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Abstract: The fleet size and mix vehicle routing problem (FSMVRP) decides the optimal

vehicle fleet composition and routes under the consideration of a heterogeneous fleet.

This paper presents a new meta-heuristic, generic intensification and diversification search

(GIDS), for FSMVRP. A bank of twenty FSMVRP benchmark instances was utilized for

evaluating the efficiency and the accuracy of GIDS. Preliminary results showed that the

average deviation of the best known solution for the twenty instances was merely 0.698 %.

Moreover, we had updated the best known solutions for six instances. Such results imply

that GIDS should provide a powerful tool in solving FSMVRP.

T.INTRODUCTION

The fleet size and mix vehicle routing problem (FSMVRP) determines both the vehicle

fleet compositions and the routes to serve a number of customers with respective demand

from a central depot and under some side constraints. FSMVRP differs from the classical

vehicle routing problem (VRP) in that FSMVRP deals with a heterogeneous fleet of
vehicles. As an extension of VRP, FSMVRP considers not only variable link-traveled

cost but also fixed vehicle-used cost. This consideration is important when firms make

some tactical and operational decisions in order to minimize the cost of physical

distributions. Effectively selecting, to lease or acquire, the number of vehicles in different

type with a coherent routing policy for such vehicles to handle the system demand lies at

the heart of the decision-making of transportation and logistic activities.

Due to the NP-hard complexity of FSMVRP, existing published methods for FSMVRP are

almost all heuristics. Golden et al. (1984) adopted four modified savings methods which

were derived from the conventional savings algorithm (Clark and Wright, 1964). In
addition, Golden et al. (1984) proposed two giant tour partition methods, SGT and MGT.

Gheysens et al. (1986) showed a generalized assignment based two-phase approach.

Desrochers and Verhoog (1991) extended their matching based savings algorithm (MBSA)

initially designed for the VRP to solve the FSMVRP. The perturbation procedure

contributed by Salhi and Rand (1993) can be considered as a two-phased local search

heuristic. Han and Chang (1995) presented two hybrid heuristics, MGSROR and

MGORSR, which combined the multiple giant tour partition, the Or-opt exchange and the

perturbation procedure.
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The related vehicle routing research has trended toward artificial intelligence (AI)

heuristics since the 1980s (Fisher, 1995). Various new concepts and approaches,

currently named meta-heuristics, based on the traditional local search heuristics have

achieved success in attacking a variety of practical and difficult combinatorial optimization

problems. These meta-heuristics provide general frameworks that allow for creating new

ilybrids by combining various concepts derived from different areas such as classical

hluristics, artificial intelligence, biological evolution, neural systems, physical science and

statistical mechanics (Osman and Kelly, 1996). Many computational studies indicated

that meta-heuristics gained results better than conventional heuristics to conquer hard

combinatorial optimization problems.

Although the importance of FSMVRP has been recognized by researchers and practitioners,

it has ieceived relatively less attentions in literature than other vehicle routing and

scheduling problems. In addition, few of the recently developed meta-heuristics are

applied to sotre FSMVRP. The main purpose of this research is to build a framework

which combines the traditional local search heuristics and meta-heuristics for FSMVRP.

This paper is organized as follows. Section 2 is devoted to a sketch about some basic

ideas oi meta-hiuristics and the conceptual framework of our proposed meta-heuristic.

Section 3 presents the implementation design of the new meta-heuristic for FSMVM.

Section 4 reports some computational results of this meta-heuristic which is tested on the

twenty FSMVRP benchmarL instances. Finally, conclusions and suggestions for future

work are given in section 5.

