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Abstract: This paper aims to develop new dynamic discrete mode choice models treating
unobserved heterogeneity based on the Mass Point approach using short-term panel data. In
order to examine the effectiveness of the approach, Laird- and Lindsay-type models are
estimated by using three-period individual panel data collected before and after the opening
of a new railway station in Hiroshima. It was consequently shown that MP models are
superior to that of models without unobserved heterogeneity, while dynamic MP models are
superior to static MP models without state dependence with respect to the goodness-of-fit of
models.

1. INTRODUCTION

Dynamic discrete choice models have developed remarkably since the latter half of 1980s to
capture changes in individual travel behavior. They have tended to use panel data, which is
collected repeatedly from the same sample over time. However, these models assume a
homogeneous structure among individuals. The individual specific effects resulting from
omitted variables greatly influence the estimated parameters in models, so that the assumed
homogeneity may lead to erroneous conclusions which are in turn applied to explain
transportation phenomena, and to evaluate transportation policies.

Heterogeneity can be defined as differences in travel behavior caused by temporary or
individual characteristics. When short-term panel data is used for study, it is difficult to
consider the effect of temporary characteristics and only individual heterogeneity can be
taken into account. Therefore, in the rest of this paper, the term heterogeneity simply refers
to the individual heterogeneity.

Heterogeneity can be classified as the observed and the unobserved. Eqn (1) represents the
utility function of a discrete choice model which considers this.

M=

Ujie = Bui Xkije + O + Eijt ¢y
=

where, i,j,t :indexing individual, alternative and time,
Uijjt  : utility function,
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Xk,ijt  : kth explanatory variable,

Bx,i :individual parameter of x,ijt,
8 : parameter of the unobserved heterogeneity and
Eijt : error term following an identical and independent distribution for i, j, t.

Bx,i corresponds to the observed heterogeneity. For example, individual travel behavior may
change according to individual characteristics including sex, age, income, etc. which are
measurable. Much research has been done concerning observed heterogeneity based on, for
examples, market segmentation approaches, taste variation models and conjoint analysis.

Unobserved heterogeneity means the differences in travel behavior caused by unmeasurable
characteristics, such as taste, attitude, motivation, etc., or omitted variables. For example,
provided that the measurable characteristics described above are not considered in the model,
they cause a problem of unobserved heterogeneity if they are statistically significant.
Furthermore, unobserved heterogeneity can also partially explain the effect of state
dependence or serial cormrelation which is not incorporated into the model. Therefore, the
unobserved heterogeneity is a very general concept in travel behavior models. Of course, if
the measurable characteristics, state dependence and serial cormrelation affect the result of
model estimation, they must obviously be incorporated into the models. However, there
exist many complicated individual characteristics affecting travel behavior and not all of them
can be measured precisely.

In this paper, dynamic discrete mode choice models which consider the unobserved
heterogeneity caused by unmeasurable characteristics, are developed based on the Mass
Point (MP) approach when only short-term panel data is available.

2. UNOBSERVED HETEROGENEITY AND DYNAMIC DISCRETE
CHOICE MODELS: AN OVERVIEW

2.1 Approaches Treating Unobserved Heterogeneity
Consider the following utility function with the parameter d;; of unobserved heterogeneity.

K
U, = kE By X ije + 95 + Ejje 2@
=1

where, Pk is invariant among individuals.

There exist two approaches to estimate eqn (2) using a maximum likelihood (ML) method.
The first one is a fixed-effects approach in which 9;; is assumed to be determinate. The
second is a random-effects approach in which &;; is assumed to be a random variable.

Concerning the fixed-effects approach, the conventional ML method cannot be applied
because the number of parameters increases with the number of observations (Neyman and
Scott, 1948). Andersen (1970) showed that the conditional maximum likelihood (CML)
method should be applied in this case. Chamberlain (1980) specified a logit model with
fixed-effects using the CML method. Nevertheless, several limitations exist in this logit
model: (a) ordinary maximum likelihood estimation requires sufficient statistic for 3;;, (b) the
parameters of time invariant variables cannot be estimated, (c) only individuals whose choice
results change temporally, can be handled and (d) 8;; cannot be estimated consistently with
short-term panel data.

In contrast to the fixed-effects approach, the random-effects approach does not have such
problems. This approach can be further classified into a parametric approach in which
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continuous distribution of 8;j is assumed, and a MP approach in which discrete distribution
of &;j is assumed.

Probability density function of dependent variable yij, conditional on explanatory variables
vector Xiji, parameter vector B of Xijt and parameter 8;j, of unobserved heterogeneity, is
defined as hi(yijtlxi't,ﬂ,ﬁij). The continuous distribution function of d; is assumed as
Fi(ﬁijhijt,a) indexed by a finite parameter vector . Then, choice probability P; of individual
i can be represented based on a parametric approach as follows:

PFJ f - {h; (yijlxise, B, 8ij ) dF{(Bitfxins, a).-- dFiSiixije, )} 3
di1 dij

where, suffixes i, j and t are defined in eqn (1).

