",a.,. ,o*) and b= (b,,b.,br,...,b"), the generalized arithmetic operators, @

and 8, are defined respectively as follows:
a @ b = min * {a,, b,: i =1,2,3, ...Yy (4)

a I b = min * {r, + b.,: i..i =1,2,3,...,K1 (5)

Gven a = [,S,S] and b = {f,S,tO}, we obtain:

a (E b = min , {t,:,t,:,s,t o} = {t ,:,:}
a I b = min. {t + 3,1 + 5,1 + 16,3 + 3,3 + 5,3 + 16,8 +3,8 + 5,8 + l6}= l+,o,ol

To demonstrate how the MGF algorithm works, a simple network shown in Figure I is

taken for illustration.

(r)
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Upon exploitation of the MGF algorithm, four types of information shown in Figure 2 must

be recorded at each node. The first information identifies o-D pair r-s. The second

information tags every node with different node number. The third information stores the

new subroute iost from origin r to node a. The fourth information labels the I shortest

subroute costs, denoted by cost I through cost &'

Figure 2'. Node lnformation

With the above four types of node information, a K-shortest-path spanning tree is generated

from each origin r toward each destination s as shown in Figure 3. At each intermediate

node a, if the new subroute casl is loopless and lower than any of the incumbent t shortest

subroute costs, then replaces the highest subroute cost with this new subroute cost The

occurrence of a loop can be avoided if the succeeding node of the current node has not

encountered before. This spanning process continues till the destination has been reached'

new cost

cost 2
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Figure 3: r(-Shortest-Path Spanning Tree Associated with the MGF Algorithm

4. COMPARISON OF YEN'S AND MGF ALGORITHMS

4. 1 Computational Complexities

For a network with N nodes, computational complexities for Yen's and MGF K-shortest-
path algorithms can be summarized in Table 2. Yen's algorithm requires less computer

memory but the MGF algorithm is superior in terms of computational efficiency.

Table 2: Computational Complexities for Yen's and MGF r(-shortest-path Algorithms

Source: this study.

Algorithm
Approximate Number of Necessary Ratio of Other

Algo's Operations
to Yen's Operation

Additions Comparisons Memory Address

Yen's 4KN1 KNl 2N2 +2KN I

MGF 3rN3(K +N) K2N3 + KNo N3K 4 , 4K
5r5M
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4.2 Numerical ExamPles

To validate the computational complexities of Yen's and the MGF algorithms Three

networkswithdifferenttopologiesaretakenfortesting.Thefirst-twonetworksare
t ypott 

"ti"at 
whereas the thiid niwo.k is realistic. The first test network plotted in Figure 4

iJil; ilJ shape. The incidence of two adjacent nodes is determined by random sampling,

*irt ui".ug" connection rate 0.75. The second test network shown in Figure 5 is

constructedly connecti;; two consecutive nodes. The linkage of two nodes not adjacent in

node numberc i, d.t"..iied randomly. The last test network shown in Figure 6 represents

the Chungli-Pincheng urban area in Taoyuan County' Taiwan'

(H
--- -r

r /--\T \)
It\.. .1)/\,/,.(

l
1jtttlI 

-. 
I\-.iaf Yi\/

irA
(HF.qffiffi'w,

Figure 4: Test Network 2

Figure 5: Test Network 3
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Trvo-rvay lane H or 
-One-way lane

Under ground'lunnel'-'
Origin or Destinadon

Figure 6: Test Network 4

A computer program coded with Borland C++ 5.01 was executed on a Pentium ll 266
personal computer equipped with l28M RAM. The computational efticiency is analyzed as

with number of shortest paths (^K'), number of nodes (M), and network density.

'Io Chiashi.Tayuan
t6l

To Neili,Taoyuan

,13

Puhsin.Yangmci

To Lutrgtan,Shihnletr
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( I ) Number of shortest Paths (K)

Suppose test network 3 consist of 308 links and 100 nodes, the computational times with

different number of shortest paths are plotted in Figure 7. The computational times are

linearly proportional to the number of shortest paths for both Yen's and MGF algorithms

(see Table 3) and the latter accounts for about 15%-30% of the former.

