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Abstract: The existence of extemal economies in land markets is an well-acknowledged
fact. Empirical studies, especially in a spatial context, show that spillover effects aci as
determinants of land prices, The purpose of this study is to apply the technique of
Geographically Weighted Regression (GWR), used to obtain spatially localized estimates
of model parameters, to a spatial econometric model of land prices. The objective is to
compare the spatial distribution of spillovers and other variable parameters to that of public
transportation infrastructure provision, in particular rail systems. A case study is conducted
with the city of Sendai in Japan. It is shown in the case study that considerable parameter
variation over space exists, and that spatial spillover effects are, in average, more favorable
where transportation infrastructure exists. Parameter distribution for other variables also
reveals some interesting aspects relating to the structure of the city.

I.INTRODUCTION.

It is well known that the concentration of activities in urban spaces gives rise to a number
of external economies. In particular, urban development and transportation activities are
characterized for producing extemalities. Negative extemalities include various emissions
from land use activities and congestion. But there are also beneficial effects, as could be
the increase in land prices that transportation projects presumably entail, especially when
well coordinated with land development.

Spillover effects in the land market have been previously shown to exist in empirical
analyses of land prices, usually based in regression techniques that estimate the price
effects of different variables. More recent studies measure the magnitude of spatial
externalities by means of an association term that accounts for spatial extemal effects.
However, a limitation to this framework is that the spatial term, and the model parameters
in general, are obtained at a regional scale. To the present, this has prevented the
advancement of geographically detailed studies of extemal effects to compare with the
local confi guration of transportation services.

The purpose ofthe present study is to apply a set of spatial analysis techniques to examine,
among other variables, the spatial external economies in land markets. This will be done at
a geographically detailed level to be able to assess the relation of extemal effects to
transportation infrastructure provision. In particular, our objective is to reveal the spatial
variation of external economies affecting land prices, something that can be accomplished
applying the Geographically Weighted Regression method (Brundson et al., 1996;
Fotheringham et al., 1998) to a spatially autoregressive model. The GWR method shifts the
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emphasis from global estimation of parameters to a local scale' while a spatially

auttregressiv" ,od"l gives the potential of analyzing spillover effects' Combination of

these Inalytical techniques is expected to produce local, as the opposite of regional

estimates of the parameters, in pariicular the spatial association parameter, which can then

be inspected tbr the search ofspatial patterns'

Although it is commonly acknowledged that spatial externalities exist, by comparing the

local variation of the external ettect with the spatial pattern of transportation intiasiructure

provision, it can not only be shown whether a link exists between them, but also its

strength can be assessed. Presumably, the areas that receive the greatest benetits tiom

exterial effects would be among the most attractive locations tbr development' If such

locations can be shown to coincide with transportation tacilities, an argument tbr

coordinated transportation and land use development and a subsequent internalization of

effects would arise, since value capture of the projects would be easier to achieve'

The structure of the paper is as tbllows. In section 2, a general tbrmulation of spatial

mode ls is described anO ihe interpretation of the spatial association eft'ects is given' Section

3 describes the GWR method 
"nd 

u g"n"tul tbrmulation with spatial components of the

model is derived, as the basis of the model finally used tbr the case study, and section 4

covers a technical aspect of GWR estimation. Application of the above techniques is

exemplified in sectioni 5 and 6 with the case of Sendai City, a major city in northeastern

lapan, tor which it is shown that considerable spatial variation of the parameters exists'

Aitention is set on the rait systems of public transportation (train and subway) and the

distribution of spatial externalities, but the results for the rest of the parameters reveal

some interesting aspects relating to the strongly monocentric structure of urban land prices'

2.SPATI,ALECONoMETRICMoDELSoFURBANLANDPRICES.

A common practice in analyzing land prices is to estimate land price functions, in what is

known as the hedonic approach method. In this well-known approach, the price of land (or

more generally of real estate) is considered to be a function of a number of variables,

whichln .u"ry 
"ur" 

include some measure of accessibility (for instance, to city center: see

inter alia Asabere and Huffman,1991,; Hansen and Kristensen, L991), and in some cases a

measure of proximity or accessibility to transportation infrastructure (Hoch and Wadell'

1993; Tsutsumi et al, 1998). The inierest in obtaining a functional form tbr urban land

prices through a statistical or econometric methodology, is to assess the influence and

significance-that individual variables (distance to city center, land uses, distance to train

stltions, etc.) have in determining the price of land. In transportation studies, the obvious

interest lies in searching tbr the eft'ects that transportation infrastructure might have in this

process.

