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Abstract: This paper aims to develop-new dynamic discrete mode choice models geat[g
i,'rliU.'"*"i ri"i"i"d"*ity based on thi Mass Point approach using short-!"T ?ry191t-a'^11
order to examine Ihe effectiveness of the approach, laird- and Lmdsay-type mooels are

"*ti."ira 
U" usine thrce-period individual panel data collected before and after the gP9mng

;f ;'il rlif*"v".t"tlon'in Hiroshima. If was consequently.s.troln that MP models are

.rr".ioi to tfr"t oi modeft wittrout unobserved heterogerieity, while dynamic MP models are

ffi#;;;; ild;ini-;A"ts wittout state dependend wittrrespect to the goodness-of-fit of

models.

1. INTRODUCTION

Dvnamic discrete choice models have developed remarkably sinP the latter half of 1980s to

;Jffi;#ilt-i"ai"iliir"ifivel behavioi. t'h"y have tinded to rtse Panel data, which is

ffi;;';;p!;t"dty to,, the same. gpnfe over iime. However, these models :tssume a

homos.eneou, *t u"t r" u111ong individuils. The individual specific.effects resulting from

ffiiitfi;;;[;;;hy irfldr* the estimated pararygtgrs in models, so that the assumed

;il;;il-*uy-t*d to L.on"ou. conclusions which are in tum applied to explain

G*i6tt"ti6, ph6nomena, and to evaluate transportation policies'

Heteroseneity can be defined as differences in Eavel behavior caused Uy !"'lPJ*y- 9l
i;ai;iai;i ati"r"cteristics. When short-term panel data is used for study, it is dinicult 

.to

"i*iJ* tf," effect of temporary characterisiics and only individual heterogeneity. can^ be

t X*ln-to 
"i"ount. 

ffr"ilTo"i,iritt" rest of this paper, the term heterogeneity simply refers

to the individual heterogeneitY.

HeteroeeneiWcanbectassifiedastheobservedandtheunobserved'Eqn(1)representsthe
;iiliti-firilid" of a discrete choice model which considers this'

Fr,r xr,,ij, + 6t, + e,,,

where, i, j, t : indexing individual, alternative and time,

Uijt : utilrtY function,
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xk,ijt : kth explanatorY variable,
pr.,i : individual Pararneter of x1,i11,

6ij : parameter of tle unobserved heterogenetty and
rrjt : error term following an identical and independent distibution for i, j, t.

p1,i corresponds to the observed heterogeneity. For example, individual travel behavior may
change according to individual characteristics ir.Fding sex, _age, income, e!c. which are

meas-urable. Much research has been done concerning obsewed heterogeneity based on, for
examples, market segmentation approaches, taste variation models and conjoint analysis.

Unobserved heterogeneity means the differences in travel behavior caused by unmeasurable
characteristics, such as taste, attitude, motivation, etc., or omitted variables. For example,
provided that the measurable characteristics described above are uot considered in ttte qr-odel,

ihey cause a problem of unobserved heterogeneity if-they are_ statistically- significant.
Furthermore, unobserved heterogeneity can also partially explain the effect of state
dependence or serial conelation which is not incorporated into the model. Therefore, the
unbbserved heterogeneity is avery general conc€pt in tavel behavior models. Of course, if
tle measurable characteristics, state dependence and serial correlation affect the result of
model estimation, they must obviously be incorporated into the models. However, there
exist many complicated individual characteristics affecting travel behavior and not all of them
can be measured precisely.

In this paper, dynamic discrete mode choice models which consider the unobserved
heterogeieity caused by unmeasurable characteristicri, are developed based on the Mass
Point fMP) ipproach wiren only short-term panel data is available. 

-

2. UNOBSERVED HETEROCENETTY AND DYNAMIC DISCRETE
CIIOICE MODELS: AN OVERVIEW

2.1 Approaches Treating Unobserved Heterogeneity

Consider the following utility function with the parameter 6i1 of unobserved heterogeneity.

K
u,i, = 

) 
Frxr,ijt+6ij+sij, (2)

where, p1 is invariant among individuals.

There exist two approaches to estimate eqn (2) using a maximum likelihood (ML) method.
The first one is a fixed-effects approach in which 0;1 is assumed to be determinate. The
second is a random-effects approach in which 6;i is assumed to be a random variable.

Concerning the fixsd-effects approach, the conventional ML method cannot be applied
because the number of parameters increases with the number of observations (Neyman and
Scott, L948). Andenen (1970) showed that the conditional ma:rimum likelihood (CIVtr-)
method should be applied in this case. Charnberlain (1980) specified a logtt model with
fixed-effects using the CML method. Nevertheless, several limitations exist in this logit
model: (a) ordinary maximum likelihood estimation requires sufficient 

-staqstig 
fo1 01i, p1 qr"

parameters of time invariant variables cannot b9 9_s!patea, (c) gnly individuals whose choice
iesults change temporally, cau be handled and (d) 6;1 cannot be estimated consistently with
short-term panel data.

