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Abstract

The need for actual multi-objective optimization in Pavement Management Systems
(PMS) has been recognized by many practitioners. Due to the difficulty in formulation and
lack of appropriate analytical tool, researchers and practitioners has been relying on either
traditional single-objective optimization or some form of ad hoc techniques to handle
multiple objective functions. Genetic Algorithms (GA), an artificial intelligence technique,
has been found to be a robust and suitable algorithm for multi-objective optimization. This
paper presents detailed description of a GA multi-objective optimization algorithm
developed at the National University of Singapore. A rank-based fitness assignment
technique and the concept of Pareto optimality were used in the formulation. The proposed
methodology has been demonstrated with an example pavement maintenance problem.
Various sets of multi-objectives including two-objective, three-objective and four-
objective formulations are studied.

1. INTRODUCTION

In Pavement Management Systems (PMS), maintenance and rehabilitation programs are
traditionally scheduled based on single-objective optimization. The conventional single-
objective optimization techniques such as Linear Programming (Lytton 1985), Dynamic
Programming (Feighan ez al. 1987, Li et al. 1995), Integer Programming (Fwa et al. 1988)
have been used. The difficulty in modeling and formulation, and lengthy computation time
are the main reasons that limit the usage of such models. This situation becomes worse
when of multiple objectives are involved.

Though the existence of various conflicting objectives in PMS programming is recognized,
there is no significant research reported in the literature to address the implications and
procedures of considering these objectives simultaneously. Some of the common
objectives are to attain minimum overall maintenance costs, highest level-of-service,
minimum safety hazards, maximum available resource utilization and minimum disruption
to normal traffic flows, etc. Any maintenance policy established based on a particular
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objective often overlooks or downgrades the importance of other objectives. For example,
the objective of minimizing maintenance costs would find a policy that requires the least
cost compared to other polices, but most likely this least-cost policy would not provide the
highest level-of-service. Similarly, the highest level of service policy would cost more than
the least-cost policy. To deal with such conflicting objectives, simultaneous multiple-
objective optimization is necessary.

A robust search technique known as Genetic Algorithms (GA), a branch of artificial
intelligence, formulated based on natural genetics (Holland 1975), has recently been found
as a suitable algorithm for single-objective optimization of PMS problems (Fwa et al.
1994a, Fwa et al. 1994b, Fwa et al. 1996). GA is also capable to accommodate multiple
objectives (Goldberg 1989) of any form of linear, non-linear or any other complex
expressions. The authors have successfully developed a multi-objective optimization GA
scheme to solve a pavement management programming problem (Fwa et al. 1999). This
paper provides the detailed background to the development work, and gives illustrative
examples to demonstrate its application. The methodology is tested with an example PMS
problem. The study covers the case of two-objective, three-objective and four-objective
optimization.

2. APPLICATION OF GA TO MULTI-OBJECTIVE OPTIMIZATION
2.1 Handling of Multiple Objective Functions

Conventional optimization techniques cannot be easily extended to true multi-objective
optimization mainly because they were not designed to handle multiple solutions (Fonseca
and Fleming 1995). On the other hand, genetic algorithms have been identified as one with
good application potential for multi-objective optimization (Fonseca and Fleming 1995).
There are four GA based approaches generally adopted for multi-objective optimization:
(a) Plain aggregate approach, (b) Population-based non-Pareto approach, (c) Pareto-based
approach, and (d) Niche induction technique.

(a) Plain aggregate approach: This approach is similar to other scalar fitness function, in
which objectives are weighted and combined to form a scalar function. The advantage
of this system is that it produces a compromized solution which requires no further
interaction from the decision maker. In the event that the compromized solution is not
acceptable to the decision maker, the program has to be re-run to find another
compromised solution. In addition to this, there is no unique guideline for the
combination.