2. THE META-HEURJSTIC FRAMEWORK OF GIDS

This paper presents a new meta-heuristic, generic intensihcation and diversification search

tCfO^Si, wirich combines the use of generic search methods with the concepts of

intensification and diversification strategies for a more intelligent search. Before we

present the framework of GIDS, it would be advantageous to briefly review some basic

ideas of meta-heuristics and generic search methods at the outset'

2.1 Some Basic Ideas of Meta-heuristics

According to Osman and Kelly (1996), ameta-heuristic is one which guides subordinate

(classicalj heuristics combining concepts derived from artificial intelligence, and biological,

mathemaiical, natural and physical sciences to improve their performance in the process of

search. Though the myopic move from one incumbent solution to its neighborhood

solution is basically the same as conventional local search methods, the overall search is

guided by intelligent ideas or strategies to get away from trapped at some local optima.

ln general, the basic ideas of some commonly used meta-heuristics and their related

methods can be summarized as follows.
(1) Search by learning, e.g. neural network (NN) by Hopfield and Tank (1985), and ant

colony optimization (ACO) by Dorigo et al. (1996);

(2) Keep good parts, e.g. genetic algorithm (GA) by Goldberg and Lingle (1985), and

scatter search (SS) by Glover (1994);

(3) Allow bad solutions:

- Tabu search methods, e.g. tabu search (TS) by Glover (1986), and tabu threshold
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(TT) by Glover (1995),

- Generic search methods, e.g. simulated annealing (SA) by Kirkpatrick et al. (1983),

threshold accepting (TA) by Dueck and Scheuer (1990), great deluge algorithm
(GDA) by Dueck (1993), and record-to-record travel (RRT) by Dueck (1993);

(4) Change search space:

- By altemating neighborhoods, e.g. variable neighborhood search (Mt{S) by
Mladenovic and Hansen (1991),

- By disturbing cost functions, e.g. noising method (NM) by Charon and Hudry
(1993), and search space smoothing (SSS) by Gu and Huang (1994); and

(5) Start from different points, e.g. greedy random adaptive search procedure (GRASP) by
Feo and Resende (1989), andjump search (JS) by Tsubakitani and Evans (1998).

Figure I gives a sketch of the basic strategies or ideas of some meta-heuristics. Note
that this sketch is a general representation rather than a conclusive classification of the
ideas or strategies embedded in different meta-heuristics. For example, tabu search
consists of several comprehensive concepts, such as intensification and diversification
strategies which can belong to the headings ofkeeping good parts or starting from different
points. Details of some existing meta-heuristics could be referred to Glover and Laguna
(1997), Osman and Kelly (1996), and Reeves (1993).

Figure 1. Some Basic Strategies of Meta-heuristics

2.2 Generic Search v.s. Local Search

Generic search (GS), the term we followed from Fisher (1995), is a meta-heuristic which
adopts a more generous accepting rule than traditional local (or neighborhood) search.
The traditional local search heuristic methods are subject to a rigid accepting rule which
limits the move to an acceptable neighbor only when it is better than the current solution.
Instead of such a rigid accepting rule, each different GS method has a more generous
accepting rule in its own form which would allow the overall search move through some
bad solutions when bypass the trap of a local optimum. Details of these GS methods are
referred to Kirkpatrick et al. (1983), Dueck and Scheuer (1990), and Dueck (1993).

Figure 2 gives an implementation flowchart of a generic search method. As shown in
Figure 2, while the guideline level of the meta-heuristic is governed by GS-related
accepting rules, the basic search engines are still classical local search methods.

Allow
bad solutions

Start from
different points
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neighborhood which will be accepted by the associated accepting rule' The outcome of

besi-improuement of a local search heuristic certainly is more desirable than that of first-

improvement. However, for GS-based meta-heuristic applications, the more efficient

implementation of first-improvement may give more time for the overall search to explore

more possible solutions. Accordingly, we included both first-improvement and best-

improvement into our studY.

2.3 Conceptual Framework of GIDS

GIDS, as mentioned earlier, combines generic search methods with the concepts of

intensification and diversification strategies. Intensification and diversification strategies

are two very important components of tabu search, which is one of the most notable meta-

heuristic with successful applications to many complicated combinatorial optimization

froblems. Intensification strategies are based on adjusting choice rules to encourage
'historically found elite solutions-and initiating a return to search them more thoroughly'

Diversification strategies, on the other hand, encourage the search process to examine

unvisited regions und to'g.n"rate solutions that differ in various significant ways from

those seen before. Note-that although GIDS shares some ideas of intensification and

diversification from tabu search, the implementation is very different to tabu search'

The conceptual framework of GIDS is shown in Figure 3' This framework consists of

three subsystems: local solution constructor (LSC), generic search for intensification (GSI)'

and perturbation search for diversification (PSD). Refening to Figure I as shown earlier'

GID'S respectively employs those ideas of allowing bad solutions, changing search space'

una rturting frorndifferent points in GSI and PSD. For intensification in GSI subsystem

of GIDS, ie applied generic search methods and the strategy of altemating neighborhoods

to enhance the area oi local search. For diversification in PSD subsystem of GIDS, we

adopted the strategies of disturbing cost functions and starting from different points to

diversifi the sphere of local ,.*.h. Details of the implementation design of GIDS for

FSMVRP is described next.