There is in addition an interesting aspect of econometric models of real estate prices,

intimately related to the fact that they usually involve working with spatial data' A well-

known characteristic of spatial data is that it often shows a form of serial arrangement in

space that invalidates many standard econometrics methods (Anselin, 1988), a results that

in turn forces the analyst to resort to specialized methods of spatial analysis' Although such

methods are often more complex than the simple oLS regression approach, they hold a

legitimate value. In the particular context of analyzing the prices of real estate, they allow

foi tt 
" 

spatial effects prisent in the process to be controlled under the tbrm of models with

spatial error autocorrelation, which is a way of spatially explaining what is not an explicit

part of the model. Another option, and one of particular interest tbr the purPose of our
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study, is to model those eft'ects as spatial spillovers, in tact a spatial form of external
economies. Examples of both kind of approaches appear in the works of Can (1992),

Dubin (1992) and Chica-Olmo (1995).

A general specitication tbr a spatial econometric model is given by the following equations
(Anselin, 1988) that cover a spatially autoregressive scheme and spatial error
autocorrelation, by means of spatial interactions matrix W and parameters p and )':

f=pWY+Xp+e
e=l,We*!.t

Here, Yis a vector (n x/) of observations, Xa matrix (nxk) of explanatory variables, B a
vector (tx1) of t estimation parameters that include the usual constant, and € and p are

vectors (nxl) of stochastic error terms. In this kind of models, the spatial structure of
regional interactions is determined by the spatial interactions matrix W, which is a nxn
square matrix (corresponding to a sample of n locations-observations) that will have non-
zero entries tbr interacting location pairs, and 0's in the diagonal and elsewhere. In practice,
and tbr ease of interpretation, matrix 17 is usually row-standardized, which means that
every entry is divided by its row's total sum so that each row is adjusted to add up to 1:

w",i':w,il2i*,i (3)
2i'li :1 (4)

with w,i' as the row I and column j value of the row-standardized matrix. Setting i= 0 in
the above regression specitication, that is assuming no spatial autocorrelation in the error
terms, the spatially autoregressive (SAR) form of the model is obtained. The remaining
element of the spatial econometric specification is parameter p (the spatial association
term) in equation (1). This parameter measures the intensity of spatial interactions and is
interpreted in the present context as the magnitude ofspatial spillovers. Since the objective
variable Y is the price of land, when a row-standardized interactions matrix is used the

term pWY will represent the proportion of the average price at neighboring locations that
will be ret'lected in the price of a given plot of land, with 'neighborhood' being defined by
the structure of lV. It is clear that the spatial association term has a legitimate interpretation,
and constitutes, under the detinition ofexternalities, a spatial external economy.

3. SPATIAL MODELS AND THE GWR METHOD.

The model specified by equations (1) and (2) represents a clear improvement over
conventional regression analysis, not only for being a formally correcl way of analyzing
spatial data, but also because it permits the explicit modeling of spatial interactions.
However, in spite of these advantages, it produces limited results in terms of analyzing
spatial variation. Once such a model has been estimated, the parameters p and p obtained
are fixed over space (only one set of parameters is obtained and it is assumed to hold for all
thc region) and give no hint at possible variations in localized sectors of the study region.
This sort of models are termed global models, because their parameters represent averages
over the whttle area, a characteristic that in many cases may hide interesting sub-regional
(local) variations. Application of the Geographically Weighted Regression method, on the
othcr hand, appears as a tool to measure spatial variations which would otherwise remain
hiddcn. Its application has helped to show betbre that, at times, the parameter stationarity
assumption of the global model will not uncover intbrmation important to a better
underslanding ofthe problem (Fotheringham et al., 1998).

(1)
(2)
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Thinking about transportation planning, a global model of land prices constitutes a useful

tool to study the general structure of the city. However, it is likely that a GWR model will
give deeper insight into the characteristics and behavior of land price controls at ditl'erent

pointt of the city. Since the objective here is not only to measure the magnitude of external

Lft'""tr, but to study their spatial relation with the provision of transportation infrastructure,

the application of a spatial model under a scheme of geographical weights to obtain

localized parameter estimattlrs seems more appropriate. In this way, it should be possible

to compare spatial variation of the parameters (variation that can be displayed in the tbrm

ol maps) to the spatial contiguration of public transportation service'

The concept ot applying geographical weights, although simple, yields a powerful tool to

investigate local functional relationships. It consists basically in the introduction of a set of

values, that will assign larger weights to observations more relevant to a particular

estimation, and smaller weights to less important observations. The net eft'ect is that less

relevant observations are penalized and will accordingly have less intluence in the outcome

of the estimation. The key t'eature of the GWR method is that the weights are a function of

location in space, and more specitically ol distance tiom a given location in space' In

accordance with the geographic principle that close locations are more related than distant

locations, larger weights will be assigned to observations in close proximity, with weights

decreasing af larger distances, until the etfect of the most distant observations becomes

negligible.