In contrast to the fixed-effects approach, the random-effects approach does not have such
problems. This approach can be further classified into a parametric approach in which
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continuous disnibution sf 61; is assumed, and a MP apProach in which discrete distribution

6f 61; is assumed.

hobability density function of dependent variable yij,, :ondilional on explanatory variables

vector xijt, pararneter u"Jor 0 o^f xijt.and paramit& Oi;, of unobserved heterogeneity, is

d;i;J # fiigii,hij,,0,6it)..'ihe coitinuoG distibutioir tunction sf 61; is assumed as

F(fu6',;id'd;i"d Ui" finii"-parameter vector cr. Then, choice probability Pi of individual

i;ri#;;pt*ented baied on a farameric approach as follows:

,,= 
Iu,, [, 

''(ni Oii,hir,, F, 6ij; ar(6n[,t, ")"'arr(oilfiijt, 
a)"')

where, suffixes i, j and t are defined in eqn (1)'

Eqn (3) is a model with random-effects assuming a continuous distribution of 61;'

Cln.J"iirg is estimation r"inoat, one method directlv calculates its integTl and another

#;;;];-;?;-is i1,t"gnT f5""i".'*a Crouchley, L985; Davies, .1984).-Beta, Gamma,

#"t#:'*mt"nfu ::*1,,w'+ntllir,'.*ff TB.$ii:B-!1il:lii1B:{$
;;'crilhl"),,'fs85; il;anJ wrigley,.tgSl; H3r1$er and Mannering, L994). Many

":rofi*ti"rr "'f'tfris 
aiploacil; il f",init in the fields of econometris alld gjoglaPhy.

ifiUffi;;ilu;lui'fsiilb""i"i ci"rittey and Pickles, 1e82;.D^avies, 1e84; Pot*d
\{,;-i#'i;8s; D;;iL;; pit[ri. u'ia c'o.qqigy. 1e83). Uncle (1e87) arylie3"H:,,"':?;
il;1,f'# ;ifi"i' oI 

-i."ri-*- *a wiln* Ge77i' to. urr,alY V. the. mode

,tffiilffi f; tilH;-ti.i i, the nansprirtation filld, and were able to confirm the

nature of rhe unobserv*i;;;8";"ity. T6,iCh intesxal caiculation or its approximation is

[,*fl ;"Tl;#Hj$i]ktitll-tffi'#fl ,'#['Hf #?hii",ff :i,k$:t"TTiffi I
ffi;i, ililil$a. n#liJ- iir"t', tiilioti-utra pur"*eten of explanatory variables respond

ilittilfi[ ;iff;t;ri dilttibutions of s1; (Hecknian and Singer' 1984)'

Since oii cannot be precisely measured by the-analvst. specifuine the distribution sf 6i1 is not

ii !}"'t"rr. Udif; th;;;"u-i;-"ppr"*t, ctr6ici, irroudUilfty Pi of individual i'can be

repres6nted based on the MP approach as follows:

(3)

(4)

where, Er,; and p1 are position and weight parameters of kth MP' and m is the total number

of MP.

Moreover, there exists a restriction condition imposed on pt '

for k=1, 2, ..., fr

p, = i hi ( yijt lxi;t, F, Eti ) pr
k=1

(s)pr>o*uiPr=l'
k=1

Thus, MP must be a discrete point which y{lects the distibution characteristics of 61;'

furtn"r-or", it ."uJ-*"aiio* ,'" s-{isfied, the model TI' bl estimated using a

sufficientty smalt number "J'ili.Gtq^iS78; 
Ouii.s and Crouchley, 1984; Heckman and

"sriiii, 
idaa; Euuies and Crouchliv, L985; Reader, 1993)'

Initially, MP approach was applied using a fix_ed number of MP. After that, Simar (1976)

extended the initiat Mp;;;#"'il io *."p'ortJFoisson distribution family and sets a bound
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on MP which has beenimproved by.Lindsay. SiryT.(1976) also demonstrated consistency,
i.e. the ML estimator conv-erges we-akly witli probability on6 to trre-ru" measure.

Laird(1978) extended some of Simar's results. to.the-general problem. In particular, theproperty.of-self-consistency was identified which leadio an eitensive s"t'oi conaiiions
under which the ML estimator was a discrete measure. It was *"j;tu;.d -tir;fi;;
"well-behave{ (analrticaD.unimodal probability densities" there is no more Mp needed thanobservations in the sample. It was 

-shown 
tliat this is fue foi uirt afv a[ aensiiiis uvLindgay. Since then, Undsay (19q1,.1983a,b) established tti g"n"*i'""rarti"ir'i"..i'J,

which the. MP approach can be.appried. 
-Lindiay's ."."urih ,".t-u" i"g"rdA;;;dil;

benchmark in the history of studyirig the Mp appioach.

Much research has been.do:te by using the MP approach in the fields of econometics andg^eogqqhy (Pfyit a1d p^r9g9hJey, t984; Heikman and Sing% rS8+; Davi; ;JCrouchley, 198_5; Reader, 1993). However, iittle research tras ueen-cani"a oui ir-tfr" n"fa of

iii"tfr l;iii;,1i%,"m?'tr?f l[T"d'?"li"#*",ff ff :iTfl fi t"'i*ti{.$r*j
longlruornal data methods in the joumal of "Transportation Research". i(itamura e, a/-
(1996). inhoduced the Mp approach into the doubty-censoredi"bit ;A;i ir;;pdi" td d-;
allocation of two typas of disbetionary ac{ivities.

2.2 Dynamic Discrete choice Models Treating Unobserved Heterogeneity

The yjility function of a dynamic model incorporating state dependence can be expressed as
eqn (6).

Uij, = f(yij,r-l ,...,yij,t-qandx;;,1 ,Xij,t-l ,...,xij,t-q) (O)

where, yij,t-1 , . .. , Yij,t-q : choice results of individual i for altemative j at time t-1,...,t-q
xij,t , ..., xij,r-q : explanatory variable vectors.