(b) Population-based non-Pareto approach: This was first introduced by Schaffer
(1985) where he termed the technique as Vector Evaluated Genetic Algorithm
(VEGA). In VEGA, GA solutions are divided equally and assigned to each objective
separately for evaluation to select to select fitter solutions. Next, these all groups of
fitter solutions are combined, crossover and mutation operator are applied to produce
new solutions. VEGA performs implicit combination of objectives which leads to split
the population into species, a phenomenon known as speciation (Schaffer 1985). It has
noted by Fleming and Pashkevich (1985) that the points of a trade-off surface in
concave surface cannot be found by optimizing the linear combination of objectives.
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Although this approach does not use the concept of Pareto-optimality and also not
well-suited for problems with concave trade-off surface, VEGA has been found to
produce better results than conventional methods.

(c) Pareto-based fitness assignment technique: This technique was first proposed by
Goldberg (1989) where non-dominated solutions are identified and an equal probability
of reproduction is applied to each non-dominated solutions. Fonseca and Fleming
(1993) proposed a rank-based fitness assignment technique for defining Pareto
optimality. The rank-based fitness assignment technique has two advantageous (i)
Pareto-ranking is blind to the convexity or the non-convexity of the trade-off surface
and (i) it rewards solutions with good performances with respect to all objectives
(Fonseca and Fleming 1995). This is a promising technique for multi-objective
optimization and therefore, this approach is adopted in this paper. The concept of
Pareto-optimality and fitness assignment is discussed in later part of this paper.

(d) Niche induction technique: In the Pareto-based approach all non-dominated solutions
receive equal probability of sampling but that dose not guarantee that they may be
uniformly sampled. Fonseca and Fleming (1995) noted that finite populations with the
multiple equivalent optima tend to converge to only one of them due to what is known
as genetic drift. To overcome the genetic drift, Goldberg (1989) proposed fitness
sharing scheme known as Niche Induction Technique. The goal of fitness sharing is to
distribute the solutions along the Parero optimal frontier.

2.2 Concept of Pareto-optimality

Unlike single-objective optimization, the solution to the multi-objective problem is not a
single point but a family of points of non-dominated solutions. The set of non-dominated
solutions is known as the Pareto set. For a two-objective problem, this Pareto set can be on
a curve which is known as Pareto front while in the case of three-objective problem, it
would be a surface. The whole purpose of multi-objective programming is to find the
global Pareto front from where decision maker would select a maintenance policy. The
solutions in the Pareto set provide an insight into the characteristics of the problem before
a final decision is made. In the GA process, the optimization process continues untill the
globally non-dominated solutions are obtained. This global Pareto set is know as the Pareto
optimal set. In this study, by the introduction of improved algorithm (discussed later) and
avoiding any duplication of solutions, no genetic drift is observed. The improved algorithm
works well enough to prevent any genetic drift for the optimization process.

3. EXAMPLE PROBLEM
3.1 Discription of Problem

A network level pavement maintenance scheduling problem solved by Fwa ef al. (1998)
using the plain-aggregate approach is considered for the development and analysis of
multi-objective programming. This classic pavement maintenance problem was initially
solved by Fwa et al. (1988) using integer programming. Later on, GA was employed (Fwa
et al. 1994a) to solve the problem. It includes resource constraints, rehabilitation
constraints, highway classes, severity distress levels, priority to each repair activity and

Journal of the Eastern Asia Society for Transportation Studies, Vol.3, No.3, September, 1999



120

more importantly, several objectives can be derived for the problem. Interested readers are
referred to the literature (Fwa et al. 1988) for in-depth knowledge of the problem. Only a

Kh Zahidul HOQUE, Fwa Tien FANG and Weng Tat CHAN

few aspects of the problem are discussed here.

There are five constraints, namely budget constraint, manpower availability, equipment
availability, production constraints and rehabilitation constraints. The example problem
considers four highway classes (I, II, III and IV), four repair activities (A, B, C and D) for
defects and three need-urgency levels (high, medium and low). The necessary input data

are recorded in Table 1 to Table 3.