Now, a way of introducing a weighting scheme in the spatial econometric specification

presented Ultore is as tbllows (this particular case can be tbund in Brundson et al, 1998):

l=p,WY+XB, +e

e=DiF

where D, is a diagonal matrix (r xn) specitic to location i, that will become the instrument

of the model's geographical weighting scheme. Please notice that once a geographical

weighting instrumenl is introduced, any number of estimations can be carried out just by

*rorfing tlhe .,alues of the geographical weights, something that may be done changing the

locarion. The value of the weights assigned to observations will depend on their distance

tiom i, and further detail should not be needed in order to notice that parameters p, and B,

will no longer be 'global', but will correspond to estimation for a specitic set of weights D,

centered at location l. For this reason, the parameters of the GWR model are distinguished

tiom rhose in the global model by the addition of the locational subindex i.

To derive the likelihood function of the model, on which estimation is based, it is assumed

tbr the above specification that the vector of random errors is normally distributed with a

covariance structure matrix ()

p-N(0,4)
with the diagonal elements of O taking positive and non-zero values'

Now, since the error covariance matrix E [t't") = o is diagonal' a well-behaved vector of

homoskedastic errors, saY v, exists:

v = C)-t"p

that may be alternatively be presented as:

P = f,)l/2v
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DetiningA, = I - piW, the following simplification results with equation (5) now as:

{Y=XB,+e (9)
Substituting equation (8) into (6) results in:

e = DiQr/2v ( 10 )

which in turn can be introduced into (9) to yield:

AY-XF'=DiQ'/2v or v=(2-u2K(4Y-xF,) (11I
where Kp,= I.

The error terms y in equation (8) above, although homoskedastic and well-behaved, can

not be observed. Since the likelihood function has to be based on observations vector Y,

the y have to be transtbrmed through the use of the Jacobian function (see Anselin, 1988):

, = 0*(#) = 0",[#{n-'''K,1A,y - *p)l)= lo-"'llr,ll+l
(12)

The log-likelihood for this model, assuming a multivariate normal distribution for error
terms % can then be obtained as:

L=-ltnr-1*pl+tnlK,l +rnlt,l-f;u'u (13)

with v'v as the sum of squares of the appropriately transformed regression residuals.

For the purpose of estimation, the first order conditions are obtained taking the partial
derivatives of the log-likelihood function with respect to the parameters. Before that, it is

turther assumed that the covariance matrix can be expressed in terms of a reduced number
of parameters, and in the simplest case of homogeneity will depend of a single parameter
corresponding to the variance term:

E[ptr']=Q=dl (14)

The parameters of the model turn out to be p, p and d. Taking derivatives, the following
tirst order conditions result:

L = i-( -Lho -lm;91* hlK,l+ mla l-1,,,\ = -v,tu6F, dp,\ 2 2 '| r ,'| r'r 2 ) 6F,

- -"'# [n''' K,(A,,Y - x B,)l= v,eu,' K,x

and:

# = #(-;t""- l"tnl + hlr,l+ nle']-f,"'")

= -i#^talLr@,v - xF,\,K,,{rn-*,t4y - xp,\

= -|"(o ')* lv'a-'''x,(t,y - xp,)- -fr*f,"'a-'''K,(A,y - xp,\

The log-likelihood function will attain its maximum value when the partial derivatives are

(15)

(16)
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equal to 0, which is the condition used to derivc the ML estimators of the parameters. For

the case olparameter vcctor /1, the ML estimators are obtained tiom equation (15) as

0,= (X'K'KD'rX',K'KAY

while the variance can bc obtained liom equation (16) as:

I

o, = !(A,y - xptl K,'K,(t,y - xp,)
n

Substituting equations (17) and (1tt) in the log-likelihood given by

simplitication, it can be sht.rwn that a concentrated log-likelihood

rcsults:

l-r:C - p,",.)'K,'K,(",,

with

eo=Y-Xbo

c,_ = WY -Xb1

and

bo = (x' K' Kix)-'x' Ki' KiY

b,- = (X' I('l(X)-'X' K' KWY

- p,"))+ tnle,l-;"11,{,.