3. IMPLEMENTATION DESIGN OF GIDS FOR FSMVRP

while the conceptual framework of GIDS is shown in Figure 3, its application requires

more detailed disign of specific heuristic methods and modules to implement' The

flowchart of our imllementation design of GIDS for FSMVRP is given in Figure 4' As

showed in Figure +, LSC subsystem includes two modules, initial solution (IS) and

neighborhood-search (NS); GSI subsystem includes two modules, generic search I (Gl)

and-generic search 2 iCZi; *a PSD subsystem includes two modules, cost perturbation

(CP) and weighted savings (WS).

Table 2 Iists some available subordinate heuristics for each module of LSC, GSI and PSD

subsystems. The related strategies of the modules are also given in Table 2' It is worthy

of ntte that, based on these sirategies, different modules can be designed for solving

problems. In other words, GIDS, like TS, can be applied to solve varied combinatorial

optimization Problems'
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Figure 3. The Conceptual Framework of GIDS

Local Solution Constructor
(LSC )

Perturbation Search for
Diversification (PSD)

yes

STOP

v:

a--sro. -->-____________--l

Figure 4. The Implemenration design of GIDS for FSMVM
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Therefore, successful implementation of a generic search meta-heuristic also relies on

efficient local search "ngin.t. 
The acceping rules' contry] parameters and related

stopping rules for g.n.ri""..*"h methods such-as sA, TA, GDA and RRT are listed in

Table l.

yes

+

I 
output sest sotution 

I

@
Figure 2. Flowchart of Generic Search Meta-heuristics

Table l. Characteristics of Some Generic Search Methods

Parameters

Accepting Rule

deviation (D>0)

record (R

deterministic:

at<o

current solution.

Note that there are two ways to implement a local search method within a meta-heuristic:

the best-improvement o, tt " 
fittt-improvement. Best-improvement is to find the best

solution in the whole ,rlighbo.t ooa if tn" incumbent solution that the heuristic could

search for. First-improv#ent, on the other hand, is to find the first solution among the
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Table 2. Strategies and Heuristics in GIDS Subsystems

Subsystem Modules Available Heuristics

LSC IS

NS

modihed savings methods
perturbation procedure best- or

GSI GI, G2 SA, TA, GDA, RRT

allow bad solutions

change generic search

altemate neighborhoods

PSD CP

WS

NM, SSS

weighted savinqs

disturb cost functions

start from different poin

3.1 Design of LSC Subsystem

LSC subsystem first generates an initial solution, then produces a local optimal
improvement by some neighborhood search heuristic. Therefore, LSC includes an initial
solution (lS) module and a neighborhood search (NS) module.

( I ) The IS module

The modified savings method is selected to build IS module. Table 3 summarizes five
available modified savings formulas: combined savings (CS), optimistic opportunity
savings (OOS), realistic opportunity savings (ROS), revised ROS (ROS-y), and
proportional usage savings (PUS). CS, OOS, ROS, and ROS-y are adopted by Golden
et al. (1982); PUS is our proposed savings method which consults the usage efficiency
of vehicle. Notations in Table 3 are defined as follows:
C11: the travel cost of link (i, j),
S, = Cio + Co.i - Cu , is the savings value of travel cost by connecting link (i, i),
F(Z): the fixed cost of the smallest vehicle that can service a demand of Z,
P(Z): the capacity of the smallest vehicle that can service a demand of Z,
F'(Z): the fixed cost ofthe largest vehicle that has a capacity less than or equal to Z,
w : P(Zi + Z1) - P(max {2" Ztl),
6(w) :0, if w = 0; 6(w) = l, if w > 0,
y = 0.0 to 0.3, is a route shape parameter, and

U(Z) = F(Z)x lZ+ P(Z)1, is the proportional fixed cost of the smallest vehicle that can

service a demand of Z.

