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Abstract : The doubly constrained entropy distribution/assignment problem is to find the

O-D demands assuming that both the total flow generated at each origin and the total flow

attracted to each destination are fixed and known This problem has been successfully

iormutat"a as an optimization program and two types of solution algorithms developed,

i.e., the Frank-Wolfe (F$ and Evans methods. Nevertheless, comparisons of these two

algorithms with respect to computational efficiency were not deliberately made in the

lit-erature and no clear consensus has been induced

ln this paper, the FW and Evans algorithm methods, or more specifically, Simplex method

for Hiichcock problem and RAi algorithm for the gravity model' .were 
intensively

compared with iour test networks. Thi results show that the RAS algorithm outperfbrms

in terms of five performance measures, among which shorter computation time contradicts

ih" points made by Sheffr (1985). To consolidate the experiments, further study on

comiutational comilexities will be conducted for their dynamic counterparts in the future'

I.INTRODUCTION

The doubly constrained entropy trip distribution/assignment (DCETDA) model is to find

proper o-b demands subject t" n*"a trips both generated at gagfr origin and attracted at

Lacir destination, white Wardrop's first piinciple is fully complied by travelers in searching

for their routes from origin to iestinatitn. This crtmbined model may be decomposed for

easier description into tio interrelated submodules in sequence, i e'' trip distribution and

traffrc assignment probtems. The former is identical to the constrained matrix problem

which is to compute the best possible estimate of an unknown matrix. given some

information to constrain the solution set, and requiring that the matrix be a minimum

distance from a given matrix (Nagurney, 1993), whereas the latter is an user-optimal route

choice problem which is well known to transportation planners'

The DCETDA model was formulated as an optimization problem and a double-stage

solution algorithm, along with its convergence, was suggested by Evans (1976) The

double-sta[e solution alg-orithm is a partial linearization technique for solving a nonlinear

p."Uf"n1 wlth a set of linear constraints. [n some circumstances, the double-stage solution

Itgoritfrm is also referred to as Evans algorithm to attribute her original work and to

diitinguish it from the Frank-wolfe (Fw) algorithm, the fully linearization technique The
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computational advantages of Evans algorithm over the FW method for the trip
distribution/traffic assignment problem have been demonstrated by many researchers. An
intensive literature review was conducted by Boyce et al. (1984). The advantages ofEvans
algorithm over FW type algorithms appear to extend to any network equilibrium problem
in which the origin-destination flows are determined by a function of network-related
costs.

However, in a book by Shefii (1985), he stated that the auxiliary problem associated with
Evans algorithm is a nonlinear problem representing the gravity model, it is considerably
more difficult to solve than Hitchcock's transportation problem, which has to be solved as
part of the FW method (or the convex combinations method). Therefore, unlike the case
with singly constrained models, the double-stage (Evans) algorithm has not apparent
advantage over the convex combinations method, when both are applied to the solution of
doubly constrained models. This statement obviously contradicts the one made by Boyce
et al. (1986) and certainly suspicious as the gravity model can be efficiently solved by the
RAS algorithm (Chibini et al.,1994).

In the following, the DCETDA model will be formulated and described in Section 2. The
two solution algorithms, i.e., Evans and FW algorithms, are described in Section 3. A
numerical example is provided in Section 4 and comparisons of computational efiiciency
are made in Section 5. Finally, concluding remarks are given in Section 6.

2. DOUBLY CONSTRAINED DISTRIBUTION/ASSIGNMENT PROBLEM

2.1 Entropy Model Formulation

Assuming all states are equally likely to occur, the entropy trip distribution model is to find
the pattern with maximum number of states subject to the trip production and attraction
constraints,On the other hand, the traffic assignment problem is to solve for equilibrium
subject to fixed O-D demands, flow conservation, and nonnegativity constraints. A joint
doubly constrained entropy distributior/assignment (DCETDA) problem can be
formulated as follows:

min z(x,q)= \ t ,.(rVr.ilb-hq^ -q,")

S.t.