Eqn (3) is a model with random-effects assuming a continuous distribution of &j;.
Concerning its estimation methods, one method directly calculates its integral and another
approximates its integral (Davies and Crouchley, 1985; Davies, 1984). Beta, Gamma,
normal, log-normal, exponential, Weibull and log-logistic distributions have been used in
the parametric approach (Heckman and Willis, 1977; Pickles, 1983; Davies, 1984; Davies
and Crouchley, 1985; Dunn and Wrigley, 1985; Hensher and Mannering, 1994). Many
applications of this approach can be found in the fields of econometrics and geography
(Heckman and Willis, 1977; Davies, Crouchley and Pickles, 1982; Davies, 1984; Dunn and
Wrigley, 1985; Davies, Pickles and Crouchley, 1983). Uncle (1987) applied the Beta-
logistic model of Heckman and Willis (1977) to analyze the mode choice behavior of
shopping trips for the first time in the transportation field, and were able to confirm the
nature of the unobserved heterogeneity. Though integral calculation or its approximation is
needed in a parametric approach, no theoretical problems exist. However, the integral
calculation or its approximation makes it difficult to calibrate models if the distribution form
of &;; is complicated. Besides that, the estimated parameters of explanatory variables respond
sensitively to different distributions of 3 (Heckman and Singer, 1984).

Since 8;; cannot be precisely measured by the analyst, specifying the distribution of 8;j is not

an easy task. Unlike the parametric approach, choice probability P; of individual i can be
represented based on the MP approach as follows:

m
Pi = Y hi(yie|xij B, Eki) P 4
k=1
where, Exj and px are position and weight parameters of kth MP, and m is the total number
of MP.
Moreover, there exists a restriction condition imposed on Pk .
m
px = 0 and 2 px = 1 fork=1,2,...,m 5)
k=1
Thus, MP must be a discrete point which reflects the distribution characteristics of ;.
Furthermore, if several conditions are satisfied, the model can be estimated using a
sufficiently small number of MP (Laird, 1978; Davies and Crouchley, 1984; Heckman and
Singer, 1984; Davies and Crouchley, 1985; Reader, 1993).

Initially, MP approach was applied using a fixed number of MP. After that, Simar (1976)
extended the initial MP approach to compound Poisson distribution family and sets a bound
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on MP which has been improved by Lindsay. Simar (1976) also demonstrated consistency,
i.e. the ML estimator converges weakly with probability one to the true measure.

Laird (1978) extended some of Simar's results to the general problem. In particular, the
property of self-consistency was identified which lead to an extensive set of conditions
under which the ML estimator was a discrete measure. It was conjectured that for
"well-behaved (analytical) unimodal probability densities" there is no more MP needed than
observations in the sample. It was shown that this is true for virtually all densities by
Lindsay. Since then, Lindsay (1981, 1983a,b) established the general conditions under
which the MP approach can be applied. Lindsay's research must be regarded as setting a
benchmark in the history of studying the MP approach.

Much research has been done by using the MP approach in the fields of econometrics and
geography (Davies and Crouchley, 1984; Heckman and Singer, 1984; Davies and
Crouchley, 1985; Reader, 1993). However, little research has been carried out in the field of
transportation. In 1987, two pieces of researches in the field of geography: Dunn, Reader
and Wrigley (1987), Davies and Pickles (1987) were introduced in the special issue on
longitudinal data methods in the journal of "Transportation Research”. Kitamura er al.
(1996) introduced the MP approach into the doubly-censored Tobit model to explain the time
allocation of two types of discretionary activities.

2.2 Dynamic Discrete Choice Models Treating Unobserved Heterogeneity

The utility function of a dynamic model incorporating state dependence can be expressed as
eqn (6).

Uijt = £(¥ij,-15 - 5 Yij,t-q @0 Xijit , Xijte1 5 -ovy Xijpeeg ) ©)

where, yijt-1, ..., Yijtq :choice results of individual i for alternative jattime t-1,...,t-q
Xij,t, ..., Xij,t-q  : €xplanatory variable vectors.

The dynamic model assumes that current behavior is influenced by the previous one. But,
how to take this previous information into account in the model depends on the length of the
interval in the panel data. The dynamic models of travel behavior are generally based on
those developed in the field of econometrics from 1960s to 1980s. As far as we know,
Bumnett (1974) applied the first disaggregate dynamic discrete choice model in the field of
transportation research to study spatial choice behavior. Her dynamic model considered only
one spatial alternative at a time.

In the latter half of 1980s, a great deal of panel data including Dutch National Mobility Panel
Data emerged in the field of transportation research. And a multinomial probit model which
considers state dependence and serial correlation simultaneously by Daganzo and Sheffi
(1982) and Markov model, etc. were developed. The dynamic analysis era of travel behavior
had started.