The dynamic-model assumes that current behavior is.influenced by the previous one. But,
*:f,S::|,: Lrg.v,,"_r. 

information into accounr in the model aqp"rd; dn tr," i"ngiii'or-tr,,l
rnterval rn the panel data. The 

-dynamic models of travel behaviilr are generally "b;;A ;;
those develop$ ir.F: field of iconomerics from 1960s t" rs80" di;;'*;-fi;;
Burnett (l?74) applied the first disaggregate dynamic discrete choG model in the fi;H ;i
transportation research to study spatiai-choice bi:havior. Her dynamic rod;i;;ril;ff';ji
one spatial altemative at a time.

In the latter half of 1980,s,_a great deal of panel data including Dutch Mtional Mobility panel
Dataemerged in the field of rausportation research. And a "multinomiai'probit ;rd;i;[i;[
considers state dependence and ierial conelation simultaneou.lv uv fjuga*" ;J Sh;ifi
(19.82) and Markov model, etc. were developed. The dynamic urilyri. era6f travel u"rrurior
had started.

However, in order to cilpture the changes r1 .ravel behavior properly, it is important to
9j:l=g:llh^..q_T d3ry.1dence and unobsirved heterogeneity. ritriil- tiiJ 

"".ry "piro*r,"qreterred to above, teated these two variables together, severil researchers.rUftqf"'rtfy fru"J
attempted to separate state dependence and unob-served heterogeneity.

Heckman has developed dynamic models with fixed-effects and random-effects in theanalysilof llFf IqryS participation, in which only two altematives were considerea in fate
r97,us. l ardiff (1979).eyegg th: dyg-amic models to the case of more than two atematives
tn the analysis of spatial choice. Tardiff was one of the first to make an attemDt to extend
discrete choice methodolqsr br introducing state dependence effects una s".lii c11iiution
in1? 4" utility tunctions (Fiich6r and Nijkailp, 1987i. ue propoiia a aynumic model which
rncluoeo lne prevlous cholce behavior as an explanatory variable.
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U,j, = F'*,j, * )i Tii,c,i,,,-r + 0i1 + tiJ,

where, xijt : explanatory variable vector of individual i for altemative j at time t,

p : Parameter vector of xi;1,

b,;,,,-, tiur-yvariableof altemativejwithCij',t-r =1, if individualichosej'at
time t-L and Cij',t-t = 0, otherwise,

Yii' : Pararneter of Cil',1-1,

eij, : error term following identicat and independent distibution for i, j, t.

Ta.1i,itr 0979) considered that serial correlation is caused by unobserved- heterogeneity, The

;;;e i"nn 6n ttre rigtrt-trana side of eqn (7) accounB for the first-order Markov effects.

i*aim.rgg"sted Eeaffng 6;; as fixed-effCcts rather than random-effects.

In conhast to Tardiff (1979), Heckman (1981) derived a general $.ynapic 
model which can

ilEii;tu.t r; bf air6r"t" choices'made over time Eom a direct consideration of the

complex ellor compon"nt *tru"tor" (random-effects approach). Heckman's dynamic model

can 6e expressed as follows:

Dynamic Discrete choicc Models considering Unobscrved Heterogeneity with Mass Poirt ApProach

yit > 0 if and onlY if d;1 = 1

yir < 0 if and onlY if d1 = g

(7)

(8)yit = vit+tit

o6k

vit = p'*r,*) Yt-r,tdi,t-t+) )'r,t-rll di,"c+G(L)yit (e)

(10)

where, covariance of eit and vit is zero, dir is a dummy variable d3noting the occurrence of

the eventunderconsideration.And,G(0)=0, G(L)=gr[.+gzl?+ "'+g*L*isageneral
lag operator, flyi, = yi,-t.

The disEibution of dit is generated by the distributions of eit and vit,. while eit is assumed to

;;-";;;ly-;i;trifiiA iuitt-."-'rero. This normalitv u:tuTP!!9'" q"neg!ts a general

."aJ *f,iif, is able to u""ouni foi a wide variety of error structures foi serially 
-conelated

;;;t;;;J variables. The initial conditions for ylt and dit are assumed to be predetermined

or exogenous.

The second term in eqn (9) which is assumed to be finite, represents state dependence

;ii;"tr. Th" third temi 
-airiotes 

the cumulative effect on cunent choices. The last term

"ro-tur"r 
tt 

" 
uitio, of habit persistence. By imposing various restrictions on the parameters

oithe seneral model, a variity of models such as Markov model, renewal processes' me

;d6fi;fir;bit-;A"t of o'aganzo and Sheffi (1982), etc. emerge as special cases.

Subseouentlv. extending the research of Heckman (1981), Kitamura and Bunch.(1990)

distinsiuish explicitly belween unobserved heterogeneity and state dgPenOence rn a-oynamlc

ffiffij;;;'ri" p?"Uii *"a"1, in order to analy# car ownership using panel data based on

a parametric aPProach.

Much progress has been made in the field of dynamic discrete choice modelilg^. I:*^xl,^I
i. roi 'abriUttl that several problems are noi yet satisfactorily.solved, those are, attrition

Liri. initiuf conditions, ,r""t["irty of choice set, model identifiability and data-requirements

ffi;:;;il;io*-t".i"Ut"i *" ".lo* moving" or behavioral changes of interest are

in-t.qr"rt (Fisch6r and Nijkamp, 1987; Kitamura, 1990)'
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3. DESCRIPTION OF MASS POINT APPROACH

3.1 Laird-type Mass Point Approach

IHI"t'l#f i'?;,Bl;i.l* jE"#",?i:if"t;ftl,g,tif 
J;fefu l#J;l(3)mustbe

1) T" functions hi(yi;t[i;t,F,6i;) are differentiable with respect to 6ij for every possible
value of 6ij.