4r; =o^ vr,s

I8" =4' Yr

Z4'" =Q" vs

f ; >o Yr,s, p

Equation (l) is the objective function to be minimized consisting of the first term for route
choice behavior by travelers and of the second term for the most likely O-D trip rate
pattern, where symbol f is a dispersion parameter calibrated from data. Equation (2)
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conserves flows for each O-D pair. Production constraint (3) requires that summing O-D

flows over all destinationr r"ruit, in trip rates from origin r. Similarly, attraction constraint

(4) requires that summing O-D flows over all destinations results in trip rates attracted to

i.rtinution s. Equation 15) states that route flows cannot be negative.

2.2 OptimalitY Conditions

A Lagrangian of the DECTDA problem can be formed by dualizing equations (2)-(4)

using the corresponding dual variables ao, p' and t '

L(x,q,up.)")=1ff ,.@Y,.11b" ,.q^ - q'")

( _ )- ( 
- \- (

+ l,^[a'" -4r; ).1 r'lu' -1u^ )*?,t"[u"
Taking derivative with respect to O-D flow q^ results in:

Itnn" +c'" -P'-ff =O Vr,s
e

By manipulation, the O-D flow can be expressed as follows:

qo ="-<G'-r'- 
r) Vr,s

Substituting equation (8) into equations (3) and (a) yields the following two

respectively:

,*'= 4', , Vr
Ze-El'^'x')

tt","
"* = 

ri'v-71 
vs

Let

,;91
A, _:- YT

q'
,,'^

B" -" Vs
q"

The O-D flow q^ can be further expressed as follows:

q,' = A, q, B"qs r-(c" Vr,s

By equations (3), (4) and (13), the balancing parameters A' and B"

each other as follows:
I

-4', = ---:_--= Yr
ZB"4""u*

o"- I vsD -- -^

lA'q'e-+-

\ (6)

-1r")

(7)

(8)

equations,

(e)

(10)

(l 3)

can be expressed by

(l 1)

(12)

(14)

(l s)
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3. SOLUTION ALGORITHMS

The general algorithmic scheme for solving a nonlinear programming problem with linear

constraints includes the steps of initialization, direction finding, line search, update, and

convergence check, as follows:

General algorithmic scheme

Step I : Initialization.

Let n:0.Find an initial solution (n^ I,{r. f )
Step 2: Direction Finding.

Search for a decent direction by solving a fully or partial linearized auxiliary problem

based on the link travel times [; (r; )] Denote the solution ofthe auxiliary problem as

6,^ r,0. r)
Step 3: Line Search.

Determine the optimal move size a by performing the following line search.

ril, } [''."0''''1,.(rw
(l 6)

(l 7)

( l8)

.i1h- *o[.^" -r'"'Xn[r"' *oQ^' -r"'l-,]
Step 4: Update.

Update the O-D flows and link flows by the following formulas:

xI'' = xi * o"(y; - ,2) Ya

go"'=61,," ao,ln^" _q*) Vr..r

Step 5: Convergence Check.
l-,,r -rrl

tf l:------- - 1 
< e is satisfied, stop. Otherwise, let n:n+l and go to Step 2.

| ,* 
|

ln Step 5, the convergence criterion is set as the prespecified tolerance between the current

and exact objective values. In this experiment, the exact objective value for each test
network is obtained by performing the FW method for 3600 seconds. To compare
computational efficiency, two solution algorithms, i.e., FW and Evans methods are of
interest. These two solution algorithms share the same general algorithmic scheme but
differ in the auxiliary problem of Step 2. For the FW method, the corresponding auxiliary
problem (also known as Hitchcock's transportation problem) is derived using linear

approximation technique, whereas Evans method adopts partial linearization approach for
the auxiliary problem (also known as the matrix balancing problem).

3.1 llitchcock's Transportation Problem

Hitchcock's transportation problem corresponding to our auxiliary problem can be

formulated as follows.
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min z'(sv)= *#r; = T?[,;"' 
* 
ln n.k,

S.t.