(17 )

(18)

(13), and doing some

o[ the tbllowing form

(1e)

(20)

(2t )

(22)
(23 )

(2s )

It is clcar that e, and e, abovc represent the error terms ensuing tiom the regression of X
gn Y and WY respectively, and are nothing clse than ordinary and lagged errors. Its

intrqduction in the concentrated log-likelihood function allows it to be expressed as a

llnction o[ only one parameter (p), that can be optimized using numerical techniques'

Further noting that thc determinant tlfA, can bc cxpressed as (Ord, 1975):

la,l : lr - p,wl= fl(l- p,-,,) (24)

with nr,, as thc rth .ig"nrulu. ol W, it is clear that the maximum likelihood will be attained

tbr the value of parameter p, that maximizes the tbllowing expression (compare with

Brundson et al., 1998):

-;^l)A" - 1,,e,)'K,'K,(,, - n,",.)f*)h(1- p,4,,)

Oncc tr,, has been obtained, the parameter estimators p, and the variance can be calculated

introducing its value in (17) and (18), as the rest of the elements there are known'

4, GEOGRAPHICAL WEIGHTS AND CALIBRATION OF THE KERNEL

FUNCTION.

In the prcvigus section, the geographical weighting method was intrtlduced and adapted tor

the case of a spatial model specitication. However, little was said about the weights

themselves (K, in eq. 11), except to note that they depend on location and should conform

to the geographical principle of strong interaction with proximity. The problem is now tt'r

select a metho{ or tunction to obtain quantitative valucs litr the weights. Although a very

simplc solution would be to assign a weight o[ 1 to obscrvations within a distance d of
klcati6n i and 0 tq thosc beyond this critical distance (thc underlying assumption in gklbal
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models is unitary weights tbr all observations), this problem is best solved in GWR by

means of a continuous distance-decay or kernel tunction. Recalling equation (1 1):

v=92'r/2K(4Y-XF,)

it can be seen that the purpose of weights (,, in the diagonal matrix K, is to adjust the error

corrcsponding to observation j, according to distance d,, from location i tbr which
parameters are being estimated.

A choice of kernel tunction is a Gaussian curve, that does not present the discontinuity
problem of a binary weighting scheme, and has the desirable property of having a

maximum value of 1 al d,, = 0 (that is, at location i itse lt). A function such as:

k jj((t): "*p( 
a; tp') (26)

will emphasize observations around the location of the estimation, by down-weighting
distant observations and making the most remote virtually negligible tbr estimation

centered at i. There is however an extra issue raised by the kernel function given by

equation (26) that must be solved betbre the model is made operational. As it stands, the

value of weight t, depends, in addition to distance d, between locations, on a distance-

decay parameter / (the kernel bandwidth) that controls the steepness of the Gaussian curve.

It is critical to select an appropriate value of 4, since let it to increase, the weights tbr
distant observations will increase tending in the limit to the global model, and let it to
decrease, only the ckrsest observations will be of any estimation relevance (and as a
consequence the variance will increase).

The problem of calibrating the kernel function, which is to say of obtaining a value tor
parameter @, is to t'ind a balance between these two extremes. This is done in GWR by

mcans o[ a least squares criterion using a procedure known as cross-validarioz. In cross-

validation, the objective is to minimize the sum of squared errors that results from the

dift'erence between the observed valuey, and its estimated valuey.,(/) , titted for kernel

bandwidth p without considering observations at I during estimation. Taking out
obscrvations at i is done to prevent the kernel bandwidth tiom tending to 0, a trivial case in

which the only observation taken into account would be i itself and would therefore have a

pcrl'ect 'tlt' with an error of 0. The tbrm of the cross-validation score is:

CVS:>ly,-y.,@)Y (27 )

Estimating the CVS tbr dift'erent kernel bandwidths and then plotting it against the values

oi @ is a guideline to select an appropriated bandwidth. In the case ol spatial models, it is
important to notice that the estimation procedure will involve reducing and re-

standardizing I,l/ matrix r times to eliminate the row and column corresponding to i.
Although the calculation of the CVS can become quite cumbersome because new

eigenvalucs are needed after each reduction, an alternative is to use for calibration of the

kerncl not all observations, but a representative or randomly selected sample of locations.

A last point worth noticing about the wcighting scheme is that, although distance d, is

measurcd to observation j (he observation whosc crror tcrm will be adjusted), a set of
wcights K, can bc detlned [or any location l, regardless of whether or not an observation is

rccorded thcrc. This l'cature is an usetul precursor to mapping, as estimation can be carried

out lirr any numbcr of points ovcr a pianc just by moving around point l, and thcn the value
ol thc paramctcrs obtained lirr those locations can bc contourcd or mapped to producc
graphical output depicting thcir spatial variation.
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5. CASE STUDY: GLOBALMODELS.