However, in order to capture the changes in travel behavior properly, it is important to
distinguish state dependence and unobserved heterogeneity. While the early approaches,
referred to above, treated these two variables together, several researchers subsequently have
attempted to separate state dependence and unobserved heterogeneity.

Heckman has developed dynamic models with fixed-effects and random-effects in the
analysis of labor force participation, in which only two alternatives were considered in late
1970s. Tardiff (1979) extended the dynamic models to the case of more than two alternatives
in the analysis of spatial choice. Tardiff was one of the first to make an attempt to extend
discrete choice methodology by introducing state dependence effects and serial correlation
into the utility functions (Fischer and Nijkamp, 1987). He proposed a dynamic model which
included the previous choice behavior as an explanatory variable.
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— A
Uijt =f Xjie Zj' \(].J..Cij.’t_1 + 6ij + &5 7
where, Xijt : explanatory variable vector of individual i for alternative j at time t,
B : parameter vector of Xijt,

Ciji1 : dummy variable of alternative j with Cijt-1 = 1, if individual i chose j' at
time t-1 and Cij't-1 = 0, otherwise,

Yij' : parameter of Cij't-1,

Eijt - error term following identical and independent distribution for i, j, t.

Tardiff (1979) considered that serial correlation is caused by unobserved heterogeneity. The
second term on the right-hand side of eqn (7) accounts for the first-order Markov effects.
Tardiff suggested treating 8;; as fixed-effects rather than random-effects.

In contrast to Tardiff (1979), Heckman (1981) derived a general dynamic model which can
analyze the structure of discrete choices made over time from a direct consideration of the
complex error component structure (random-effects approach). Heckman's dynamic model
can be expressed as follows:

yit = Vit + Eit ®)
oo o) k
vit = B' Xit + E Ye-k,t dit-k + 2 Ak,t-k H dit-q+ G (L) yit ©)
k=1 k=1 q=1
yit = 0 ifandonlyif dit = 1
i i (10)
yit < 0 ifandonly if dit = 0

where, covariance of & and vi is zero, djt is a dummy variable denoting the occurrence of
the event under consideration. And, G(0) = 0, G(L) = g1L + goL? + ... + g«L* is a general
lag operator, L*yit = it-k-

The distribution of dj; is generated by the distributions of € and vit, while &t is assumed to
be normally distributed with mean zero. This normality assumption generates a general
model which is able to account for a wide variety of error structures for serially correlated
unobserved variables. The initial conditions for yit and dit are assumed to be predetermined
or exogenous.

The second term in eqn (9) which is assumed to be finite, represents state dependence
cifects. The third term denotes the cumulative effect on current choices. The last term
captures the action of habit persistence. By imposing various restrictions on the parameters
of the general model, a variety of models such as Markov model, renewal processes, the
multinomial probit model of Daganzo and Sheffi (1982), etc. emerge as special cases.

Subsequently, extending the research of Heckman (1981), Kitamura and Bunch (1990)
distinguish explicitly between unobserved heterogeneity and state dependence in a dynamic
ordered-response probit model, in order to analyze car ownership using panel data based on
a parametric approach.

Much progress has been made in the field of dynamic discrete choice modeling. However, it
is not doubtful that several problems are not yet satisfactorily solved, those are, attrition
bias, initial conditions, uncertainty of choice set, model identifiability and data requirements
when explanatory variables are "slow moving" or behavioral changes of interest are
infrequent (Fischer and Nijkamp, 1987; Kitamura, 1990).
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3. DESCRIPTION OF MASS POINT APPROACH
3.1 Laird-type Mass Point Approach

To apply Laird-type approach, several conditions on hi(yijtlxijt,ﬂ,éij) in eqn (3) must be
ensured (Laird, 1978; Davies and Crouchley, 1984). The basic conditions are:

1) The functions hi(yijt[ijt,B,8;;) are differentiable with respect to 8 for every possible
value of ;.

2) There does not exist a set of coefficients {ay} such that Eﬂaihi(y,-j‘lxij,,ﬂ,?aij) =1 for
every value of 8;j, where L indexes the h;(yijlxiji,B,8;) which are distinct. This is an
assumption of linear independence of the hi(ymixm,ﬂ, 8ij).

3) For some values of ;; and for some k, the kth derivatives with respect to §jj of the

i(ijtlxij, B, 8i;) are either all non-negative or non-positive and at least one is non-zero.

4) dij varies over a finite interval.

5) There is a range of values of §;j such that, for any & ij within the range and for any &'
outside the range, h; (y 5| x;,,8,8;) > h; (v [x.,8,85 ) for all i.