Table 1 Resource Requirements

(a) Required Workdays for Repair

Highway Repair Activity
Class A B C D
{Need Urgency: {Need Urgency: {Need Urgency: {Need Urgency:
high, medium, high, medium, high, medium, high, medium,
low} low} low} low}
I {4, 6, 3} {6, 4,25} {8, 2, 13} {2,3,18}
II {2,2,4} {6, 10, 20} {9, 8, 15} {2, 8,15}
I {5.5,5} {8,2, 15} {6, 10, 15} {5, 10, 10}
v {3, 4, 15} {4, 16, 15} {8, 12, 18} {4, 20, 15]
(b) Required Man-days
Repair Required Manpower
Activity (Man-days/Production Day)
Supervisor Driver Labourer Equipment
A 0 2 4 0
B 1 1 S 1
C 1 3 S 2
D 1 2 2 4
(b) Required Man-days
Repair Required Equipment
Activity (Equipment-days/Production Day)
Dump Pickup Crew Cab | Distributors | Loaders Rollers
Truck Truck
A 1 0 1 0 0 0
B 1 1 0 0 0 1
C 3 1 1 1 0 1
D 2 1 0 1 0 0
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Table 2 Repair Priority and Rehabilitation Constraints

Highway Class & Repair Activity
Other Parameters A B C D
{Need {Need {Need {Need
Urgency: high, | Urgency: high, | Urgency: high, | Urgency: high,
medium, low} | medium, low} | medium, low} | medium, low}
I Priority {90, 63,54} {100, 90, 60} {70, 63, 42} {50, 45, 30}
Rehabilitation | {0.82,0.7, 1.0} | {0.83,0.9,1.0} | {1.0, 0.9,1.0} {0.8, 1.0, 1.0}
Factors
II Priority {72, 54, 45} {80, 70, 50} {56, 49, 35} {40, 35, 25}
Rehabilitation {0.93,0.84, | {1.0,1.0,1.0} | {1.0,1.0,1.0} {0.92, 0.96,
Factors 0.81} 0.9}
III Priority {76.5, 58.5, {85, 75, 65} {59.5, 52.5, {42.5,37.5,
40.5} 31.5} 22.5}
Rehabilitation {0.92,0.78, {1.0,1.0,1.0} | {1.0,1.0,1.0} {0.83,0.91,
Factors 0.8} 0.96}
v Priority {70.5, 36, 18} {65, 40, 20} {45.5,28,14} | {32.5,20, 10}
Rehabilitation | {1.0,1.0,1.0} | {1.0,1.0,1.0} | {1.0, 1.0, 1.0} | {1.0,1.0,1.0}
Factors

Table 3 Work Production, Costs and Resource Information

(a) Work Production and Costs

Budget Allocation
Manpower Availability

Equipment Availability

$18,000 (shallow patching), $20,000 (deep patching),
$13,000 (premix leveling), $9,000 (crack sealing)

90 man-days (supervisors), 135 man-days (drivers),
270 man-days (laborers), 90 man-days (operators)
135 days (dump trucks), 45 days (pickup trucks), 45 days (crew
cabs), 45 days (distributors), 45 days (loaders), 45 days (rollers)

Maintenance Activity Production Rate Unit Cost
Need Urgency Level Need Urgency Level
Low Medium High Low Medium | High
Shallow Patching (kg/day) | 6,537.6 3,813.6 2,542.4 0.0938 [ 0.1311 | 0.1751
Deep Patching (kg/day) 17,978.4 9,443.2 6,174.4 0.0852 | 0.1333 | 0.1817
Premix Leveling (kg/day) | 10,896.0 | 80,448.8 49,940.0 0.0403 | 0.0420 | 0.0467
Crack Sealing (km/day) 10.1 1315 16.4 81.37 70.19 | 63.98
(b) Resource Availability
Parameter Value
Analysis Period 45 working days

3.2 GA Coding and Operation

Coding of problem parameters is a key element in GA optimization because GA does not
work on the problem itself directly but on the coded parameters. There are altogether 48
decision variables, i.e., maintenance decisions in equivalent workdays unit. The decision
variables are integer numbers and therefore, integer coding is adopted for the example
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problem. Each decision variable is located at the gene and all the genes constitute a
chromosome, and the number of genes is represented by the string length or length of
chromosome.