2) There does not exist a set of coefficients {a1}such that )ie-aihioii lxil,p,6ij) -1 for
every value sf .6;1, where L-indexes the h1(yi1thiit,F,6ij) which are aistir"t. this is an
assumptron ot lrnear rnclependence of the hi(yijtflijt,F,6ij).

3)j::.9T""rfl1"_1-of,lri ar1! for some. k, the kth derivatives with respecr to 6ij of the
ni(yijrFijr,p,oii) are either all non-negative or non-positive and at least one ls non-zero.

4) 61i varies over a finite interval.
5) There is a range of values of 6ij such that,_ for any 6ij within the range and for any 6'1i

outside the range, h; (y 
6,1 

x;;1,p, 6,; ), t, (f ,;, lx,,,F, 6i ) for all i.

9:^{lli":l ^,2 E9,:it}:, ?) .r. ?) arc .sufficient to show that the nonparameric
chamctenzatlon otF;(o;;[;jr,a) is adiscrete disnibution; the additional condition 4) or $ is
sufficient to show that the number of MP is finite. To satisfy L,aird's conditions, piuies ;nd
C-rouchley (1984) rewrite 6;1 as eQn (11) and specify a binary Idd-type Mf ;A"l;'ir; ;d;
(12\.

lrij=I
1+exp(0;;)

erou(s,lE,p,F;{*r,})=tu( 
),-

whete, Si ={yi,.lt=1, ..., Ti, yit=(0,1)), Ti is total number of time points that individual ipaftlqpated rn the survey. Note that Ti can differ depending on i'ndividuals. Er, pr ure
defined as eqn (4).

In Laird-type model, eqn (13) is also imposed in addition to eqn (5).

(tz)

(1 1)

(13)O.E*.,
In the case of multinomial logit model, eqn (12) will tum to be more complicated.

3.2 Lindsay-type Mass Point Approach

As described above, .Laird's conditions are sEict and. complicated. By contrast, Lindsay's
conditions rue more flexible (Lindsay, 1981, 1.983a, b). L -J

Theorem 1.: For u fi*4 F and a finite sample, the. ML qtimalo: by Mp approach in an
identified model is a finite mixture with at moSt N points, where N iJlle num^U]r of distinct
values of {yij,, xij,) in the sample. For this- property to hold, it is requirJ- thai
hi(yij,hij,,F,6i;) be a bounded function of 6;; for fixed p€B and xy€X, and
F,(6;.;lx;i1,c)>0 is non decreasing and right continuous. The form of the log-likelihood
function is given:
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NN
r= ) rr)

i=1 k=1

h i ( yij, lxij,, F, 0ii ) Pt

Table L. Shares of each mode in Aji and four modes

(14)

o*=r) (1s)

where,
(

Pr€Rx,RN = {(P,, P2,"',Px);Pr.
I

rrob(SilE, p, F' {xi,, ) = p, U (ffi)r-

N

>0;1s*=*t)
k=1

In the Lindsay-type approach, eqn (13) is rela:red as eqn (16)'

E*ee,EC(-*,.) t'ul

Theorem 2: For each p € B and xi;t e X, if hi ( yi;t l*ij,, F, 61; ) is in the exponential

family and provided one condition is met, then

/N lt \Sup {)")ui(vlx,F,B)pr} (17)

qr ee, pr enn \ ii k-=1 I

is attained for a unique mixing disnibution { 1, gn }. rne required condition is that no MP

;;fr; tUe boundary ot-e 1Lind.uy, iSA:U1. Based on Theorems I an.d 2, a binary

Lindsayaype MP model can be built as follows:

(18)

Unlike the Laird+ype model, the multinomiat MP model can be easily developed similarly to

"qn 
(ra), which uiiil be explained in section 5.

4. ESTIMATION OF BINARY MASS POINT MODELS

4.1 diina Three'Period Panel Data

In order to examine the effectiveness of the MP approach, bin?ry lair-d- and Llndsay-Egr

;;;[';; 
"stimut"a 

bil;il-g ti".r-[tioa individual panel daia.collected in June 1989,

i$;b* r-9s9 and o&ou"i iggr betore and aft91 the gening (August 1989) of a new

Aitr;';;ti;t *iution, l;tJ ui [r," *"st of Hiroshima. The Ajlina panel data used in this

shrrlv was collected for io"i rroaii, car, bus, tram and rail, and obliined fr9.-3 sample of

H;';;i":"ifii;;;;;i;i;;irv puiti"ipit a in the panel thr.ee times each. However, in

ii,iliiJ!ilpr,ri th;'i'i;ffi una'crimpurison of two I\,[P models, binary panel data for ca1

;ilram ir t*ulInin.a i";hi.;;t6r. tfi" modal shares of car and tam in th9 ![q.rypanel
a.i *JU" *fr"r". of *"-t-mode in original four modes panel data are shown in Table 1'

Mode
Four modes data

iun.; a9 Nor. ; 89 oct ; 0i TM

42.6 45.6 43.2

23.7 19.5 23;l
25.4 25.4 24.0

8.3 9.s 9.1

67.0 41.4

33.0 29.0

20.7

9.5

6.7
33.3

69.7

30.3
Car @.6

Tram 35.4

Bus

Rail
(TM: temporal mean )
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4.2 Estimations of Binary Mass Point Models

Since it cannot be ensured that th9 log-likelihood functions in Laird- and Lindsay-type MP
models are convex over the search area, there is always a risk that numerical oftirirization
will.produce misleading.le!!l-F by 'homing in'. on a local rather than a global haximum.
D.avigl and Crouchley (1289 used several _d!fferent initial values for-the optimization
algorithm to reduce this risk. The same method is adopted in this study.