4r; =u'" vr's

1''" =4' Yr

lv" =4" vs

c; >o YP,r,s

where decision variables 1r^1, {si'}, in contrast with decision variabtes {t;\ , lr^\
that were shown in the main pioUi.., denote O-D flows and path flows for each O-D pair'

respectively, for the **itiu.y probiem and symbol n indicates iteration number' This

auxiliary problem cannot be decomposed by O-D pair unless the auxiliary O-D flows {u" }

are known. Let the travel time on the shortest path connecting r to J, at the nth iteration, be

denoted by ,'"'. The problem of finding {"'} "un 
now be written as follows:

min z'(v)=?[," *[nf!"
S.t.

lu^ ='' Yr

1r^ =q" Vs

vo > 0 Vr,s

The above problem is known in the operations research

transportation problem. An adaptation of the Simplex method

described to solve this problem as follows:

( 1e)

Q0)

(21)

(22)

(23)

(24)

(2s)

(26)

(27)

literature as Hitchcock's

for linear programming is

Step l: Select an initial feasible solution with R+5'-l flow-carrying links'

Step 2: check whether the sotution can be improved by using a currently empty link lf not'

stoP, ifYes, continue.

Step 3: Determine the amount of flow that can be assigned to the new link without

violating anY constraint.

Step 4: Adjust the flow on all other flow-carrying links and update the network Go to step

1

3.2 Matrix Balancing Problem

The matrix balancing problem corresponding to our auxiliary problem can be formulated as
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In view of objective function (28), the nonnegativity constraint (31) is really not needed.
Similar to those for the DECTDA model, the optimality conditions for the problem
(28)-(31) can be derived by forming a Lagrangian as follows:

L(x,q. p, ).) = 1,^,^. i; f," rn v,. - u'" )

*2u'(2,^ - r'l .>^'(2.,'" -a') Q2)

, \, ) ' \; )
Taking derivative with respect to O-D flow y" results in:
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follows:

minz(v)= lc'"v'".i10" lnv'" -u'")

S.T.

\''" =8' Yr

1''" =q' vs

tr" > 0 Vr,.r

(28)

Qe)

(30)

(3 1)

(33)

(34)

Substituting equation (34) into equations (29) and (30) yields the following two equations,
respectively.

g&" = (3s)

(36)

Let

,,41

A, -:- Vr
q'

-;1'B'=" Vs
q"

The O-D flow q" can be further expressed as follows:

v'" = A'Q'B" qs e-;{' Vr,s
By equations (29), (30) and (39), the balancing parameters A' and B"

each other as follows:

(37)

(38)

(3e)

can be expressed by

]hr" *c'" -p'-A" =o Vr,s
C

By manipulation, the O-D flow can be expressed as follows:

,s" - r-;G^ ,'-t) Vr,.r

Yr

V.r

Journal of the Eastcrn Asia society fbr Tlansportalion Studies, Vol.3, No.5, september, 1999



267

Comparisons of the Frank-Wolfc and Evans Methods for the Doubly Constrained Eotropy Distribution /
Assignmcnt Problem

A, = ---) - Vr (40)

ZB'Q""'*

B, =-j -- Vs (41)

ZA'Q'n'*

The auxiliary problem (28)-(31) is then equivalent to the matrix balancing problem of

equations tZ-Sl, OOI -a'(:S). Note that total trip conservation is implicitly hypothesized,

i.e., lQ, =1q, {. The RAS algorithm @achem and Korte, 1979) can then be

described as follows:

RAS olgorithm

Step 0: Initialization.

Set l'u = I and let i=0.

Step l: Balancing Columns.

n, =lT.A,'r," ,""')'l"l
Step 2: Balancing Rows.

, r-- - *. l-'
A'' =IZB" 4"e-q"'" IL?J

Step 3: Stopping Test.
l,r-rlIA' -A' I

It Maxl----;4'l A' 
I

Vr

(42)

(43)

(44)

4.1 Input Data

A simple network shown in Figure I is used for testing. This test network contains 6 links

and 5 nodes, in which nodes I ind2 arethe origins, nodes 4 and 5 are the destinations, and

node 3 is an intermediate node.

lBo - Bt'' 
l = 

r, ,o to step 4; otherwise, set i=i+l<aandM?l B" 
I

and return to SteP l.
Step 4: Compute Solution.

v*' - Al q,B; q"e-k"' Vr,s

4. NUMERICAL EXAMPLE
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Figure l: Test Network I

The FTIWA cost function is adopted throughout this paper and, without loss ofgenerality,
the dispersion parameter ( is assumed to be l. The total production trips at each origin

and the attraction trips at each destination are hypothesized in Table l.