GA analysis starts with generating a pool of initial solutions randomly. These solutions are
evaluated against the predefined objective functions and based on their evaluation values
artificial fitness are assigned. Next, generation of solutions (offspring) is created from the
best of the last generation through reproduction and mutation operations. The creation of
offspring and evaluation is continued till the stopping condition is met.

The efficiency of genetic algorithm, however, depends largely on how constraints are
modeled. GAs tend to produce a number of invalid offspring during offspring generation
process. There are several techniques to handle various constraints. One of them is Decode
and Repair Algorithm. In this method, initial GA solutions are generated such a way that
all of the constraints are satisfied and offspring are checked against each of the constraints
and if any constraint violation is identified, the invalid solution is repaired by a repair
algorithm. This study employed an decode and repair algorithm for the example problem.

3.3 PMS Problem with Two Objectives

Two-objective problem is the simplest form of multi-objective optimization problem
because the problem parameters can be easily analyzed and visualized graphically. The
problem with more than two objectives is difficult to analyze due to the involvement of too
many attributes and dimensions. In order to explain GA operations for multi-objective
optimization, the example problem is solved for two objectives initially. The two
objectives are (a) to maximize the maintenance work production in workday units and (b)
to minimize the total maintenance cost. The maintenance work production is calculated as
the sum of the number of equivalent workdays for each maintenance multiplying with
associated priority weights. The total maintenance cost is computed by the unit price listed
in Table 1 and the number of workdays for each maintenance activity.

3.3.1 Fitness Assignment

When the two objectives are optimized simultaneously, the solutions in the pool spread all
over the two-dimensional space as shown in Fig. 1. It is obvious from the figure that none
of the solutions from the pool may be chosen without having an artificial fitness for each
solution. This is where multi-objectives optimization differ from single-objective
optimzation. In single-objective optimization, fitness are computed by the objective
function values of that objective only while for multi-objective optimization, all the
objective function values are to be accounted for in fitness assignment.

Goldberg (1989) proposed the first technique for fitness assignment. This method works by
assigning rank 1 to all the non-dominated solutions and removing them from the
contention, and then finding a new set of non-dominated solutions and ranking them as
rank 2, and so forth. Fonseca and Fleming (1993) proposed a slightly different approach
where the rank of each solution is determined by the number of solutions in the pool that
dominates the subject solution. Those solutions that are not dominated by any other
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solutions have a rank of 1. The solutions with rank 1 is the non-dominated solutions.
Equation (1) can be used for the rank calculation.

Maintenance Costs ($)

R(S)=1+S, @))
where, R(S;) = rank of solution S; in any particular pool;
S, = number of solutions that dominate S in that pool.
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Fig. 1 Distribution of GA solutions on two-dimensional plane

Fig. 2 plots the solutions with rank 1 to rank 10. According to the direction of objective
functions, the solutions that require less costs but produce better work production are
preferable. It should be noted that this rank-based fitness changes after every GA iteration
because once new solutions come in the fresh fitness of each solution has to be determined.

Maintenance Costs ($

Fig. 2 GA solutions with rank 1 to rank 10 after 1* iteration
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3.3.2 Optimization by Simple GA (SGA)

The GA procedures for multi-objective programming is similar to that of single-objective
optimization as shown in a flow chart (Fig. 3). The main difference is in the evaluation and
fitness assignment technique as explained earlier. Another important factor to consider is
the optimization direction. GA performs the optimization in one direction only, i.e., either
minimization or maximization. For multi-objective programming the inherent objective is
to find global non-dominated solutions (solution of rank 1). Thus, the direction of GA
optimization would be to find solutions with rank 1. In other words, GA would work to

minimize the ranks of the solutions.