Table 3. Summary of Savings Methods

Savings Formula

cs csij = sij + F(z) + F(z) - F(zi+ Zl ( I )

oos os,,j = csij + Flp(zi + zl-zi-Zl (2)

ROS RS13 = CS;i + 6 (W)x F'[P(Zi + Z) - Zt - Zil (3)

ROS-y

PUS

ns;;(r) = RSij + (l - y )x Cij (4)

usij = sij + U(Zi) + u(zi) -U(zi+ zl (s)

For each modified savings method, both sequential and parallel constructing solution
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were considered. In our implementation, the sequential PUS was selected to generate

initial solution.

(2) The NS module

The Salhi and Rand (1993) perturbation procedure (SRP) provided a neighborhood

search heuristic for rsuvnp. The original perturbation nrgce{u-rg can be considered

as a two-phased heuristic. First, given a fixed type of vehicle, FSMVRP is solved by

using any classical vRP heuristics to generate an initial solution. Moreover, for each

route of the initial solution, the matching process is used to. determine the smallest

vehicle which is large enough to serve it. second, the matched routes are improved by

systematically usirr! sevJn refinement- modules such as reduction, reallocation,

combining, sharing, 
"r*upping, relax/comb and relax/share. These refinement modules

can be regard"a ut 
"o*pii"ut;d 

variants oftraditional inter-route exchange methods'

In NS module, we selected the second phase of SRP to be the subordinate local search

heuristic. Besides that the execution structure is simplified, three new refinement

modules: relax/redu, relax/real, and relax/swap are added to the SRP procedure.

Similar to original modules, these new modules allow replacing bigger vehicle while

inserting or exchanging nodes. Procedure that employs three new refinement modules

to replafe original ,ioiut"r is called SRPX. Both SRP and SRPX were adopted in our

implementatiin. Details of SRP and SRPX are refened to Han and Cho (1998)'

3.2 Design of GSI SubsYstem

GSI subsystem, based on generic search heuristic, is the core of GIDS' GSI subsystem

considers'two generic seich heuristics, threshold accepting (TA) and great deluge

algorithm (GDA), to guide the subordinate local search (i.e. SRP or SRPX) for extricating

tn! Uina oilocal optima. Two modules were designed for our GSI subsystem'

(1) The G1 Module

Gl module includes two loops to control the execution of generic search and local

search, where GDA is the generic search method and SRP is the local search heuristic'

In inner loop, first successively executes a GDA (based on first-improvement SRP) and

a SRP with best-imp.ou.*.nt; then a SRPX with first-improvement is optionally

executed while unimProved.

(2) The G2 Module

G2 module performs a single loop which merely executes generic search at every

iteration, then refines the final soiution by local search once' TA (based on first-

improvementSRP)ischosenasthe.genericsearchmethodandSRPwithbest-
improvement as the refining local search heuristic'

Note that for GSI subsystem, Gl and G2 ate implemented in the sequence of Gl, G2, and

Gl. Such a design of CSt arises from the strategy of altemating neighborhoods which is

similar to vNS. More details of Gl and G2 modules are given in Han and cho (1998)'
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3.3 Design of PSD Subsystem

The purpose of PSD subsystem is to sequentially stretch the search range of GSI. Both
cost perturbation (CP) module and weighted savings (WS) module are applied in PSD to
achieve more drastic change ofthe territory to be searched.

(l) The CP Module

CP module is based on the strategy of changing search space by perturbing cost
function. ln CP module, we disturbed the cost function by a flip-flop (FF) method
(Chen, 1996) and then improves current solution according disturbed cost by SRP with
best-improvement. The flip-flop perturbation basically changes the sign of the cost
function. Thus, the local maximum becomes local minimum and vice versa; the

search accordingly would move to a location way from previously searched space.