Betbre proceeding to the application of the GWR model, introduction of the study area and

application of spatial models of the form given by equations (1) and (2) is in order. The

case study is Sendai City, capital of Miyagi Prefecture in northeastern Japan, and one of
the country's 10 largest cities with a population close to 1 million. Sendai has a strongly

monocentric structural shape, served by radial rail transportation in the tbrm of a subway

line in the south-north axis, and train lines in the south-north and east-west axes. The

south-north railway line runs parallel to the subway line, starting trom the commercial

subcenter at Nagamachi, passing Sendai Station in the center, and up to Kita Sendai. From

there, the train line goes to the west, while the subway line continues in direction north up

to Izumi Chuo, the second commercial subcenter of city. Two other train lines part fiom

Sendai Station and run in the east direction (fig. 1).

Figure 1.. Sendai City. Transportation Infrastructure and Configuration of Spatial Interactions

Variable selection is based on urban economics theory, that shows how urban land prices

decrease with distance fiom the city's central business district, where most services locate

(monocentric distance-decay model). Another factor affecting land prices is the use of land,

and here we consider the intensity of commercial land uses, both as a measure of land use

activity and as a measur€ of accessibility to services. The third factor under consideration

is accessibility to transportation inlrastructure. The variables thus proposed for the models

arer land price (LPR; Sendai City Information Office, 1996); distance to CBD, (DISI in

this case distance to Sendai Station calculated using a GIS); percentage by area of
commercial land use by zone (CommPct; Basic Planning Survey for Sendai Metropolitan

Area); and distance to nearest subway or train station, calculated using a GIS (DISTN).

Two model formulations are attempted. The tirst is a simple (single region) spatially

autoregressive model (equations 1 and 2), and the second is an alternative tbrm of this

modcl, namely a spatially switching regression or SSR, to account tbr possible spatial

heterogeneity. A switching regression is used when the data may be separated into a small

number of congruent regimes in terms of some aftinity. In the case of a spatially switching
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regression, the data is separated in sub-regions (spatial regimes) that share a common
characteristic. For the models below, two regimes turn out to be enough to represent the
spatial structure of Sendai City, the first corresponding to the CBD area and the second
covering the rest of the city (Paez, 1998). Formally, the two-regime spatially switching
specitication of a spatially autoregressive model is as tbllows:

li;,1: 
*l{;,].li' ' ][,'].[;;]

(28)

(30)

In this tbrm of the model, the observation vectors Y and X are rearranged so that they can
be separated in two vectors according to their spatial regime, while the spatial interactions
matrix W, and the parameter and error vectors B and e are rearranged to match their
corresponding observations. What the switching regression actually does, is estimate a
dift'erent set of parameters tbr each spatial regime. Estimation of this model can be carried
out in a way very similar to that of the (single region) spatially autoregressive model,
noting that, just by redetining the variables, equation (28) may be expressed in the
tbllowing tbrm, which is identical to the SAR model in equation (1):

]*=pWY*+X*B*+e' (2e )
A basic difference of this model with the simple, single region SAR, is that in order to
account tbr spatial heterogeneity, the structure ofthe error's covariance is given in terms of
lwo parameters instead of one: there will be two (potentially ditl'erent) variance parameters
for two spatial regimes. This is expressed as follows:

Efe'et',=n- 
["0'' ro:r,

where q? and or2 are the variance terms tbr regimes I and2 respectively, andf and1, are
identity matrices of dimension n, andn, (the sample size of regimes 1 and 2). Estimation of
parameters, inference, and statistical tests against misspecification of a two-regime
spatially switching SAR (SS-SAR) model are introduced in Paez (1998).

The structure ofspatial interactions was defined based on the observed land prices (n=479)
using a nearest neighbor criterion. To do this, a binary weight matrix was obtained (1's fbr
interacting location pairs, 0's in the diagonal and elsewhere), that was then row-
standardizcd to obtain spatial interactions matrix I7. The spatial structure of the region can
be observed in tigure 1, where physical contiguity between areas (i.e. shared zone borders)
is the criterion used to define spatial interaction.

Estimation results of the global models are presented in table 1. The first model is a simple
spatially autoregressive specification, that produced a statistically significant estimator for
the spatial association term A confirming the existence of spatial spillovers, as well as
expected signs of the parameters: negative tbr distance from CBD and positive for the land
use variable. The model fails, however, to account tbr spatial error autocorrelation, giving
a signiticative value of the Lagrange Multipliers statistic against the null hypothesis of ,1=0
in equation (2), and therefore is not thought to be well-specified. The second and third
models are spatially switching SAR, with a ditTerent selection of variables. Again, the
parameter tbr spatial spillovers is significative in both, but only SS-SAR #1 appears to be a
correctly specified model that accounts t'or all systematic variation in the data, spatial and
else, as SS-SAR #2 presents spatial error autocorrelation.