Conditions 1) and either 2) or 3) are sufficient to show that the nonparametric
characterization of Fi(djj[xijt,@) is a discrete distribution; the additional condition 4) or 5) is
sufficient to show that the number of MP is finite. To satisfy Laird's conditions, Davies and
Crouchley (1984) rewrite 8;; as eqn (11) and specify a binary Laird-type MP model as in eqn
(12).

Wij = —1 (11)

1+exp(d;)
PIOb(SiIE’p’p;{xit})
30 {(1-§k)‘1"“)[§kexp(-"'"“)}y“ }pk
k=1 1+Ek[cxp(-ﬂ’xit)'1]
where, S; ={yic|t=1, ..., Ty, yit=(0, 1)), T; s total number of time points that individual i

participated in the survey. Note that T; can differ depending on individuals. Ek, Pk are
defined as eqn (4).

(12)
t=1

In Laird-type model, eqn (13) is also imposed in addition to eqn (5).

0<g <1 (13)
In the case of multinomial logit model, eqn (12) will turn to be more complicated.

3.2 Lindsay-type Mass Point Approach

As described above, Laird's conditions are strict and complicated. By contrast, Lindsay's
conditions are more flexible (Lindsay, 1981, 1983a, b).

Theorem 1: For a fixed B and a finite sample, the ML estimator by MP approach in an
identified model is a finite mixture with at most N points, where N is the number of distinct
values of ({yijt, Xijt) in the sample. For this property to hold, it is required that
hi(yijefxiji,B,8;) be a bounded function of dij for fixed pEB and xxEX, and
F;(8;|x;x,@) =0 is non decreasing and right continuous. The form of the log-likelihood
function is given:
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N N
L= 2 In 2 hi (yije | xije, B, 81 ) Px (14)
i=1 k:l
where,
N
Pk ERN, RN =1{ (P1,P2, -, PN); Pk =0;1=k=N; > Pk=1} (15)
k=1
In the Lindsay-type approach, eqn (13) is relaxed as eqn (16).
5 €E,EC (-, =) (16)

Theorem 2: For each p € B and xijt € X, if hi ( yije | Xij, B, 8j ) is in the exponential
family and provided one condition is met, then

N N
Sup {E lnkzlhi(Yh‘,ﬂ,Ek)pk} 17

EkEE, pk ERN \ 1=1

is attained for a unique mixing distribution { Ex, Px } The required condition is that no MP
comes from the boundary of E (Lindsay, 1983b). Based on Theorems 1 and 2, a binary
Lindsay-type MP model can be built as follows:

& [exp(ﬂ"‘i”gk)]l-yn}
Prob | Si PP it = ’
rob (Si|E, p, B3 {x }) ;1 Q{ 1+exp(B' xit+Ek) " ()

Unlike the Laird-type model, the multinomial MP model can be easily developed similarly to
eqn (18), which will be explained in section 5.

4. ESTIMATION OF BINARY MASS POINT MODELS
4.1 Ajina Three-period Panel Data

In order to examine the effectiveness of the MP approach, binary Laird- and Lindsay-type
models are estimated by using three-period individual panel data collected in June 1989,
November 1989 and October 1991 before and after the opening (August 1989) of a new
Ajina railway station, located at the west of Hiroshima. The Ajina panel data used in this
study was collected for four modes: car, bus, tram and rail, and obtained from a sample of
169 people, all of whom consistently participated in the panel three times each. However, in
order to simplify the estimation and comparison of two MP models, binary panel data for car
and tram is examined in this section. The modal shares of car and tram in the binary panel
data and the shares of each mode in original four modes panel data are shown in Table 1.

Table 1. Shares of each mode in Ajina binary and four modes panel data (%)

Mods Binary data Four modes data

Jon 80 Nov.'89 Oct.'91 TM Jun.'89 Nov.'89 Oct'91 TM
Car 64.6 66.7 69.7 67.0 414 42.6 456 432
Tram 354 333 303 33.0 29.0 23.7 19.5 237
Bus 20.1 254 254 240
Rail 9.5 8.3 9.5 9.1

(TM: temporal mean )
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4.2 Estimations of Binary Mass Point Models

Since it cannot be ensured that the log-likelihood functions in Laird- and Lindsay-type MP
models are convex over the search area, there is always a risk that numerical optimization
will produce misleading results by 'homing in' on a local rather than a global maximum.
Davies and Crouchley (1984) used several different initial values for the optimization
algorithm to reduce this risk. The same method is adopted in this study.

The estimation results of binary logit models over three time points and a pooled binary logit
model are shown in Table 2. Here, a pilot study, based on a segmentation approach, showed
that the observed socio-economic attributes, such as sex and age, do not affect the choice
behavior significantly. Therefore, only service-of-level variables like time and cost are used.

From Table 2, it is clear that the explanatory variables whose parameters are stetistically
significant, are only in-vehicle time and egress time for the 1991 model and the pooled
model.