(2) The WS module

Another diversification strategy is to create various start points and to re-search from
LSC subsystem. Equation (6) shows a weighted savings (WS) method which
regulates the weights of travel cost and vehicle cost in PUS savings formula.
US11 (m) = w(m). S1.; + (l - w(m)). U1.;, m=1-M
where, USi.; is the total savings; Si.1 is the savings of travel cost; U1 is the savings of
vehicle cost; w(m) is the weight value,0<w(m) (l; and M, a predefined value,

means the number of initial solutions. According to the weighted savings, IS module
in LSC subsystem generate different initial solutions at each iteration.

Figure 5 gives an abstract presentation of the search process of GIDS. Each of the small
circles denotes the neighborhood of a local (or neighborhood) search, and each of the big
circles denotes the region explored by a specihc generic search module. Dotted lines
indicate jumps to diversified areas for CP or WS.

Figure 5. An Abstract Presentation of GIDS Search Process

(6)
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3.4 Stopping Rules and Parameters setting

TherearetwostoppingrulestocontrolGIDS.stoppingrulelisthedifference,dt,of
orj."tiu. function-values between the best solution found in LSC and that found in GSI'

iiil t; more than zero, i.e. GSI gaining improvement, then executes CP module; otherwise'

.f,."f., stopping rule 2- Stopiing tit. i it a counter related to the number of initial

solutions, M. If the number of geierated initial solutions is less than M, WS module must

be executed; otherwise, stops th; GIDS and prints out the best result found in the overall

process.

The heuristics and parameters selected for application analysis of GIDS are listed in Table

4.

Table 4. Heuristics and Parameters of GIDS for FSMVRP

GDA (L = Xox 1.2, S : Xox 0.01)*

SRP (best-imProvement)

SRPX ment)

G2

CP

WS

TA (T = Xsx 0.2, K: 10)*

- Xnt th. 
"Eective 

value of the initial solution'

4. APPLICATION ANALYSIS

4.1 Benchmark Test Instances of FSMVRP

Twenty FSMVRP test instances provided by Gotden et al. (1984) are used to evaluate the

performance of GIDS. The size of these instances vary from 12 to 100 customers except

the depot. Table 5 summarizes the features and the best known solutions of the twenty

instances. The best known solutions include total cost (objective value), applied method'

and the source for eachinstance. These results provide the benchmark for evaluating the

results of our GIDS aPPlications'

4.2 Computational Results

The GIDS algorithm was coded in UNIX C language a1d ran under the SPARC 10 SI-JN

workstation. The criteria selected to measure the perfomnnce of the proposed meta-

heuristic are classified into two items: the quality of the solution and the computational

effort. The quality of solution calculates the percentage of deviation between the best

known solution and the best solution found by GIDS. To avoid the computational errors,
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Table 5. Summary of FSMVRP Benchmark Test Instances
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all of the cost are previously rounded off to integers for a colrespondent basis of
comparison. The computational effort is measured by seconds of computer's CPU time.

No. Size Veh. Best Known Solutions

Method

112
2t2
320
420
520
620
730

3

3

5

3

5

)
5

4

5

4

4

6

6

3

J

J

5

6

J

3

602 ROM
722 SRP

965 SGT

6440 MGSROR3

I006 .MGSROR3

6516 SRP

7298 vRP solutionr

Desrochers (1991)

Salhi and Rand (1993)

Golden et al. (1984)

Han and Chang (1995)

Han and Chang (1995)

Salhi and Rand (1993)

Golden et al. (1984)

Golden et al. (1984)

Salhi and Rand (1993)

Golden et al. (1984)

Golden et al. (1984)

Salhi and Rand (1993)

Golden et al. (1984)

Golden et al. (1984)

Han and Chang (1995)

Salhi and Rand (1993)

Salhi and Rand (1993)

Han and Chang (1995)

Desrochers (1991)

Han and (r995

830
930
l0 30

ll 30

t2 30

13 50

t4 50

15 50

16 50

t7 75

18 75

19 100

20 100

2349

2209
2368

4763

4092
2438
9132
2615
2765
1767

2397

8700

4109

VRP solutionr
SRP

VRP solutiont
MGT + Oropt

SRP

MGT + Oropt
MGT + OrOpt

MGORSR3
SRP

SRP

MGORSR3
ROM

MGSROR3

I the types ofvehicle.
t the best known solution comes from the result of original VRP.