The estimation results of binary logit models oyel threg time points and a pooled binary logit
model are shown in Table 2. Here, a pilot study, based on a iegmentationapproach, strowEa
that the observed socio-economic attributes, such as sex and age, do not 

^ahect 
the choice

behavior significantly. Therefore, only service-of-level variables like time and cost arc used.

From Table 2, it is clear that the explanatory variables whose parametem are stetistically
significan! are only in-vehicle time and egress time for the 19-9t modet and the poolei
model.

Table2. Estimation results of logit models

Explanalory variable Jun.1989 Nov. 1989 Oct 1991 Pooled model

Access time (min.)

In-vehicle lime (min.)

Cct (100 yen)

Egress lime (min.)

No. ofEansfers

0.008
(0.10)

4.020
(0.67)

4.779
(r.23)
4.726
(1.es)

4.2't6
(0.44)

-0.028
(0.s7)

-0.036
(r.30)
4.022
(0.1s)

4.081
(1.61)
0.444
(0.4e)

0.070
(0.r}6)

{.101
(2.47)|
0.008

(0.13)

{.135
Q,M)*
-2.559
(1.46)

4.m04
(0.01)

4.M1
(2.37)t
4.048
(1.0e)

{.096
(3.37).*
4.214
(0.s8)

68.6
-'26.0

0.601
99

( t scores in parentheses; *:significant al SVo;**: al LVo)

The estimation results of the binary I-aird- and Lindsay-type MP models are shown in Tables
3 and 4, respectively. Supplementary explanations for the Tables are given as follows:

1) The initial likelihood of the MP model is the value of the likelihood when all parameters

are 0 except that one of p1 is given as L because of )f.1p1 - 1.

2) Since pr > 0 and )P.1fu =1 hold, pt = pirpi *d p, -1- )f;'d xpi are used

instead of p1 in the estimation. Since Er > 0 hold, Er = Ei"Ei is used instead of Er in the
Laird+ype MP model.

As a result, the following facts are given.

1) The maximum likelihood gradually increases with the increase in the number of MP and
ggnYerges to a_certain value. The converging number of MP is 4 for hrid-type and 2 for
Lindsay-type. It must be noted that the manimum likelihood of the models with more than
the converging number of MP is approximate because of the limitation of the software
used here. These results mean that the population can be classified into 4 or 2
homogeneous groups of mode choice. pk can be interpreted as the probability that an
individual belongs to goup k.
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Initial Iikelihood
Maximum likelihood

Adjusted likelihood ratio
Sample size

58.6
-20.5

0.68s
99

58.6
-20.4

0.686
99

-205.9
-71.9

0.645
297
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2) The estimated parameteni of exp_lq.latq^ry variables in the MP models are larger than those

"'#il;;i;JtGt ;J"i i** f"ur" zi except for the number of transfers' Although the

c*t DarEuneter,. ,o, iii,ifLi i'tr,Jp*t"'q model, it turns out to be sisnificant in the

Mp ^modets. Tlri. ;ffi^;;[-tir"[ ,ooa"-;ilil-.ooitt, in whici unobserved

i;;i"r;;;ili i, not c*.ia"r"a, o,itt produce erroneous conclusions.

3) The MP models are superior to the pooled logit modet in terms of goodness-of-fit (i'e'
' adjusted likelihood ratio)'

4) The estimation results from the two tyPes of models are not sigrrificantly different from

each other.

Table 3. Estimation results of binary Laird-tyPe Mass Point model

Accassrime (min.) tdH, E:g$ 3311 r9:8! ,i[i.' ,!:i1!

In-vehicre time (min') fl* 3',8ti,. d:ff d.g;i d'.83.. tW.
cor (100yen) 5:0d I fq?-- 1'rzb 4'l3s 4'14s {'164

ii.fii 6:iI-. ti.c7). Q.t2)' Q'47)* Q:6)'

Esess time (min.) *yr1,. 3.18.. t8, t.P;r,. $;.ffi'. A16-'
* """*"" [1ii g:B? EBq tffi 8ffii 83ii

o', ti:;8.. tffi* .3ffi diii diii

g.2 E[tr .83Ei i:e) &fit'z ,31H. 3*i 8-ili ,r',,8i 
'3'?f

0z

tr3
4.509

.. ... (!.,46)

n<o 0.733 4.002
(ili).' (1r.8)*' (0.01)

,ffi,, rl8!i (989

0q

Et

0s

€5

.
06

c'b6

0.s53
(12.2)'I

0.985 0.961
(4-g,E)::- .(5{,6)::

{.078
(1.36)

-205.90

-53.58Initial likelihood
Maximum likelihood

Adjusted likelihood ratio

-205.q)
-77.57

0.645

-205.q
48.78
0.660

205.90
-56.14

0.723

-20s.90

-53.5s

0.735

-205.90

-53.95

0.733 0.735

(t scores in parentheses; t : sigrifi cant al SVo; ;' : al 7Vo)
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0.291 0.684