Table 2. Estimation results of logit models

Explanatory variable Jun. 1989 Nov. 1989 Oct. 1991  Pooled model
Access time (min.) 0.008 -0.028 0.070 -0.0004
(0.10) (0.57) (0.96) (0.01)
In-vehicle time (min.) -0.020 -0.036 -0.101 -0.041
(0.67) (1.30) (2.41)* (2.37)*
Cost (100 yen) -0.179 -0.022 0.008 -0.048
(1.23) (0.15) (0.13) (1.09)
Egress time (min.) -0.126 -0.081 -0.135 -0.096
(1.95) (1.61) (2.04)* (3.37)**
No. of transfers -0.286 0.444 -2.559 -0.214
(0.44) (0.49) (1.46) (0.58)
Initial likelihood -68.6 -68.6 -68.6 -205.9
Maximum likelihood -20.4 -26.0 -20.5 -711.9
Adjusted likelihood ratio 0.686 0.601 0.685 0.645
Sample size 99 99 99 297

(t scores in parentheses; *:significant at 5%; **: at 1%)

The estimation results of the binary Laird- and Lindsay-type MP models are shown in Tables
3 and 4, respectively. Supplementary explanations for the Tables are given as follows:

1) The initial likelihood of the MP model is the value of the likelihood when all parameters
are 0 except that one of px is given as 1 because of ¥ k.1p, =1.
2) Since px =0 and Yfip, =1 hold, px = pyxpy and p, =1- SPFpk xpp are used

instead of px in the estimation. Since E = 0 hold, &g = E;XEII is used instead of Ex in the
Laird-type MP model.

As aresult, the following facts are given.

1) The maximum likelihood gradually increases with the increase in the number of MP and
converges to a certain value. The converging number of MP is 4 for Larid-type and 2 for
Lindsay-type. It must be noted that the maximum likelihood of the models with more than
the converging number of MP is approximate because of the limitation of the software
used here. These results mean that the population can be classified into 4 or 2
homogeneous groups of mode choice. px can be interpreted as the probability that an
individual belongs to group k.
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2) The estimated parameters
in the pooled logit model

of explanatory variables in the MP models are larger than those

(see Table 2) except for the

.

cost parameter is not significant in the pooled model, it
MP models. This result reveals that mode choice
heterogeneity is not considered, will produce erroneous conclusions.

number of transfers. Although the

turns out to be significant in the
models, in which unobserved

3) The MP models are superior to the pooled logit model in terms of goodness-of-fit (i.e.

adjusted likelihood ratio).

4) The estimation results from the two types

each other.

of models are not significantly different from

Table 3. Estimation results of binary Laird-type Mass Point model

Explanatory variable MP=1 MP = 2 MP=3 MP=4 MP =35 MP =6
Access time (min.) 0.027 0.038 0.067 0.130 0.173 0.150
(0.67) (0.73) (0.31) (1.88) (390)** (1.71)
In-vehicle time (min.) ~ -0.029 0.059 0.086 0.054 -0.059 -0.062
1.91) (282** (112 (1.39) (3.19**  (2.26)*
Cost (100 yen) 0.089 0.183 0.170 0.135 0.145 0.164
1.78) @3l (19 (12 @4D* (2367
Egress time (min.) 0.075 0.148 0.122 0.139 0.136 0.148
(B26)* (362 (233)*  (28)™ 324  (259**
No. of transfers 0.274 0.122 0.198 0.072 -0.075 0.341
(0.73) (0.12) (0.20) (0.07) (0.09) 0.37)
0 0579 0.724 0.090 0.071 0.011
1 @.76)**  (430)**  (0.09) (0.19) (0.01)
B 0.582** 0.263 0.881 0.224 0.448 0.325
0 ©678)......(1.23).......(18.0)** ...(0.22).........(0:43) 0.26)
5" 0.626 0.204 0.321 0.441
2 (0.64) (0.38) 1.32) (0.51)
£ 0.784 0.134 0.162 0.062 0.092
ok (856 (096)... (016) .. (032 . (069
s 0.542 0.733 -0.002
©11** (118)** (0.01)
£* 0.509 0.9 0.065 0.667
_________ 3(146)(350)“ (.35 (1.88).....
o 0.291 0.684
4 (1.35) (0.98)
e 0.111 0.449 0.069
.......... e 2 (104) (1.04) (0.92)
o 0.553
5 (12.2)**
£* 0.985 0.961
e D S ——— (48.8)** .. (54.6)..
0%
e 0.078
L (1.36)
Initial likelihood 20500 20590 20590 20590  -20590  -205.90
Maximum likelihood -71.87 68.78 -56.14 -53.55 -53.95 -53.58
Adjusted likelihood ratio ~ 0.645 0.660 0.723 0.735 0.733 0.735
Sample size 297 297 297 297 297 297

t scores in parentheses; *: significant at 5%; **: at 1%)
P gn
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Table 4.  Estimation results of Lindsay-type Mass Point model