Define problem variables and
determine input parameters

]

Generate initial pool of solutions

> Evaluate solutions for all objectives

Fitness assignment: Rank-based approach

Selection and formation of parent pool

Y

New Pool
Generate offspring
solutions and copy

the rest from best of
the parent pool

Stopping
criteria met
?

Print all non-dominated solutions (Pareto set)

Y

Select a solution from Pareto optimal set

Y

Print best selected maintenance program

nd of program

Fig. 3 Multi-objective optimization procedure by SGA

Initially, it was assumed that Simple GA operation procedure would be able to perform
reasonably. However, the results revealed that GA convergence may not occur after a large
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number of iterations. Fig. 4 plots the convergence trends with the number of GA iterations.
A pool of 200 solutions with 80% offspring at each iteration could not reach convergence
even after 500 iterations. This could happen because of two possible reasons. First, in each
iteration the GA solution pool maintains only 20% best solutions from the parent pool and
80% new solutions are generated. There is no guarantee that the newly generated 80%
solutions would have better fitness compared with their parents. A number of inferior
solutions are generated in each iterations while some of the fitter solutions in the parent
pool are not maintained in the new pool and this leads GA operation to lose many fitter
solutions.
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Fig. 4 Convergence of Pareto frontier by SGA optimization
Second, unlike single-objective optimization, multiple objective programming cannot

concentrate on a single point or solution. In single objective programming it may be
beneficial to have many duplicates of the best solution because this increases their
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possibility of being chosen for the next generation. However, if it is allowed to produce
duplicates of the best solution for multiple objective programming, there is a high
possibility that the solution pool will consist of only a few individual solutions. When
plotted on a graph all the duplicate solutions merged into a point and they will not appear
as a Pareto Frontier (Fig. 4). Thus the purpose of finding a Pareto Frontier may not be
achieved.

3.3.3. Optimization by Improved GA (IGA)

The aforementioned two reasons suggest that if it is possible to prevent losing better
solutions from the parent pool and not to allow any duplication, the convergence problem
could be solved. This study proposes an improvement algorithm that is capable of serving
the purpose.

In the simple GA approach, offspring pool is created by copying certain number of the best
solutions from the parent pool and the rest of the offspring are generated by crossover and
mutation operation (Fig. 3). The improved algorithm works slight differently from the
above approach. The stepwise procedures are shown in Fig. 5.

Offspring solutions are generated first from the best solutions and their fitness are assessed
against parent solutions. By comparing the ranks of all solutions in the parent pool and all
newly created solutions, a new pool is obtained with the fitter solutions. This approach
guarantees that no fitter solutions are left in the parent pool.

The above approach coupled with the *“no-duplication” strategy has worked well. Fig 6
plots convergence curves. The difference is more evident when Fig 6 is compared with Fig
4. The improved GA, after 50 iterations, was able to produce a well-defined Pareto
frontier. Though the program was executed for 500 iterations, it is clear that the IGA could
converge after 250. It is to note that the both approaches took almost same computation
time of less than 1.0 CPU second, while running on Silicon Graphics Workstation
(IMPACT R10000). The superiority of the improved algorithm (IGA) is obvious.

3.4 PMS Problem With More Than Two Objectives

For illustration purpose, the example problem is also solved for three and four objectives
respectively. The three-objective problem assumes an additional objective to maximize
pavement conditions for the network together with the previous two objectives. The
inclusion of the third objective, i.e., maximizing pavement condition, helps achieving
better pavement conditions (Fig. 7(a)) while compromizing on the other objectives. This
means, better pavement condition is achieved at the expense of more costs (Fig. 7(b)). It is
noticeable that better pavement conditions can be obtained by the three-objective
optimization.