Table l: Production and Attraction Trips (Test Network l)

Origin Destination

I 2 4 5

Trips 150 100 50 200

4.2 Test Results

A computer program coded with Borland C++5.01 was performed on a Pentium 166-

MMX personal computer with 32M RAM. Both the FW and Evans methods result in
identical flow pattern (Table 2), O-D demands (Table 3), production and attraction trips
(Table 4), and route travel times (Table 5).

Table 2. Link Flows and Link Travel Times (Test Network l)
Link Link Flow Link TravelTime
l-2 90.72 22.03

l -3 59.28 38.89

2-3 190 72 t6 86

3-4 63.64 13.94

3--5 186.36 33.94

4-5 13.64 20.00

Table 3: O-D Demands (Test Network I )

O-D Pair Trips
t-4 30 00

l-5 120.00

24 20.00

2-5 80.00

Table 4: Trip Productions and Attractions (Test Network l)
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Ends Computed Trips Actual Trips

ol 30.00+120.00:150.00 150

o2 20.00+80.00:100.00 100

D4 30.00+20.00=50.00 50

D5 120.00+80.00=200.00 200

From Table 4, production and attraction constraints are satisfied. From Table 5,

equilibrium condiiions are atso complied. The correctness ofthe computer code for the FW

and Evans methods is thus verified.

5. COMPARISON OF COMPUTATIONAL EFFICIENCY

Two methods, i.e., FW and Evans methods are compared for four test networks in this

section. The topology and associated network data for the first test network have been

described in Section 4. The second test network is symmetric in shape (Figure 2). It

consists of l0 links and 5 nodes, in which nodes l, 2,3 arethe origins, nodes 5, 6' 7 are the

destinations, and node 4 is an intermediate node. The associated productions and

attractions are given in Table 6.

Figure 2. Test Network 2

Table 5: Route Travel Times (Test Network 1)

Route Travel Time

l.-3-4
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Route Route Travel Time Route

52.83 2n3-4 30.80

l+)+J+{ 52.83 2-3-5 50.80

l*3-5 72.83 )+J+!+J 50.80

I -r3-4 -5 72.83

l+)+J+J 72.83

l+)+t+{+J 72.83

,O.''\ /;\
/" '-' \

t'ur,/ 
\

7)
a-
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Table 6: Productions and Attractions (Test Network 2)

Origin Destination

I ') J 5 6 7

Trips 150 300 200 250 100 300

The third test network is essentially the U-town network (see Figure 3), which is taken
from the FIIWA publication (1986) with little modification. The network contains 130
links and 45 nodes, in which nodes I and 2 are the origins, nodes 3, 4 and 5 are
destinations, the other nodes are intermediate. The associated productions and attractions
are assumed in Table 7.

Figure 3: Test Network 3

Table 7: Productions and Attractions (Test Network 3)

Origin Destination

I 2 J 4 5

Trips 3000 4000 2000 3 500 I 500

The fourth network is a real network, which is constructed for Chungli-Pincheng urban
area in Taoyuan county, Taiwan. Chungli-Pincheng is about 35 kilometers distant from the
southeast boundary of Taipei. The area and population within the Chungli-Pincheng
network are roughly 7 thousand acres and 300 thousand residents, respectively. The entire
network is represented by 138 nodes and 449 links which are cast into l6 trafiic zones. For

Journal of the Eastern Asia Society for Transportalion Studies, Vol.3, No.5, september, 1999

a-(2s-r27



271

C-omparisons of the Frank-Wolfe and Evans Methods for the Doubly Constrained Entropy Distribution /
Assignment Problem

demonstration purpose, we only use three origins (nodes l, 2, and3) and three destinations

(nodes 137, lj8 and 139). The associated productions and attractions are tabulated in

Table 8.