Explanatory variable MP=1 MP=2 MP=3 MP = 4 MP=35
Access time (min.) © 0028 -0.038 -0.018 -0.012 0.084
(0.68) (0.57) (0.24) (0.12) (1.28)
In-vehicle time (min.) -0.039 -0.055 -0.058 -0.054 -0.041
(2.27)* (2.08)* (1.76) 1.27) (2.16)*
Cost (100 yen) -0.064 -0.100 -0.103 -0.111 -0.112
(1.28) (1.94) (2.15)* (2.14)* (2.35)*
Egress time (min.) -0.086 -0.116 -0.113 -0.120 -0.124
(3.29)** (2.94)** (2:62)** (2.86)** (331)%*
No. of transfers -0.178 -0.065 -0.101 -0.184 -0.686
(1.19) (0.07) (0.10) (0.19) (0.96)
0% 0.818 0.003 -0.003 0.192
(17.5)** (0.02) (0.003) (1.19)
£ 0.481 2.179 0.021 0.024 -1.705
(2.81)** (2.95)** (0.02) (0.02) (1.66)
0% 0.830 0.823 0.525
(20.2)** (16.3)** (7.43)**
£, -2.807 2514 2353 -5.633
(4.50)** (3:39)%* (2.96)** (4.01)**
0% -0.055 -0.072
(0.10) (0.33)
£ -2.796 0.061 -0.183
(4.32)** (0.06) (0.34)

1 0.104
b (0.55)
130 -3.288 -0.952

(5.45)** (0.95)
0°s

. 2.929
£ (3.91)**
Initial likelihood -205.90 -205.90 -205.90 -205.90 -205.90
Maximum likelihood -71.43 -54.31 -53.99 -53.53 -53.69
Adjusted likelihood ratio 0.647 0.732 0.733 0.736 0.735

__Sample size 297 297 297 297 297

(tscores in parentheses; *: significant at 5%; **: at 1%)

5. DYNAMIC MASS POINT MODEL TREATING UNOBSERVED
HETEROGENEITY

5.1 Specification of Multinomial Mass Point Model

As mentioned in section 4, the difference between estimation results from the two types of
models is not significant. Furthermore, since the Lindsay-type approach has a simple
structure, this approach is easier to extend to multinomial logit model. Consider the
following multinomial logit model incorporating unobserved heterogeneity, in which choice
set differs across individuals and Jj; is the choice set of individual i at time t.

exp(B' xijt+6ij)

Prob (yy =118, B, {xy}) = (19)
ji=1 €XP (B X+ 8y50)

Probability that individual i chooses S; = { yijt | yijt = (0, 1);j = 1,...,Jii; t= 1,...,Ti) can be
represented as eqn (20), which is referred to as multinomial MP model.
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Jit Yiit

mo | n [T [exp B % +Eig) |
Prob (Si |E,p.B, {xijt})= 2 ntT;l l—L : [6xp Xjje + k,)]
= Ej'l;l exp(B' Xij¢ + Eij)

where, yij: is a variable of choice result for mode j at time t.

P (20

The original multinomial Ajina panel data is used to estimate the pooled multinomial logit
(MNL) model and multinomial MP model. The estimation results are shown in the 1st and
5nd columns of Table 5. Ex2. &3 and Ex4 are position parameters of MP k for bus, tram and
rail, respectively. For the MP models, only the estimation results at the time of convergence

is shown because of space limitations. The main conclusions from Table 5 are similar to
those from Tables 3 and 4.

1) The converging number of MP in the MNL MP model is estimated to be 5 and most of the
estimated parameters of E;j and px are statistically significant. The adjusted likelihood ratio
of the multinomial MP model is 0.440, higher than that of the pooled model (i.e. 0.072),
which indicates the significance of the MP model.

2) The estimated parameter of in-vehicle time which is insignificant in the pooled model
turns out to be significant in the multinomial MP model and that of cost turns out to have
the expected sign, even though that of access time is insignificant. This means that the
in-vehicle time which is believed to be more important than the access time in mode
choice, is properly evaluated in the presence of heterogeneity, so that considering
heterogeneity can make the biases in the estimated parameters smaller.

5.2 Specification of Dynamic Mass Point Model

Since the time-serial independence of travel behavior was assumed in previous sections,
joint choice probability was calculated as the products of choice probability at each time-
point. However, this assumption seems unrealistic because individual behavior interacts
temporally. Here, dynamic mode choice models dealing with previous .behavior are
specified:
Ti-1 Jit
P(Si) = U [T (Problyisel( Qs oo s et ) ]}¥o @1)
t=2 )=1

where, Qjj1, ... , Qijt-1 are information related to the previous behavior.

Eqn (21) assumes that an individual's travel behavior at time t is influenced by the entire
history of his/her behavior. Because there are only three time points in the Ajina panel data,
the following dynamic model is adopted here.