The computational results of GIDS can be compared with other well-performance

heuristics. In Table 6, the computational results of six heuristics: MGT+Or, ROM, SRP,

MGORSR, MGSROR, and GIDS, for all twenty instances of the FSMVRP are given. For

each instance, the first column lists the number of instances, the second column gives the

number of customers, the third column records the cost of the best known solution, and

from the fourth to the ninth columns contain the results respectively for these heuristics

expressed as a percentage difference from the best known solution. The computer CPU

time spent in running GIDS program is recorded in the tenth column. Further, the final
column updates the latest results of best known solution obtained by our proposed GIDS.

Table 6 shows that the average percentage difference among the twenty test instances of the

proposed GIDS meta-heuristic is only 0.698 yo, which yields the lowest average accuracy

as compared with other five heuristics tested. Moreover, the standard deviation of the

percentage error of GIDS is 1.143 o/o, and the worst deviation is less than 3.8 %. Overall,
GIDS performed remarkably well than MGT+Or and ROM for the twenty benchmark

instances, and presented almost similar quality to SRP, MGORSR and MGSROR for
solving FSMVRP. It is worth noticing that the amount of instances which produced the

best known solution by GIDS is eight, and that six of them update the best published

results for instance 3,7, 8, 10, 15, and 19. Detailed and the most updated results cat be

Journal of the Eastern Asia Society for Tlansportation Studies, Vol.3, No.3, September, 1999



266
Anthony Fu-Wha HAN and Yuh-Jen CHO

found on our research website of http ://www.tem.nctu.edu.td-network.

Table 6. Comparison of Computational Results with Published Heuristics

No Size Best

known
solution

Difference (%)t

MCT+Or ROM SRP MGORSR MGSROR GIDS (sec)* solution

Updated

best known

I

2

3

4

5

6

7

8

9

l0
il
t2
l3
t4
l5
l6
t7
l8
l9
20

t2
t2
20

20

20

20

30

30

30

30

30

30

50

50

50

50

75

75

100

r00

602
722

96s
6440
1006

65 l6
7298
2349
2209
2368
4763

4092
2438
9132
26t5
2765
t767
2397

8700

4109

3.322

0.000

0.104

7.609
0.696

7.029
t.24'1

0.766

0.498

0.084

0.000

t.075
0.000

0.000

0.9s6
2.061
0.905

1.460

0.241
2.093

3.987

0.000

0.31 I

0.000

0.000

0.2''t6

l.l l0
0.639

0.589

0.422

0.189

0.073

0.451

0.821

0.956

0.976
1.075

L043
1.770

0.000

0.000

0.000
-0.4 l5
0.078

0.994
0.046
-0.069

-0.043

0.634
-0.042
0.i36
0.367

2.9t2
0.329
-0. l9l
t.3'14
3.735
r.836

-0. l3 8

2.2t5

6.6

7.6

21.5

20.2

13.9

24.6

106.4

33.2

27.0

2t.5
72.7

58.2

t73.1

144.'t

r00.2
49.2

231.2

3 10.9

772.7

656.5

602
722

961

6440

I 006

65 l6
1293
2348
2209
2367

4761

4092
2438
9t32
2610
2't65
t'767

239'7

8688

4109

0.664 1.993 0.664

l . 108 0.000 0.000

2.591 3.938 0.207

I .66 l 0. 109 0.093

3.380 0.895 0.596

0.015 0.000 6.369

1.685 1.425 I .63 I

1.618 0.766 0.639

0.996 0.000 0.s89

1.056 0.380 0.760

2.079 1.176 2.03'l

3.960 0.000 0.122

3.568 2.256 0.451

0.252 0.230 0.909

0.268 0.306 0.000

l .591 0.000 L374
6.225 0.000 t.132
3.838 t.752 0.000

0.000 0.586 1.931

3.383 1.898 0.170

Average (%) 1.507

Deviation (%) 2.170

No. of best solutions 4

t.997 0.886

1.634 I .052

06

0.984

t.4t7
2

0.734
0.906

4

0.698

1.143

8

t42.9
212.4

t Diff*."..' de"otes the percentage of deviation between the best known solution (X*) and the best

solution (X) found by specific heuristic' Difference (%) = (X - X*)+ X*x 100'

* '(sec),represents the CPU time in terms of second consumed while executing GIDS.