0.3s) (0.e8)
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Accesstime (min.) 9.0_?E {.038 {.018 4.012 0.084(0.68) (0.s7) (0.%) Q.li (i:28i
In-vehicle time (min.) 4.039 4.055 {.058 {.054 4.041(2.n)* (208)* (1.76) (r.27) Q.16)*
Cost (100yen) 4.064 {.100 4.103 4.111 4.112o.at) (1.%) (2.7s)* (2.14)* (23sr
Egress time (min.) 4.086 4.116 {.113 4.tm 4.124(3.29)** (2.94)** (2.62)** (2.86)*t (a.aii.-*" "'*"" d'13t d'm o''** *''* **
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0.818 0.003
(17.5)** (0.02)

4.003 0.192(0.m3) (1.14)

0.830 0.823 0.52s

0't

6r
.;:,

q2
-;:,

C3

€4

-;;

0.4q!. . ?.179 0.021 o.ou _|.?os

(20.2)**
-2.W 2.st4

. (t$):: (i.!)::
(163)* (7.43)*'
2.3s3 -5.633

Q,?q::. .... .(4o_l):: ..

4.0s5 4.W2(0.10) (0.33)
0.061 {.183

. .(q,ff) .. ... (_0_.34)

0.104
(0.s5)

:3.28 4.952
. .G,4i):: . ....(_o,.?il ..

_z.796
({3a::

Estimation results of Lindsay

gs

Initial likelihood -20s.90 -20s.90 -20s.90 _20s.90 _2o5.go
Maximum likelihood :71.43 -54.31 -53.9 -53i3
Adjustedlikelihood ratio 0.647 0.732 0.733 0.736

-53.69
0.735

.samnle si-e ^o7 ^O7 ^o7 ^o7 ^Q?

(t scores in parenlheses; *: significant al 5Vo;**: at lVo)

5. DYNAMIC MASS POINT MODEL TREATING UNOBSERVED
HETEROGENEITY

5.1 Specification of Multinomial Mass point Model

As mentioned in section 4, the difference between estimation results from the two types of
models is not significant Furthermore, since the Lindsay-type approach tras a'iimpie
structure, this.approach is easier to extend to multinoniial-iogiiinodel. Considii-[fii
following multinomial logit model incorporating unobserved treter6geneity, i" ;5i;h ;iroi;
set differs across individuals and Jit is the choice set of individual i ai time t.

rrob(li;t = 1 l6ii, F, { *,i, } ) =
exp(p'x,r,+6,,)

(1e)

)i"'1, "ro( P' x;;,, + 6,,' I

Probability that individual i chooses-Si = { yii, l}i;t = (0, 1);j = 1,...,Jit; t = 1,...,Ti} can be
represented as eqn (20), which is referred to as multinomiai Mp model.
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rrou(s, lE, p, F, {*ii,})= rt (
)i,'1, *o(F' xii', + Er.i')

where, !i;t is a variable of choice result for mode j at time t'

ffi -ii'#1"r*f ffi i**T'^i$"Lh?,1',il:*,h##?::ff "t[[1#Psrl*'Hiifi;ffiffi;if"bl" s. E;A;;dE*i*" p*ition parameters of MP k for bus' tram and

;ii;;$;i";iy:i;i th" tft;;[iUi,'{y tli" estimaiion results at the time of convergence

is shown because ot .p". 
-fi.iLiffi- iir" main conclusions from Table 5 are similar to

those from Tables 3 and 4.

1) The converging number of MP in the MNLMP model is estimated to be 5 and most of the

"#Hnlflffi 
,"i"ff i*kt**fatl'f*ntrltrhJ}ffi :'J**:f il'}:f#;

*ni"f, ioai""t*t the sigrificance of the MP model'

2) The estimated parameter of in-vehicle timg qhich is. insig4ificant in the pooled qodel
"'t 

ro-. ":riiJilr'i6fr;lii 
i" tt 

" 
,rftioo.ial MP model and-that of cost turns out to have

the expecred sigr, 
"u6-tfo"gh 

tltt 
"1 

access time is insigrificant' This means that the

i":r;hl;1" d-;"*'ni"f, it U"ffived to be mori important tlan tle access time in mode

;ir;il; p.P"ily;d;t;a in ttrg Presence. b! 
-E!:l"g:Y*-so 

tlat considering

t"i"ioi"r"itv c.in mute the biases in the estimated parameters smaller.

5.2 Specification of Dynamic Mass Point Model

Since the time-serial independence of travel behavior was assumed in.p.revious sections'

i#;"il6;;d;6iltty'i;i'.'lrriu"ta as the products of choice probabiliw at each time-

ooint. However, tnls assumption ,""r. *uliiii"-&"."t" inaiiiaua bef,avior interacts

i#,i|jiiy:'ift,'?1,ilm';ode choice models dealing with previous behavior are

specified:

Dynamic Discrete Choice Models Considering Unobserved Heterogeneity with Mass Point Approach

( Prou I yii, l( Qr'r , ... , Qjur ) ] ) vti'

where, Qi; r , . . . , Qlt-t are information related to the previous behavior'

mLglTiffi 
"H,il,ls#3#'d"rH::ff 

",ii#"ffi i#"HH3Xf'":',.*:,Ti[:
the foilowing dynamic model is adopted here'

P(si) ( Prob I yitt I Qit-r ] )Y'i'
(22)

