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Abstract: Regional econometric models based on cross-sectional data are very useful for a
variety of analyses of transportation projects, where the error terms are not completely
independent but exhibit a spatial autocorrelation. Therefore, a number of regularization
methods have been proposed and designed to improve on the ordinary least squares method
in the field of applied statistics. In this paper, we focus on the spatial autocorrelation of
error terms in regression model and the regularization methods for estimation of regression
coefficients. First, we make a brief review of the suggested methods for spatial
autocorrelation. Secondly, we apply them to a simple land price regression model, since
hedonic regressions of land price have often been used to estimate various transport
projects and thus their application to land price regression is one of the most interesting
examples.

1. INTRODUCTION

Regional econometric models based on cross-sectional data are very useful for a variety of
analyses of transportation projects, where the error terms are not completely independent
but exhibit a spatial autocorrelation. This can be caused by a variety of measurement
problems such as arbitrary delineation of spatial units of observation, problems of spatial
aggregation, the presence of spatial externalities and spill-over effects (Anselin(1988),
Griffith(1996.a)). These are often encountered in applied work and it is widely recognized
that the ordinary least squares (OLS) estimator for regression models is unlikely to be a
satisfactory estimator in such circumstances. Therefore a number of regularization methods
have been proposed and designed to improve on OLS in the field of geography, spatial
statistics, spatial econometrics and so on. However, it would be an overstatement to
suggest that they have become accepted in regional science, since each approach tends to
be rather self-contained, with little useful cross-reference.

In this paper, we focus on the spatial autocorrelation of error terms in regression models
and the regularization methods for estimation of regression coefficients.

First, we make a brief review of the suggested regularization methods for spatial

autocorrelation. Secondly, we apply them to a common simple regression model. In spite of
methodological advances, the importance of their practical applications to regressions in
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regional analysis cannot be overemphasized. Since hedonic regressions of land values have
often been used to estimate various transport projects, their application to land price
regression is one of the most interesting examples. Nevertheless, few empirical studies that
have employed the hedonic approach have paid attention to the analysis of spatial effects.

The remainder of this paper consists of 4 chapters. In the next chapter, following a brief
statement of some problems in spatial statistical analysis, spatial autocorrelation of error
terms is described in detail. Then, we make a brief review of the suggested regularization
methods for spatially correlated errors in Chapter 3. Chapter 4 presents the parameter
estimates and tests for spatial autocorrelation. Some concluding remarks are included in
Chapter 5.

2. SPATIALLY CORRELATED ERRORS IN REGRESSION MODELS
2.1 Problems in Spatial Statistical Analysis

Spatial dependence and heterogeneity are two essential aspects of models in regional
analysis, especially when cross-sectional data is used in the estimation of the models.
These aspects are due to substantive nature, underlying process, misspecification, omission
of essential variables, measurement errors and so on (Haining(1990)). Given a non-
modifiable area and a regression model, disobedience to the assumption of error terms, that
is, spatial dependence and heteroscedasticity are often encountered. Spatial dependence
among the disturbances of spatial models is called spatial autocorrelation, which is serial
autocorrelation in essence. Heteroscedasticity is a phenomenon where the residuals do not
have a common variance.

Another characteristic of spatial analysis is rooted in the need to aggregate geographically
referenced data. This aggregation leads to the scale effect and the zoning or aggregation
effect, which are called modifiable areal unit problems (MAUP) (Openshaw et al (1979),
Aibia(1989)). Needless to say that these problems are not independent of each other but are
mutually related. Many geographically referenced data contain significant spatial
autocorrelation. Consequently, as argued in the literature, spatial dependence is at the core
of geographical or spatial analysis.

2.2 Spatially Correlated Errors in Regression Models
Let the standard multiple linear regression model under consideration be

y=XB+u (1)

where y is an nx1 vector of the explained variable; X is an nxm matrix of non-
stochastic variables of rank m (<n); P is an mx1 parameter vector; and u is an nx1
vector of residuals:

Y=o s Yis s ¥a) s Loxy o X
ﬁ=(ﬁ01ﬁ]a"'9ﬂm),’ X = . (2)
“=(“|""s“i""’“n)” il X o

In this paper, the model functionally relates the variations in land prices to structural land
attributes; that is, y denotes a vector of observed land price, X denotes a matrix of land
attributes, such as size, accessibility, and so on.