Tweway lme H or 
-One-way lme

Un&rgrcundTmel '--
C)rigin or Destimtion "

'lb Neili,'Iaoyum
..---..*9

The FW and Evans methods are then compared for these four test networks in terms of five

performance measures, i.e., iterations for outer loops, objective value, total execution

Ii.e, e*"cution time for each outer loop, memory requirement. The results are summarized

in Table 9.

Pate,Tamn
l0

l2E
To LungtaqShihmen To Lungkang

Figure 4: Test Network 4

Table 8: Productions and Attractions (Test Network 4)

Origin Destination

I 2 3 137 138 139

Trips 1 550 2000 2450 960 3000 2040
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Performance MeasuresTable 9: of

Network
Number

Performance Measure FW Method Evans Method

Test

Network I

Iterations for Outer Loops r43 145

Obiective Value 13705.184458 1370s. I 84458

Total Execution Time (sec) 0.250 0.205

Execution Time for Each

Outer Loop (sec)
0.0017 0.0014

Memory Requirement (bytes 3232 2020

Test
Network 2

Iterations for Outer Loops ttt6649 2

Obiective Value 53 535.784855 53527.929181

Total Execution Time (sec) 3600.002 0.004

Execution Time for Each
Outer Loop (sec)

0.0032 0 0020

Memory Requirement (bytes) 5600 3464

Test
Network 3

Iterations for Outer Loops 46707 I 4t
Obiective Value I 58337.603830 I 58334.863882

Total Execution Time (sec) 3600.001 0.254

Execution Time for Each

Outer Loop (sec)
0.0077 0.0062

Memory Requirement (bytes 143300 8t261

Test

Network 4

Iterations for Outer Loops 21558 3

Obiective Value 920006.898934 919849.504949

Total Execution Time (sec) 3600.142 0.264

Execution Time for Each
Outer Loop (sec)

0.166998 0 088

Memory Requirement (bytes) 944876 590548

From Table 9, Evans method outperforms for all four test networks in terms of five
performance measures. The fewer iterations for outer loops are due to closer

approximation ofthe partial linear subproblem to the original main problem. For a network
with N nodes, at each outer iteration, the number of O-D pairs assigned with positive

values are 2N-l and N(N-l) for the FW and Evans methods, respectively. If we like to
update each O-D pair exactly once, Evans method would need iy'l2 iterations. The shorter

turn-around time is basically due to computational efficiency of RAS algorithm over
Hitchcock algorithm. The lower memory requirement is probably because of simple

adjustment operations for matrix column and row parameters, rather than a time-
consuming tree spanning and flow augmentation process as in the network flow problem.

6. CONCLUSION AND SUGGESTIONS

In this paper, two methods, i.e., the FW and Evans algorithms are compared for the doubly
constrained entropy user-optimal route choice problem. The latter one outperforms in

terms of five performance measures. The shorter turn-around computation time is

consistent with the results by Boyce ( 1984) but contradicts with the points made by Sheffi
(1985). To consolidate the experiments, four issues should be further explored in the
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future.

l. Incorporating link capacity constraints into the model'

2.Exploringpathbasedalgorithmswhichhavebeenprovedmoreefhcient
somewhere else.

3. Incorporating temporal dimension into the model such that the dynamics of flow

variations over time can be better represented'

4. Implementing tests with large real networks'
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NOTATIONS

Notations used in this paper are described as follows:

275

link designation
origin designation
destination designation
path designation

travel time on link a

shortest path travel time between O-D pair rs

travel time for pathp from origin r to destination s

link flow for link a (main problem variable)

link flow for link a (auxiliary problem variable)

traffic demand for O-D pair rs (main problem variable)

trafiic demand for O-D pair rs (auxiliary problem variable)

fixed productions at origin r
fixed attractions at destination s

step size

a
r
.t

p
lo

u'"

ci
x

lo
q'"

v

q'
q'
a
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