). 
@)flil, ["*, (F' xii, * Eoi)]'o'

[I:,

(zt)P(Si)=Uil

'Ii - I Jit

= fITI
t=2 i=7

where,

ProbI Yi;r I Qio] = frob (Yi;r ) _ exp ( F' xijr + 6ij )
Jir

). "rp(P'x1;'1+6i;')j'=1

(23)

Journal ofthe Eastern Asia society for Transportation studies, Vol.3, No.5' September, 1999



256
Yoriyasu SUGIE, Junyi ZIANG and Akimasa FUJIWARA

Table 5. Estimation results of Pooled MNL, Multinomial MP and Dynamic MP models

Pmled MNL Dynamic
Explanatory MNLModel MpModel MpModel l r)

variable (Mp=5) (Mp = 3)

Dynamic Dynamic
MPModel 2a MpModel 3,
(MP =4) (MP =3)

Access time (min.) 4.030* 4.055 {.014
4.036** 4.029'*
4.039 4.158++

4.073
4.079**

4.079

.{^t23:1...

0.169r*

4.057

4.M1r*
4.037

_{..09_5*_: ..

2.304r*

In-vehicle lime (min.) 4.002

Cost(l00yen) 0.001

......Eerass.lime..6nin.). . ..'0.0401: ..-.{.0981-- .{...082::

Effect of state dependence 3.199*r

g't

En
6rs
.€....rn........ ......

P2
tn
Ex

0.510f * 0.377jr

L675r 6.757

4.995*] -5.595

:7,21.4** 2.9M

0.115r 0.171.

-1.650 0.327

s.941 1.7%

0.430'*

77.82t+ 4.1y2

-22.41*' 4.5V2

10.90*r -9.1671

0.708ri

-1.072

-3.340* *

-9.216*i

0.435rr

12.07**

-2.522

9.069rr

.....8...a............... . ...........Wi ......7,.e.A!:: ..........

4.732*

-1.738

3.106r*

.9..0q!:.:..

0.420r.

71.12|,

-4.481**

5.916*r

0.756.*

4.679

-1.806.r

...:9J-65::

1.818

5.73t

-1.106

0l
832
.33

.......€..s.

0q
Ea
g,43

.....F_.-4.

05
e52

0.r01

11.82r*

-5.9?3.j

2,!77,':

-1.362r

6 sr -3.160*r

E <t -15.89i*

4.s23+'

0.747

3.239*.

Inilial likelihood 359.n 459.29

Maximurn likelihood .331.08 -194.00

Adjusled likelihood ratio 0.072 O.UuO

Samnle size 507

-359.29 -3s9.29

-16.m -169.00

0.53s 0.515

5n? 507

-3s9.29

-188.61

0.461

50?

(1)withpreviouschoice resull; achoice utility; ochoice dummy variable; *: significantat5Vo;.*:at7Vo)

Prob I y1;1 lQ;,-r ] =
exp ( p' xij, + y Q;t-r + 6i; )

Jir

) "rO(F' xij,, + y Q;,t-r + 6ij' )
j'=1

Concerning Qjr-r, three kinds of previous information are considered here:

1) Qij,-r = yijt-r: observed previous choice behavior,

Journal oflhc EasternAsia society for Ttansporlation studies, \lol.3, No.5, Septembea 1999
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It is plausible to consider tle endogeneity of yijt-l when yilt-r is treated as an explanatory
variable in eqn (24). Here, we assume that the endogeneity of yijt-l does not affect the

estimation for the sake of simplicity.

2) Qij,-r = Vijt-r andV;;1-1 = p'x1;1-1 + l,t; : previous choice utility, and
t-
f1, if P;;1-1 >llJi1-1

3) Qii,-r = diit-r = ( : previous choice dummy variable" 
10, otherwise

where, Fijt-r is the estimated probability that individual i chooses mode j at time t-1 and it is
obtained from a logit model like eqn (23) without 01;.

Then, dynamic MP model of mode choice can be specified:

P(Sr= i
k=1

Jit _

fl ["*n (F' *ijt+y Qiit-l +Etj)]vijt
i=l

PIt Q5\
fl [*o (P' xi; r +Er,i )]Y'j'
j=1

\ i *tn'xi;'r+Erj')

TiI
t=2

) "*o 
(P' *,;,1+y Qi;'t-r+[q')

5.3 Empirical Analysis

The estimation results of dynamic MP models including previous choice behavior (i.e.
choice result), choice utility ind choice dummy variable are shown in the last three columns

of Table 5. Moreover, the previous dummy variable is defined based on Fi;,-r in section 5.2

which is obtained by estimating the multinomial logit model without gtate depe-ndeng and

unobserved heteroglneity. Heie, it is assumed that the observed heterogeneity dug to
individual socio-ednomit attributes, such as sex and age, does not exist. The last three

columns of Table 5 indicate that:

1) The effecs of state dependence obiained from three types of dynamic MP models are all
statistically signifi cant.

2) The converging numbers of MP from the dynamic MP models with previous choice
'result, choioJuility and choice dummy variable arc3, 4 and 3, respectiv-ely, which 

-are
smaller than that from the MNL MP mddel. The ranges of the estimated Er for four models

from the 2nd to the last column arc {-22.4L, L7.82I $0.230 in width), 1-9.17,
7.941 /:I7.Lt1 in width), {-9.22,11,.12} (20.34 in width) and {-9.57, l2-O7l (2L.64 in
width), respectively. The ranges of estimated Er for_the dynamic.MP models are smaller
than ttrit foi ttre MNL MP moiel, and the dynamic MP model with previous choice result

has the smallest range. This means that one aspect of the effects of omitted variables,
which is the unobseried heterogeneity in the IVII{L MP model, may be substituted by the

effects of state dependence incorporated in the dynamic MP models.