The standard assumptions we make about the residuals # in Eq. (1) are as follows.
E(u)=0, 3)
Var(u)=021, 4)

where I is a unit matrix. However, if the assumption is violated, that is, the residuals u are
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correlated among themselves (this correlation is called autocorrelation), then the ordinary
least squares estimator is inefficient, the estimator of the residual variance is biased and the
inference procedures are invalid (Cliff and Ord (1981), Anselin and Griffith(1988)). Spatial
autocorrelation is a serious issue in empirical research.

Again consider the standard model below.
y=XB Q)

If we assume that the problem to calculate y by using the input data § and X is a direct
problem, estimating parameter B from the data X and y is an inverse problem. The inverse
problem is said to be correct, correctly posed or well-posed if the following two conditions
hold : :

(a) for each X and y the equation has a unique solution

(b) the solution is stable, i.e., the operator X~ ! is defined on all of the space which

y belongs to and is continuous.

Otherwise, the problem is said to be incorrectly posed or ill-posed (Tikhonov et al., 1990).
As the number of data n is greater than that of parameter m, we are not able to solve this
equation and determine B. Thus, parameter estimation is a typical example of ill-posed
problems. Least squares method and maximum likelihood are the ways to have an
approximate solution which minimizes the sum of squared residuals or maximizes the
likelihood, where under the standard assumgtion of error terms the unknown variables are
the parameter B and the standard error o . If the residuals violate the assumption, we
should modify it. However, if the elements of variance-covariance matrix of error terms are
all unknown, and the number of parameter exceeds the number of equation, then the
problem becomes ill-posed. To improve the ill-posedness is called regularization in
mathematical sciences.

3. REGULARIZATION METHODS FOR THE SPATIALLY CORRELATED
ERRORS IN REGRESSION MODELS, A BRIEF OVERVIEW

A typical regularization approach is to change the solution space introducing some
constrained conditions. In this chapter, we make a brief overview of the regularization
methods for spatial autocorrelation of regression errors. Consider the situation where the
error terms ¢€; are correlated among themselves

y-XB+e ©

£=(61ssE1ymees 8y ) ™)
Among many regularization methods to consider the existence of spatial autocorrelation,
the most frequently used one is a mixed regressive-spatial autoregressive model in which
the spatial dependence is assumed to be generated by an autoregressive process of
explained variables y; .

y=pWy+Xp+u ®)
where W ={w;} is called spatial weight matrix, which denotes the effect of each zone, p
is a parameter, and u is an error vector that satisfies the assumption (3) and (4). In order to
estimate B with p , it is assumed that u obeys normal distribution u~N (0,0u21 ), so that the
maximum likelihood method can be applied.

In order to determine the effects of spatial autocorrelation, we must design the spatial

weight matrix W. The weighting system is often defined as the functions of the physical
distances between zones/points such as,

W1j=Cj/d5(i"j)’ w; =0 )]
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where ¢; is a constant which leads to

S wy =1, (10)

An alternative regularization method is to explain the spatial autocorrelation by adding
extra variables to the initial model,

y=Xp+WXy+u. (11)
This kind of method is called an expansion method (Casetti (1972)).

Another approach is to model the spatial autocorrelation through the error terms.
Analogous to some approaches in time series analysis, some regularization methods have
been suggested. Among them, a regression model with autoregressive model of error terms

y=XB+¢e, €= We+u (12)
and with moving average model

y=XB+e, e=AWu+u (13)
are typical.

Kelejian and Robinson (1993) introduced another type of error components formulation to
model the spatial autocorrelation among errors. The regression error term is assumed to be
the sum of the two parts shown below,

y=XB+¢e, e=Wu+v (14)
where

v~N(0,02I),E(uv')=0 . @15)

As shown in this section, there have been many regularization methods suggested for
spatial dependence. In any case, caution is necessary in interpreting estimated parameters in
applied spatial regressions.

4. AN EMPIRICAL ANALYSIS
4.1 Framework for the Empirical Comparison of Regularization Methods

Hedonic price regressions are based on the hypothesis that goods are valued for their
utility-bearing attributes or characteristics and have been used to estimate the various
transport projects. However, few empirical studies except Can (1992), that have employed
the hedonic approach, have paid attention to the analysis of spatial effects. Some
applications associated with land prices are found, such as in the papers of Takatsuka et al
(1996.a, b) and Benirschaka and Binkley (1994), but they focus on the mechanism or
formula of land price determination. Many of other applications treat the social science
phenomena such as crime or disease (Hainig(1990), Getis, A.(1995)) but have little
relationship to regional science. Thus, the importance of comparative study on the
applications of regularization methods to hedonic land price regression cannot be
overemphasized.