Ti-1 Jit
P(Si) = 11 { Prob [ yije | Q1 ]} 22)
t= j:
where,
exp (B xij1 + 8ij)

Jit
2 exp (B ' xijn + Oii')
i=1

Prob [ yij1 | Qjo ] = Prob (yij1) = (23)
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Table 5. Estimation results of Pooled MNL, Multinomial MP and Dynamic MP models

Pooled MNL Dynamic Dynamic Dynamic
Explanatory MNLModel MPModel MPModel1”® MPModel2? MP Model3?
variable (MP=5)  (MP =3) (MP = 4) (MP =3)
Access time (min.) -0.030* -0.055 0.014 20.073 -0.057
In-vehicle time (min.)  -0.002 0.036**  -0.029** 0.079** 0.041%*
Cost (100 yen) 0.001 0039  -0.158** 0.079 -0.037
...... Egress.time (min.) 0.040** 0.008%* ___-0.082** 0,123** 0.095**
Effect of state dependence 3.199** 0.169** 2.304**
0 0.510%*  0.377** 0.708** 0.435%*
o 1675  6.157 -1.072 12.07**
£'ss 4.995**  .5.595 -3.340%* 252
£ 7.214** 2004 -9.216** 9.069**
0's 0115*  0171* -0.132* 0.756**
£'» 1650 0327 -1.738 -0.679
s 5.941 1.79 3.106** -1.806**
£ 1275 7.944%* 9.001** -9.565%*
03 0.430** 0.420**
£'n 17.82** 0192 111z 1.818
£ 2241% 0502 4.481%* 5.731
& 10.90**  -9.167* 5.916** -1.106
0°s 0.101
£ 11.82** -6.523*
t'n -5.928%* 0.707
" 9.137+* 3m9
o ‘5
e -1.362*
&°ss -3.160**
£ -15.89%*
Initial likelihood -359.29 35929  -359.29 -359.29 -359.29
Maximum likelihood -331.08 19400  -163.00 -169.00 -188.61
Adjusted likelihood ratio 0.072 0.440 0.535 0.515 0.461
___Sample size 507 507 507 507 507

(P with previous choice result; ? choice utility; ? choice dummy variable; *: significant at 5%; **: at 1%)

Prob | yije | Qije-1 | =

Concemning Qjjt-1, three kinds of previous information are considered here:

exp (B ' Xije + ¥ Qije-1 + Oij )

Jit

exp (B ' Xije + v Qi1 +8if' )

i=1

1) Qjji-1 = yijt-1: observed previous choice behavior,

24
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It is plausible to consider the endogeneity of yiji-1 when yiji-1 is treated as an explanatory
variable in eqn (24). Here, we assume that the endogeneity of yiji-1 does not affect the
estimation for the sake of simplicity.

2) Qiji-1 = Vijt-1 and Vije.1 = B'Xjje1 + Ekj :previous choice utility, and
1, if P12 1/Jjeq

3) Qi1 = dije1 = : previous choice dummy variable
0, otherwise

where, ,f;ijt-l is the estimated probability that individual i chooses mode j at time t-1 and it is
obtained from a logit model like eqn (23) without ;.

Then, dynamic MP model of mode choice can be specified:

Jit T
m fn [cxp (B'xij1+Ekj)]Ym . 1—[ [exp (B.xm + Qiju-1+gk,~)]ym\

P (Si) = 2 3=1“ ) J:Jli( s
- \ 121 P (6'xij'1+gkj') = jzl exp (ﬂ'xi,--wy Qi,--t.1+§kj.) f

5.3 Empirical Analysis

The estimation results of dynamic MP models including previous choice behavior (i.e.
choice result), choice utility and choice dummy variable are shown in the last three columns

of Table 5. Moreover, the previous dummy variable is defined based on Pjjt-1 in section 5.2
which is obtained by estimating the multinomial logit model without state dependence and
unobserved heterogeneity. Here, it is assumed that the observed heterogeneity due to
individual socio-economic attributes, such as sex and age, does not exist. The last three
columns of Table 5 indicate that:

1) The effects of state dependence obtained from three types of dynamic MP models are all
statistically significant.

2) The converging numbers of MP from the dynamic MP models with previous choice
result, choice utility and choice dummy variable are 3, 4 and 3, respectively, which are
smaller than that from the MNL MP model. The ranges of the estimated Ex for four models
from the 2nd to the last column are {-22.41, 17.82} (40.230 in width), {-9.17,
7.94} (17.111 in width), {-9.22, 11.12} (20.34 in width) and {-9.57, 12.07} (21.64 in
width), respectively. The ranges of estimated & for the dynamic MP models are smaller
than that for the MNL MP model, and the dynamic MP model with previous choice result
has the smallest range. This means that one aspect of the effects of omitted variables,
which is the unobserved heterogeneity in the MNL MP model, may be substituted by the
effects of state dependence incorporated in the dynamic MP models.