On the other hand, Table 6 shows the computer running time expanded on GIDS. Due to

the diversity of computer equipment, the computational effort is considered as a reference.

The average and standard deviation of CPU time for GIDS executing on the twenty

instances are 142.9 and 212.4 seconds. The range of CPU time is from 6.6 to 772.7

seconds.

5. CONCLUSIONS

In this paper, we proposed a new meta-heuristic, generic intensification and diversification

search (GIDS), which combined generic search methods and meta-strategies of
intensification and diversification. GIDS was adapted for the fleet size and mixed vehicle

rouring problem (FSMVRP) by integrating two generic search methods, threshold

accepting (TA) and great deluge algorithm (GDA), and flip-flop method (FF) into a special

GIDS application.

The conceptual framework of GIDS mainly consists of three subsystems: local solution

.onrtru.toi (LSC), generic search for intensification (GSI), and perturbation search for
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diversification (PSD). Six modules, initial solution (lS), neighborhood search (NS),

generic search one (Gl), generic search two (G2), cost perturbation (CP), and weighted

iavings (WS), are designed to implement GIDS. Further, a modified saving formula,

proportional usage savings (PUS) and a revised perturbation procedure (SRPX) were

propored. All of the modules were coded in UNIX Q language and executed at a SPARC

i O 
'Sfn 

i workstation. A bank of twenty FSMVRP instances is utilized to evaluate the

performance of GIDS.

Computational results in terms of CPU time indicated that our proposed GIDS seems to

perform more efficiently than most existing heuristic in solving FSMVRP. GIDS tested

urnong the twenty instances produced an average percentage deviation of 0.698 Yo ar,d

updatid best known solutions of six instances. The computer time ranged from 6.6 to

772.7 seconds. Thus, this results imply that GIDS seems to be an appropriate and

powerful tool to solve FSMVRP.

Due to the well efficiency of computational test, the application of GIDS to practical

logistics and transportation problems will become an vital research topic. In the future,

several interesting directions are suggested as follows:
(l) Refinement of the general framework. Various strategies from other meta-heuristics

can be properly added into the GSI and PSD subsystem to enhance the search function.

(2) Sensitivity analysis of GIDS. Experimental designs are necessary to validate the

sensitivity of GIDS while altering the parameters, and adjusting the sequence or

combination of distinct modules.

(3) Extension to other hard VRP related problem. The periodic vehicle routing problem

(PVRP) and vehicle routing problem with time windows (vRPTw) are further

considered.

REFERENCES

Bodin, L., Golden, B.L., Assad A., and Ball, M. (1983) Routing and scheduling of vehicle

and crew: the state of an. special issue of Computers and Operations Research 10, 63-

2ll.

Chang, B.C. (1994) Heuristics Methods and Applications of Fleet Size and Mixed Vehicle

Routing Problems. Master Thesis, Institute of Civil Engineering, National Chiao Tung

University, Taiwan. (in Chinese)

Chen, G.C. (1996) Applications of Noising Method and Flip-flop Method to Travelling

Salesman Problem. Term Report, Department of Transportation Engineering and

Management, National Chiao Tung University, Taiwan. (in Chinese)

Charon, L and Hudry, O. (1993) The noising method: a new method for combinatorial

optimization. Operations Research I-,etters 14, 133-137.

Clarke,G., and Wright, J.W. (1964) Scheduling of vehicles from a central depot to a

number of delivery points. Operations Research 12, 568-589'

Desrochers, M., and Verhoog, T.W. (1991) A new heuristic for the fleet size and mix

Jourlal 6t lhc Eastern Asia S<^-iely tor Transportation Studies, Vol.3, No.3, September, 1999



Anthony Fu-Wha HAN and Yuh-Jen CHO

vehicle routing problem. computers and operations Research 18,263-274.