We simulate and compare the results by the regularization methods for spatially correlated
errors. Figure 1 shows the study area, which is a part of Adachi Ward in the Tokyo
Metropolis, located at about 15 to 35 minutes by Johban and Chiyoda Lines from Ueno
Station in Tokyo. For estimation of the function, officially assessed land price data set by
the National Land Agency in 1997 is used. Suppose that we formulate the land price
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function as
4
yi=Bo+ Eﬁjxﬁ
j=1

where
i : point number (i =1,**,52)

j : category number of explanatory variables (j=1,4)

y : officially assessed land price [ yen/m ]
x1 : lot area [mz]
x, : distance to nearest station [m]

x3 : time distance to Kita-Senju (terminal) station [minute]

x4 : floor-area ratio based on legislation [%]

and Bo,B; (j=1,""*,4) are unknown parameters.

rTohbu-Isezaki Lini!>

0
N . (IS

. Takenotsuka St.
* Data Point

Figure 1. Study Area

(16)

One standard regression model and five alternative models for regularization shown below

are applied to the same data set .

Model 1 y=XB+u

Model 2 y=pWy+XB+u

Model 3 y=XB+WXy+u

Model 4 y=Xp+e, e=AWe+u
Model 5 y=XB+e, e=AWu+u
Model 6 y=XB+e¢, e=Wu+v

where

u~N(0,0,T),v~N(0,0,’I),E(uv')=0 .

4.2 Detection of Spatial Correlation in the Residuals of Regression Model

1y
)
(10y
11y
12y

(17)

The estimation results of Model 1 by OLS are shown in Table 1. The correlation coefficient
is 0.890: Incidentally, there is no multicollinearity in this formulation. Figure 2 illustrates
the residuals in Model 1. It is implied that the residuals are spatially correlated among

themselves.

There are many approaches to assessing spatial autocorrelation. One statistic that is often

used is the Moran's statistic (Moran (1950)) defined as
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Table 1. Estimation Result of model 1

parameter || coefficinet | ¢-value |standard deviation
Bo 3.12X10° 18.5 1.69X10*
B, 2.03X10° 2.79 72.8
B, -25.8 -6.27 4.12
Bs -2.51X10° -2.09 1.20X10°
Ba 2.31X10 5.16 44.7

} 0 km

et””
=

| i/
f

+¥30,000/m? -
—¥30 000/m2 m }

Flgure 2. Visualization of Spatial Autocorrelation

ne'We

1 (18)
s e'e
where e is a vector of OLS residuals,
S=22W;. (19)
Joi
Under the standardization by Eq.(9), we have
n=s. (20)

Moran's statistic will be employed in this study because of its relative simplicity compared
to other statistics such as Lagrange multiplier statistic. The generalization of Moran's
statistic shown by Cliff and Ord (1973) is formulated as

1-E[]

* = Warlt) )
E1) -~ ik r(MW) 22)
T r(MwMW ) + o (MW ) +[r (W) F | 2
(n—k)n -k +2) - {E[T
where
M=I-XX'X)'X". (24)
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The distribution of the standardized Moran's statistic is shown to be asymptotically normal.
However, it should be noted that Moran's statistic cannot test the significance of spatial
autoregressive coefficient p or A directly (Anselin and Rey (1991)). Tests for the presence
of spatial autocorrelation by Moran's statistic are carried out, in which a null hypothesis of
no spatial dependence is tested against the hypothesis of dependence as reflected in
particular structure.

Table 2 shows the result of Moran's tests for the residuals of Model 1. As the values of
Moran's statistic depend on the assumed structure of W, we tested with five types of
parameter a in Eq.(9). In all cases, a null hypothesis of no spatial dependence is rejected at
the significance level of 1 %.