3) The goodness-of-fit indices (i.e. adjusted likelihood ratios) of three dynamic MP models
are superior to that of the MNL MP model. The model with previous choice result is the
best of all three dynamic models. Since the dynamic MP model with previous choice result
has a simple structure and can be easily calibrated, it is practical to employ the previous
choice result as a state dependence variable when short-term panel data is used.

On the other hand, it is also important to discuss the temporal transferability of the proposed
dynamic MP models. Consequently, the following four models are newly estimated using
the first two-period Ajina panel data (Jun. 1989 and Nov. 1989); Model-A: static pooled
logit model with constant terms, Model-B: dynamic logit model with constant terms, Model-
C: static MP model and Model-D: dynamic MP model with previous choice result.
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Unlike the first two models, model-C and D deal with unobserved heterogeneity. The
estimation results of models-A~D are shown in Table 6. Then the estimated parameters of
explanatory variables are applied to the Ajina panel data at the third time-point (Oct. 1991) to
calculate the share of each mode.

Table 6. Estimation results of model-A~D

Explanatory variable Model-A Model-B Model-C Model-D
(MP =4) (MP =3)

Access time (min.) -0.035 -0.064* -0.119 -0.061
In-vehicle time (min.) -0.043** -0.047** -0.168** -0.064**
Cost (100 yen) -0.002** -0.002** -0.011** -0.006**
Egress time (min.) -0.026 -0.030* -0.170** -0.065*
Effect of state dependence 3.159** 3.631>*

0 -0.439** -0.431**
£ -0.902** -0.662 23.04** -2.384
£ -1.036** -0.831* -18.24** -12.55%*
£ -2.489** -1.960** 19:55*+ -1.383

0 -0.432** 0.355**
e -2.473 10.37**
£y 4.545 5.420**
£l -16.40** 6.429**

05 -0.220**

£ 16.35** -2.147**
£ 10.24** -1.656
£° 4315 -21.02**

o .4

£ -7.429**

£ -5.571%*

E'u 42.41**

Initial likelihood -231.93 -231.93 -231.93 -231.93
Maximum likelihood -170.06 -111.13 -118.81 -103.49
Adjusted likelihood ratio 0.253 0.511 0.461 0.535
Sample size 338 338 338 338

(*: significant at 5%; **: at 1% )

The temporal transferability of these models is analyzed by comparing the calculated share of
each mode with the observed share based on the following absolute error, which indicates
that a smaller value of the AE means higher temporal transferability of the model.

K Y
AE (absolute error) of the share = 2k=1 | Sf - S: FI (26)

where, S}: : observed share of mode k at time-point F (i.e. Oct. 1991) and

SE'F : estimated share of mode k at time-point F using parameters at time-point P
(i.e. June and Nov. 1989).

The rank of the models in terms of transferability in time is model-D, C, B and A according
to the AE values in Table 7. Concemning the improved degree of accuracy, the MP models
(i.e. model-C and D) are better than the models without unobserved heterogeneity (i.e.
model-A and B), while dynamic models (i.e. model-B and D) is better than the models
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without state dependence (i.e. model-A and C). Besides, the MP model-C has a higher level
of temporal transferability than the dynamic model-B. This result means that unobserved
heterogeneity has a stronger effect on the estimation result of model than state dependence.

Table 7. Comparison of estimated shares for 1991 using 1989 models

Estimated share

Mode Observed share ~ ~~ 7 77T TTTITTToToreTormoTonToeT TN
Model-A Model-B Model-CModel-D

Car 45.6 37.6 422 43.5 40.9

Bus 25.4 33.7 31.1 229 27.1

Tram 19.5 21.5 19.4 24.5 20.5

Rail 9.5 73 71 9.3 11.6

AE 0.0 20.4 11.4 9.4 9.3

6. CONCLUSIONS

It is very significant to consider unobserved heterogeneity in developing discrete choice
models. Therefore, binary and multinomial MP model and dynamic MP models have been
developed in this paper to consider unobserved heterogeneity using short-term panel data in
Hiroshima. As a result, some important conclusions can be stated:

1) The estimated models using Laird- and Lindsay-type MP approaches are not significantly
different from each other. Because of simple model structure, the Lindsay-type approach
is useful to build dynamic travel models.

2) The estimation results show that the maximum likelihood of models is improved greatly
and finally converges to a certain value as the number of MP increases.

3) The estimated parameters of explanatory variables by MP models differ from those of
models without unobserved heterogeneity. This result means that conventional models
excluding unobserved heterogeneity, may derive erroneous conclusions.

4) MP models are superior to that of models without unobserved heterogeneity, while
dynamic MP models are superior to static MP models without state dependence with
respect to the goodness-of-fit of models.

5) In developing dynamic MP models with short-term panel data, the most useful and
practical way is to incorporate the previous choice results into the model.
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