3) The soodness-of-fit indices (i.e. adjusted likelihood ratios) of three dynamic MP models
'are su"oerior to that of the MNL MP model. The model with previous choice result is the

best oi all three dynamic models. Since the dynamic MP model with previous choice result
has a simple strutture and can be easily calibrated, it is practical to employ lhe previous
choice result as a state dependence variable when short-term panel data is used.

On the other hand, it is also important to discuss the temporal Eansferability of the proposed

dynamic MP models. Conseqriently, the following four models are newly estimated using
tlie first two-period Ajina paiel daia (lun. L989 and Nov.-1989) Model-A: static p-ooled

loeit model wjth constint tirms, Modei-B: dynamic logit model with constant terms, Model-
Clstatic MP model and Model-D: dynamic MP model with previous choice result.
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Unlike the first two models, qodel-C and D deal with unobserved heterogeneity. The
estimation results of models-A-D are shown in Table 6. Then the estimated frrarnelers of
explanatory variables are.applied to the Ajina panel data at the third time-point (bct. 1991) to
calculate the share of each mode.

Table 6. Estimation results of model-A-D

Explanatory variable Model-B Model-C Model-D

Access time (min.)

In-vehicle time (min.)
Cost (100 yen)

Eg+s..!rss.(nin_) .. ......

{.03s
4.(N3**
4.0[,2']
4.A26

{.064r
4.M7**
4.002**
4.030+

4.119
{.168*r
4.011*r
{,170i+

4.06r
-0.064**
{.m6.r
_{,061:...

Effecl ofstale dependence 3.159** 3.631*.

0t
Etz
€r
e'

......_._..!. 14

g'2

e22
Ez1

...........9..a..

g's

432
€ir

...........-€ lir.

4902r'
-1.036r.

-2.4[,9*'

4.439i. {).431**
4.62 23.04t] _2.3U

4.831. -78.U:** _12.55r.

:1'969:: 12:llll -1?e

4.432t* 0.355.r
-2.473 10.371;

4.545 5.420.'
-16.40r. 6.A9r*

4.220)t
16.35**
10.24.r

4.315

-2.747*.
-1.656

-21.02]i

o't
t'o
€43
t'*

-7.429.*

-5.571.r

42.411t

Initial likelihood
Maximum likelihood
Adjusted likelihood ratio
Sample size

-231.93
-r70.ffi
0.2s3

338

-231.93

-1 1 1.13

0.511

338

-231.93

-118.81

0.467
338

-231.93

-103.49

0.535

338

( r: significanl at 5Vo; t|: at lVo)

The temporal transferability of these models is analyzed by comparing the calculated share of
each mde with the observed share based on the following ab3olute error, which indicate.s
that a smaller value of the AE means higher temporal hansfe-rability of the model.

AE (absolute error) of the share = ):, I SX - sl-u 
I (26)

where, S[ : observed share of mode k at time-point F (i.e. Oct. 1991) and

S[-u : estimated share of mode k at time-point F using parameters at time-point P
(i.e. June and Nov. 1989).

The rank of the models T qrnJ of transferability in time is model-D, c, B and A according
to the AE values in Table 7. conceming the improved degree of accuracy, the Mp modefi
(i.e. model-Cj1td D.).are better than the models withouf unobserved lieterogeneity (i.e.
model-A and B), while dynamic models (i.e. model-B and D) is better than-the rirodels
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without state dependence (i.e. model-A andC). Besides, thg MP model-C has a higher level

of temporal transferabiliry than the dynamic model-B. This result means that unobserved

heteroleneity has a stronler effect on the estimation result of model than state dependence.

Table 7. Comparison of estimated shares for 1991 using L989 models

,"0, o*.*..,n*. il;; ;;;T,ll1'J;li1 il;;";
Car 45.6

Tram 19.5
9.5 7.3 7.1 9.3 11.6

6. CONCLUSIONS

It is verv sienificant to consider unobserved heterogeneity in developing discrete choice

*"a"f.. ft i["f"re, binary and multinomial MP model and dynamic IvIP models have been

Jeveloped in this paper to'consider unobserved heterogeneity using short-term panel data in

Hirostiima. As a resutt, some important conclusions can be stated:

1) The estimated models using Laird- and Lindsay-type MP approaches ar-e not sigrrificantly^'dtiff"r;-F;; 
eich other. E"cuus" of simple fuoilll structurt, the Lindsay-type approach

is useful to build dynamic travel models.

2) The esrimation results show that the maximum likelihood of models is improved greatly-'*d 
finully converges to a certain value as the number of MP increases.

3) The estimated parameters of explanatory variables by MP models differ from those of'';;"1.;iihou[ 
unobserved heGrogeneity. This result means that conventional models

Licluding unobserved heterogeneity, may derive elroneous conclusions.

4) Mp models are superior to that of models without unobserved heterogeneity, whil-e'' 
dvr".i"-Mp ,oa"f* are superior to static MP models without state dependence with

rispect to the goodness-of-fit of models.

5) In developine dynamic MP models with short-term panel data, the most useful and-'p."tiol 
'lr'uy is tri incorporate the previous choice results into the model.
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