Time (Sec)

t.2

r----_l
l<-Yen's I

l+-MGFi
ir

I Number of Shortest Paths (K)

Figure 7: Computational Times versus Number of Shortest Paths

Table 3: Regressions of Computational Times in terms of Number of Shortest Paths

Algorithm Regression R-Squared

Yen's Y:0.0262* Kt 088 0.9149

MGF Y:0.0074* KIoil 0 9213

0.8

0.6

0.4

0.2

I 3 s 7 9 l1 13 15 17 19 21 23 25 27 29

Journal of the Eastern Asia Society for Transportation Studies, Vol.3, No.6, September, 1999



242
Heuy-Kuo CHEN and Cheng-Yi CHOU

(2) Number ofNodes (.if

Suppose test network 3 are duplicated 18 times with different network sizes, in the range of
20 to 500 node numbers. The computational times of generating 30 shortest paths for 18
networks are plotted in Figure 8. The MGF algorithm obviously outperforms and the
superiority gets more pronounced as the number of nodes get larger. While the
computational times are proportional to the square of the number of nodes for Yen's
algorithm, the linear relationship is derived for the MGF algorithm, see Table 4 .

i Time (Sec)

90

80

70

60

50

40

30

20

l0

0

200 300

Number of Nodes

o Yen's

s MGF

Figure 8: Computational Times versus Number of Nodes

Table 4. Regressions of computational rimes in terms of Number of Nodes

Aleorithm Regression R-Squared
Yen's Y:0.00I585* nodes""' 0 9709
MGF Y:0.0 I258* notles" re'" 0.77 t0
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(3) Network Density

Suppose test network 3 contain 100 nodes, the computational times of generating l0
shortest paths for different connection rates, ranging from 0.0 to 0.3, for both Yen's and
MGF algorithms are plotted in Figure 9.

Time (Sec) I

l+ yen's

!+-MGFr
ii

t2

of $o of s) J oS o)t of s1t dP *.rI *r" *f
Connection Rrte

Figure 9: Computational Time versus Connection Rate

Higher connection rates do not necessarily rcquire higher computetionel times which

contradicts our intuitive expcctation. Morcovcr. thc MGF dgorithm pcrforms infcrior in this

experiment. Evidcntly, no conclusive evidencc cen be drrwn rt this point.

(4) Real Network Testing

A real network, Chungli-Pincheng urban area, is taken for tcsting. This network consists of
435 links and 138 nodcs, rnd link costs re reelizod by their link lenghs. Due to sornputer

capability, only one O-D peir (from l,ungkang to Taoyuan) is exemincd with diffcrcnt
number of shortest paths, rrnging from I to I 10. The relationship betwcen computltiond

time and the numbcr of shortcs p.ths is plottoC for both thc MGF and Yen's dgorithms in
Figure 10. The computetiond times monotonically incrcrse as thc numbcr of shortest paths

increases. Thc MGF performs batcr by requiring rbout 70'Z- 90'lr lcss comput tionrl

Iqrrul of lhc Erstcrl Asir Sciay for TlrEporielba Sudics, \61.3, No.6, Scpacdcr, 1999



244

times.

Heuy-Kuo CHEN and Cheng-Yi CHOU

r-
Time (Sec)

\ i f + l} b\ d ^l + *\$
Number of Shortest Paths (K Value)

Figure l0: Computational Times versus Number of Shortest Paths

for Chungli-Pincheng CitY

5. CONCLUSION AND SUGGESTIONS

In this paper, a generalized Floyd algorithm is modified to avoid the occurrence of looped

paths a;d in the mean time to retain its computational efiiciency. From the theoretical point

of ui.*, the proposed MGF algorithm needs more computer memory but requires fewer

computational time as compared with Yen's algorithm. Experiments conducted on three test

networks basically justified these points. More specifically, the computational times required

by the MGF are shorter for a grid network and a real network, and the superiority becomes

more pronounced as the network size gets larger. To be conclusive, more tests on different

types of networks are essential. It is also worth noting that the high overlapping ratio, among

K shortest paths are generally not desired and needs to be tackled in the future.
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NOTATIONS

Symbols used in this paper are summarized as follows:

Cl : an element of matrix C, representing the rct shortest path cost between nodes i

and"/

the link cost matrix
predetermined number ofshortest paths to be found

the list ofr-shortest Paths

the list ofcandidates for (rrl)st shortest paths

the xst shortest path from origin r to destination s during time interval ,t

the cost for the rst shortest path between nodes I andT

the path trace matrix at iteration h

the subpath from I to r(l) on which overlaps occur with the first j nodes of

p: ,(k)
the zubpath frorn ;(r) to s during the search procedure for xst shortest path the

spur of piit..@)
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