The fourth objective was to minimize the total manpower (in mandays) requirements. This
objective conflicts with that of maximum work production and highest pavement
condition. However, due to manpower shortage many authorities may prefer to have a
maintenance program that would require minimum manpower while other vital objectives
are not overlooked. The inclusion of the fourth objective produces results that are not
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easily explainable. Certainly, the program produces a pool of non-dominated solutions that
requires less manpower compared to that of 2-objective and 3-objective (Fig. 7(d)).
Interestingly, the final pool of solutions require more costs than the other two cases (Fig.
7(b)). This could due to be the complexity of maintaining all the four objectives
simultaneously. It is also interesting to note that while the program spends so much budget,
it fails to produce better pavement conditions and higher work productions. Thus, the
inclusion of the fourth objective only ensures minimum manpower requirement but all
other objectives are compromized.

Define problem variables and
determine input parameters

Generate initial pool of solutions

Evaluate solutions for all objectives

A Y

New Pool Fitness assignment:
Select the best from Rank-based approach
parent pool and ]

generated offspring

solationsite fonn Selection and formation

new pool of parent pool
A Y

Generate offspring
solutions by mutation
and crossover from
parent poll

Stopping
criteria met
?

Y Yes

Print all non-dominated solutions (Pareto set)

L]

Select a solution from Pareto optimal set

Y

Print best selected maintenance program

nd of program

Fig. 5 Multi-objective optimization procedure by IGA
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Fig. 6 Convergence of Pareto frontier by IGA optimization
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40

+ 2-Objective Solutions - 3-Objective Solutions 0 4-Objective Solutions

(a) Effect on pavement condition

Solutions arranged in descending order of pavement condition

60000

(b) Effect on maintenance costs 3

Solutions arranged in descending order of maintenance costs

(c) Effect on production index

Solutions arranged in descending order of work productions

Fig. 7 Effect of third and fourth objectives on various parameters
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Fig. 7 Effect of third and fourth objectives on various parameters (continued)

4. SELECTION OF MAINTENANCE PROGRAM

The multi-objective optimization program, whether two or more objectives are considered,
produces a pool of non-dominated solutions as explained earlier. All these non-inferior
maintenance programs bear the same level of preference. Now the problem arises as to
how a non-dominated solution from the Pareto set should be selected. In other fields of
engineering, there are many ways to select one where an individual can exercise his or her
judgement in selection. One of such techniques would be to select a maintenance program
that would require a maintenance budget close to the expected goal (target of maintenance
budget set after the analysis). Considering the 2-objective analysis for the example
problem, if the authority is likely to fix a budget of $35,000, the optimum maintenance
program would be the one that requires a total maintenance cost of $34,984. Similarly, an
optimal maintenance program for the 3-objective and 4-objective analysis can be selected
accordingly.

5. CONCLUSION

This paper presents the methodology and procedure of multi-objective optimization of
PMS problems using rank-based fitness assignment technique and genetic algorithms. The
methodology was developed to find the Pareto optimal set of solutions (i.e., maintenance
programs) and was tested with an example maintenance planning problem. Two sets of
procedures (optimization by Simple GA (SGA) and Improved GA (IGA)) have been
examined to study the various aspects of multi-objective optimization. It was found that
SGA did not perform satisfactorily while IGA’s performance was excellent. The idea for
the development of IGA was not to generate any duplicate solution and select the new pool
of solution such that fitter solutions are not left out in the parent pool. This procedure
worked very successfully for the analysis of the example problem.
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In addition to the 2-objective problem, this paper also examined the implications and
effects of inclusion of third and fourth objectives to the optimization. It was revealed that
as more objectives were considered the problem became more complex and it was very
difficult to explain a problem physically. However, it was obvious that the inclusion of any
particular objective led to better value of that objective while compromizing on other
objectives. The selection of a maintenance program from the Pareto set is also important.
One of the selection methods could be to fix the budget as a goal after the analysis is done
and find a solution close to that goal. This method can be applied to any analysis that
comprises two or more objectives.
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