Dorigo, M.,Maniezzo, V. and Colorni, A. (1996) The ant system: optimization by a colony

of cooperating agents. IEEE Transactions on Systems' Man, and Cybernetics 26,29-41 .

Dueck, G., and Scheuer, T. (1990) Threshold accepting: a general purpose optimization

algorithm appearing superior to simulated annealing. Journal of Computational Physics

90, l6l-175.

Dueck, G. (1993) New optimization heuristics: the great deluge algorithm and the record-

to-record travel. Journal of Computational Physics 104,86'92.

Feo, T.A. and Resende, M.G.C. (1989) A probabilistic heuristic for a computationally

difficult set covering problem. Operations Research Letters 8,67'71.

Fisher M.L. (1995) Vehicle routing. In M. Ball, T. Magnanti, C. Monma and G.

Nemhauser (eds.), Network Routing. Handbooks in Operations Research and

Management Science 8, Elsevier, Amsterdam.

Gheysens, F.G., Golden, B.L. and Assad, A. (1936) A new heuristic for determining fleet

size and composition. Mathematical Programming Studies 26,233-236.

Glover, F. (1986) Future paths for integer programming and links to artificial intelligence.

Computers and Operations Research 13, 533-549.

Glover, F. (1994) Genetic algorithms and scatter search: unsuspected potentials. Statistics

and Computing 4, l3l-140.

Glover, F. (1995) Tabu thresholding: improved search by non-monotonic trajectories.

ORSA Journal on Computin g7, 426-442.

Glover, F. and Laguna M. (1997) Tabu search. Kluwer Academic Publishers,

Massachusetts.

Goldberg, D.E. and Lingle, R. (1985) Alleles, loci and travelling salesman problem. In J.J.

Grefenstette (ed.), Proceeding of an International Conference on Genetic Algorithms
and their Applications. 154-159.

Golden, B.L., Assad, A., Levy, L. and Gheysens, F. (1984) The fleet size and mix vehicle

routing problem. Computers and Operations Research 11,49-66.

Gu, J. and Huang, X. (1994) Efficient local search with search space smoothing: a case

study of the traveling salesman problem (TSP). IEEE Transactions on Systems, Man,

and Cybernetics 24, 728-736.

Han, A.F. and Chang, B.C. (1995) New heuristics for fleet size and mix vehicle routing

problem. Paper presented at the INFORMS Fall'95 Intemational Conference Meetings,

New Orleans, U.S.A., October 29-November l.

Journal of the Eastern Asia Srciety tirr Tiansportation Studies, Vol.3, No.3, September, 1999



A New Meta-Heuristic Approacb to the Fleet Size and Mix Vehicle Routing Problem

Han, A.F. and Cho, Y.J. (1998) Hybrid Heuristic Methods for Complicate Vehicle Routing
Problems: Applications to FSMVRP. Report No. NSC-87-2211-E-009-024, Department of
Transportation Engineering and Management, National Chiao Tung University, Taiwan. (in
Chinese)

Hopfield, J.J. and Tank, D.W. (1985) Neural computation of decisions in optimization
problems. Biological Cybernetics 52, 141-152.

Kirkpatrick, S., Gelatt, C.D. and Vecchi, M.P. (1983) Optimization by simulated annealing.

Science 220,671-680.

Mladenovic, N. and Hansen, P. (1997) Variable neighborhood search. Computers and
Operations Research 24, 1097 -1100.

Osman, I.H. and Kelly, J.P. (1996) Meta-heuristics: an overview. In I.H. Osman and J.P.

Kelly (eds.), Meta-heuristics: Theora and Applications. Kluwer Academic Publishers,

Massachusetts.

Reeves, C. R. ed. (1993) Modern Heuristics Techniques For Combinatorial Problems.
John Wiley and Sons, New York.

Salhi, S. and Rand, G.K. (1993) Incorporating vehicle routing into the vehicle fleet

composition problem. European Journal of Operational Research 66, 313-330.

Tsubakitani S. and Evans, J.R. (1998) An empirical study of a new meta-heuristics for the

traveling salesman problem. European Journal of Operational Research 104, 113-128.

Journal of the Eastcrn Asia S<rciety lirr Tiansportation Studies, Vrl.3, No.3, September, 1999