Although theoretical results to test the specitication of a spatially autoregressive GWR are
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as yet not available, the global models serve as a guideline tbr selecting the functional tbrm

otitre CWn model. Ot'the global models, two of them, the single region SAR and the

spatially switching SAR with the DISTN variable, tail to account tbr spatial error

autocorielation as indicated by signiticative values of the LM statistic. Consequently, these

model specitications and variable selections are discarded as forms of the GWR, since the

possibility exists that the misspecitication of the global model is either a consequence ot,

or will be ret'lected in, misspecitication of the local models'

Also, note in passing that adding the DISTN variable to SS-SAR #1 to obtain ss-sAR #2,

had the interesting consequence of making a correctly specitied model become aftlicted by

spatial error autoJorrelation. This result stands in contrast to the somewhat extended belief

that an eft'ective countermeasure against spatial autoconelation is the addition of locational

variables. In our case, addition of a locational variable with a markedly non-random spatial

distribution (normalized Moran's 1 statistic tbr DISTN is Z(l)=32.0e) adds little to the

explanation but has the side eft'ect of passing down the autocorrelation effect to the model'

Tahle l. Global Land price Models. Spatially Autoregressive (SAR) and Spatially Switching SAR

Svatiallv Autoreerssive (SAR SDatiallv Switchine SAR #1 soatiallv Switchine SAR #2

Variable Parameter t-value Parameter t-value Parameter t-value

p o.773 22.3r7 0.464 16.85 0.444 15.895

CONST1(regimel)
DIST
CommPcl
DISTN

60.329
-0.014
6.209

1.216
-1.801

4.128

1348.O52

-0.73r
8.919

3.31
-3.01

1.18

1801.204
-0.575

5.007

-1.O23

4.008
-2.295
0.653

-r.997

CONST2 ( regimeZ)
DIST
CommPct

DISTN

86.758
-0.007

2.473

6. 93

-4.32
5.63

94.432

-0.005

2.349
-0.009

7.546
-2.910
5.323
-2.949

LOG LIKELIHOOD
2

O1
2ol

-3334.18

1 12598.64

479

-2694.62

802015.94

4572.99

60

419

-2688.6

7551 16.3

21440.68

60

419

Multioliers spalial er ror autocofi e lat im

LM Statistic (r2 - 1 D.F 34.59** 1.69 10.84*

I Regime 1 in the switching regrssions corrsponds to the CBD

+ Signifiqnce > 0.05 r* Signifience > 0'01

6. CASE STUDY: GWR MODEL.

Adopting previous section's ss-sAR #1 as the form of the model to apply the weights,

estimation of the local models can be now conducted. This is done in a similar fashion to

the method described above, only that now the corresponding term of the log-likelihood

function to be maximized will take the following form:

-?^G)-Zn(,)-)(a;Y. - x. p:\K,ra-'KiG,'Y' - x' pi)+20- p,',,) ( 31 )

with p,. estimators:

p,* = (X*, I!*,e-rK+X+)-rX+,K.'e-rK*A*iy*

and variance terms tbr regions 'l' and 2:

!]"16;"' - x'P:\

l,f*:1o;'. - x.P:\

lrarsportatloll Sludics, Vrl.3, No.4, Scptemhcr, 1999

,i = -?(o:v. - x' O;) x;lti

'i = -?(t:r. - x.n,')r,: 
lf
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(32)

(33)

(34)
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Equations (31) to (34) are tairly straighttbrward extensions of the concepts presented in

sections 3 (spatial econometric models) and 5 (spatial models and geographical weights),

and estimation of the model, with only minor moditications, tbllows the general guideline

of the previous models.

Now, the tirst step towards estimating a GWR model is calibration of the kernel function
(eq. 26) by minimization of the Cross Validation Score (eq.27). Given the large size of the

sample (n = 479), calibration using it in full would have been extremely intensive in terms

of computational resources. To avoid computational overhead, and tbllowing a suggestion

by Brundson et al (1998), estimation was carried out using a sub-sample of observations,

consisting of 100 randomly drawn observations (n" = 100), or roughly 27Vo of the total.