Table 2. Detection of Spatial Autocorrelation in Model 1

Parameter a 0.5 1 2 5 o
Moran's / 0.013 | 0.062 0.195 0.433 0.428
Z 5.21 4.77 4.01 3.74 2.85

Probabilities for normal distribution to

5 -4 -3
exceed the value of Z 0 0 6.0x10 1.9x10 4.4x10

4.3 Comparison among the Applications of Regularization Methods

As the parameter for spatial weight matrix W, a =2 is often adopted analogous to gravity
law. Thus, from now on, we will continue to analyze under the condition that o =2. A
summary overview of the results of Models 1 to 6 is given in Table 3. All the parameters
were estimated by maximum likelihood.

Table 3. Comparison among the Results of the Models
Model

1 2 3 4 5 6
Correlation Coefficient || 0.89C | 8.86 | 0.917 | 0.843 | 0.857 | 0.876
AIC 1152 | 1149 | 1141 | 1146 | 1148 | 1149
P = 0.48 — — — —
A — — — 0.68 | 0.56 =
By (X 105) 312 | 145 | 224 | 3.17 | 3.21 | 3.03
B, 203 | 167 | 234 | 122 | 136 | 136
B> 258 | -18.5| -24.8 | -28.2| -28.2 | -26.1
Bs (X 103) -2.51| -1.76 | -0.040| -1.49 | -1.80 | -1.04
B4 231 | 218 | 236 | 229 | 224 | 261
Y 909
Y2 32.2

It is not easy to compare Model 1 with Model 2 or 3, for the structures of the latter are
somewhat modified. However, Models 4, 5 and 6 are models where only the structure of
error terms is modified. With respect to the parameter B3 directly associated with
evaluation of transport projects, it should be remarked that its value in model 6 is less than
half of that in model 1. Hedonic regressions of property values, especially land prices, have
been used to estimate the benefits of various infrastructure projects. However, compared
with other statistical problems such as multicollinearity of explainable variables,
correlation and heterogeneity of the errors are largely ignored in the applications. Our
empirical results imply that lack of attention to spatial autocorrelation may lead to serious
mistakes in project evaluation. In addition, the regression coefficients, which affect the
estimation of infrastructure projects directly, depended on the Model we choose and their

Journal of the Eastern Asia Society for Transportation Studices, Vol.3, No.4, September, 1999



94
Morito TSUTSUMI, Eihan SHIMIZU, Hiroshi IDE and Jun-ya FUKUMOTO

differences cannot be ignored in measuring the impact of infrastructure projects.

Incidentally, Table 4 shows the standardized Moran's statistics for the residual # in Models
1to 5. As there are two dependent error terms in Model 6, Moran's test is not employed for
it. Null hypothesis of no spatial dependence is not rejected at the significance level of 5%
in Models 2, 4, 5 while it is rejected in Model 3. In this case, Model 3 is not effective in
getting rid of spatial autocorrelation of the residuals.

Table 4. Detection of Spatial Autocorrelation in Model 1 to 5
Model 1 2 3 4 5
Z 4.01 2.04 3.00 0.79 1.42
Probability for normal distribution to 0 0041 | 0003 | 0428 | 0.157
exceed the value of Z

5. CONCLUSIONS

Regional econometric models based on cross-sectional data have been indispensable in
regional and transport analysis. However, not enough attention had been paid to its
estimation in empirical applications except to the multicollinearity of explanatory variables.
Spatial correlation and heteroscedasticity of error terms that violate the independence
assumption on which the statistical analysis is based are often encountered and affect the
parameter estimation, but little attention has been paid to them.

In this paper, we have focused on the spatially correlated errors in regression models. A
brief overview of regularization methods for spatial autocorrelation of regression residuals
was made. It was shown that there have been many regularization methods suggested for
spatial dependence. Then, some empirical results associated with hedonic regression of
land prices were presented, since despite the increasing use of such methods, there has
been relatively little emprical analysis of land price regressions. Several regularization
methods were applied in the presence of spatially correlated errors. Our empirical results
implied that lack of attention to spatial autoBorrelation might lead to serious mistakes in
project evaluation. And it was demonstrated that regression coefficients, which affect the
estimation of infrastructure projects directly, depended on the regularization method that
we chose and their differences could not be ignored in measuring the impact of
infrastructure projects. We should note that several alternatives which are effective in
getting rid of spatial autocorrelation of the residuals may lead to quite different results in
project evaluation.

For future reference it should be noted that specification of the spatial weight matrix is also
an important issue since the misspecification causes serious mistakes in parameter
estimation (Griffith(1996.b)).
We believe that our empirical analysis provides some useful implications for spatially
correlated errors in hedonic regression models.
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