Results of the calibration are shown below, where tigure 2 plots the CV score against the

value of kernel bandwidth @ in the range of 2500 to 4000 meters. The score was tbund to
be minimized with reasonable precision, given the dimensions of the study area, by a value

of 3043 m of the kernel bandwidth. This value was therefore used tbr the kernel tunction to

estimate the GWR model.

Figure 2. Calibration of the Kernel Function. CV Score and Kernel Bandwidth (O)

Estimation of the model's parameters was done using expressions (31)-(34) for an irregular
grid made of 488 locations that, in general, did not correspond to recorded observations,

but that were distributed to retlect the actual distribution of observations in space, in
general more dense in the commercial business district area. Obtaining parameters over a

grid was done to take advantage of it to produce smoother maps. Consequently, estimation
was done tbr i= 1,...,488 local models tbr which parameters were obtained and then

mapped to produce the graphical output given by figures (3) through (6). It is important to

notice at this point that a switching regression will produce parameter veclor ff = 1,9, , frrl'
consisting of separate estimators tbr each spatial regime. However, although all parameters

are used to calibrate the kernel function, for the purpose of reporting the results only those

parameters corresponding to the spatial regime to which the location belongs are used.

The tirst example of graphical output (tigure 3) corresponds to the spatial distribution of
the p, parameter of spatial association. This parameter represents the magnitude o[ spatial
spillovers, and had a value of 0.464 in the underlying global model s-r SAR #1. However,
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it can be seen tiom the figure that a global level is at best a rough average of the actual

distribution as given by the GWR model. The maximum value for a local p, parameter was

tbund to be of 0.68 (that is, a 680/o of the average of neighboring prices will be retlected in

the price at the location), and the average over the region was tbund to be 0.29, well below

the value of the global model. Some areas were tbund to have negative spatial external

eft'ects, and a minimum of -1.00 was obtained, but in a limited border area to the west of
the city. The variation among locations is large and does not appear to be random, as the

normalized version of Moran's I statistic, calculated using a quadratic distance decay

interactions matrix, produced a significative value of Z(l) = 40.88 (meaning positive spatial

autocorrelation).

Figure 3. Spatial Distribution of the Local RHO Parameter ( p,) and Statistics.

Positive external effects were obtained for almost all the region, but with the highest values

concentrating around three easily spotted sub-regions: the area south of Minami Sendai,

the surroundings of lwakiri station, and between this and lzumi station. A somewhat

unexpected result is that the size of externalities in the area around the CBD is not as large

as in these three spots, but this might be a consequence of the level of development already

achieved by the CBD, which is relatively high and possibly reaching saturation. An
interpretation could be as a moderately high benetjt of locating in a developed area, but

were agglomeration economies are operating close to their limits.

Although conclusive evidence of an association pattern with transportation infrastructure
was not found, it is still clear that high values of spatial spillovers occur in regions well
serviced by public transportation, as the regions with the lowest values are locations in the

tiinges and distant from any kind of rail transportation. An interpretation of negative

externalities might be oft'ered in terms of competition, since the price of lots in less

desirable regions of the city are reduced in an amount proportional to the average of
neighboring prices, apparently to maintain their relative attractiveness. In general (see table
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2), relatively high values of the spatial association parameter were obtained for the
locations of the stations, whose average (0.359) is higher than the regional average.

Worth of mention appears the tact that among the stations with the higher values of the
spatial spillover parameter, we find those between Nagamachi and Minami Sendai to the
south, and the stations in the neighborhood of lzumi district to the north, where the
comtnercial sub-centers of the city locate. These areas are experiencing rapid growth, but
do not approximate yet to the level of development observed in the CBD.

Tablc 2. Parameler Estimation Results for the Locations of Train/Subway Stations

Station # RHO CONST DIST CommPct Station # RHO UUNS I DIST CommPcl
I
2

3

4
5

6

7

8

9
l0
11

t2
13
t4
15

l6
t7

0.366
-0.177
0.299
0.664
0.645
0.563
o.543
o.521
0.456
o.297
0.375
o.270
0.267
0.271
o.256
o.263
0.268

721.5
732.5
158.6
61.9
42.5
46.0
<)a
53.4
68.3

1555.3
92.6

1653.2
t7 49.6
1745.6
7948.2
1854.4
144.1

-0.014
-0.007
-0.020
-0.007
-0.007
-0.007
-0.008
-0.008
-0.009
-1.019
-0.013
-1.017
-0.987
-0.980
-0.978
-o.97 4
-0.019

6.60
6.41
16.37
6.23
15.96
13.99
13.65
11.14
12.38
5.88

4.33
2.76
4.51
3.06
5.71
6.79
6.38

IE
19

20
2t
.,,

23

24
25

26

27
28

29
30
31

32
33
34

u.z4a
0.255
0.261
0.323
0.282
0.294
0.317
0.345
0.372
0.414
0.520
0.547
0.518
0.341
0.225
0.189
0.603

u)76.4
720.1
114.3
92.9
149.1
151.5
145.3
138.8
119.4
76.6
53.6
38.2
65.1
78.4
110.8
723.4
33.9

-0.982
-0.016
-0.014
-0.010
-0.029
-0.030
-0.025
-0.020
-0.015
-0.006
-0.001
0.003
-0.001
-0.001
-0.003
-0.005
-0.00r

9.06
6.99
6.97
6.03
4.69
4.04
3.12
2.08
1.7 4
4.07
2.Ot
1.45
2.02
0.45
0.34
0.69
1.14

Figures (a) to (6) are graphic depictions of the rest of the parameter's spatial variation as

measured by the estimation of the GWR model. It is evident that signiticant variation
exists, and the normalized Z(l) values of the spatial autocorrelation statistic, Iarge and
statistically significant, point.at the non-randomness of it. The maps are for the constant
lerm of the regression (figure 4), and for parameters corresponding to independent
variables DIST and CommPct (figures 5 and 6 respectively).

Inspection of the above figures supports the assertion that the structure of the city is
strongly monocentric, something that was hinted by the global model in its switching
regression form, but that appears to be confirmed by the GWR model. Especially
informative is the map of the local constant term, as it measures, once the effect of all the
relevant variables has been considered, the spatial variation of land prices. From figure (3)
it is clear that the highest values of land, all else being equal, are in the CBD area, but with
an important element of spatial non-slationarity. There, the parameter ranges between 600-
800 to a maximum of roughly 2100, in contrast with the single global model's value of
1348 tbr the same area. In addition, an inverse relationship can be observed between the
variation of the constant and the DIST parameter.

The DIST parameter also confirms the importance of locating close to the central station,
as the regional average of the DIST parameter is negative. And, although variation is
smooth for the most part of the city, the relevance of distance becomes ever more
important as a location moves toward Sendai Station. Another evidence is given by the
CommPct parameter, which measures the importance of commercial land use intensity.
Variation of this parameter declines almost concentrically from a maximum at the CBD,
showing that the element of commercial presence is more beneficial the closer locations
are to central city. It is interesting to notice that a similar effect is not observed around the
commercial sub-centers.
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Figure 4. Spatial Distribution of the Local CONST Parameter and Statistics.
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7. SUMMARY AND CONCLUSIONS.

The main goal of this paper has been to present a spatially detailed study of land prices, to

compare the results with the spatial contlguration of transportation service provision. An
important objective of the analysis has been the study of spatial external eft'ects in the land

markets, but at a local level to reveal any potential association with transporiation

intiastructure. Two spatial analysis methodologies have been used to that end, the first
drawing tiom a spatial econometric approach to measuring interactions, and the second

being the GWR method to measure spatial parametric variation.

Specitically, this paper presented an empirical application of the GWR methodology (used

to obtain local estimates of the model's parameters), based on a spatial econometric

specification to model spatial external etfects. Application of GWR techniques to spatially
specified models stems from the work of Brundson et al (1998), but extends the theoretical
results to obtain a particular model, namely a geographically weighted, spatially switching
SAR. This tbrm was needed to represent the characteristics of the case study without
giving way to the possibility of mode I's misspecitication.

As tbr the results of the model, it was tbund that spatial external effects exist, and that
there is indeed considerable spatial variation of the parameters, a result that was masked by
the global model approach. Besides visual inspection of the results, selection of a kernel
bandwidth revealed that the GWR model represents an improvement over the global model,
as a detlnite kernel bandwidth could be tbund with a smaller sum of squared errors than the

larger values to which the global model tends. In addition, spatial parametric variation
appears to be non-random, as statistically significant values obtained for the spatial
autocorrelation statistic / suggest. In this sensc, the GWR helped as a tool to explore more
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in depth, at a geographically derailed level, the form of land price functions. Although

decisive evidence of correlation between external economic effects and the provision of

transportation infrastructure was not found, it could still be noticed that, in general, high

values of parameter pi appeff in relation with train and subway stations' It is suggested that

the results obtained here could be used to further study the factors affecting the variation of

this parameter, in a would-be expansion of the model. Thinking about the spatial variation

of the constant, distance and commercial land use Parameters, the results seems to contirm

thestronglymonocentricstructureoflandpriceshintedbytheglobalmodel.
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