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Abstract

The need for actual multi-objective optimization in Pavement Management Systems
(PMS) has been recogaized by many practitioners. Due to the difficulty in formulation and

lack ofappropriate analyical tool, researchers and practitioners has been relying on either
traditional single-objective optimization or some form of ad hoc techniques to handle
multiple objective functions. Genetic Algorithms (GA), an artificial intelligence technique,
has been found to be a robust and suitable algorithm for multi-objective optimization. This
paper presents detailed description of a GA multi-objective optimization algorithm
developed at the National University of Singapore. A rank-based fitness assignment
technique and the concept of Pareto optimality were used in the formulation. The proposed
methodology has been demonstrated with an example pavement maintenance problem.
Various sets of multi-objectives including two-objective, three-objective and four-
objective formulations are studied.

1. INTRODUCTION

In Pavement Management Systems (PMS), maintenance and rehabilitation programs are
traditionally scheduled based on single-objective optimization. The conventional single-
objective optimization techniques such as Linear Programming (Lytton 1985), Dynamic
Programming (Feighan et al. 1987,Li et al. 1995), Integer Programming (Fwa et al. 1988)
have been used. The difficulty in modeling and formulation, and lengthy computation time
are the main reasons that limit the usage of such models. This situation becomes worse
when of multiple objectives are involved.

Though the existence of various conflicting objectives in PMS programming is recognized,
there is no significant research reported in the literature to address the implications and
procedures of considering these objectives simultaneously. Some of the common
objectives are to attain minimum overall maintenance costs, highest level-of-service,
minimum safety hazards, maximum available resource utilization and minimum disruption
to normal traffic flows, etc. Any maintenance policy established based on a particular
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objective often overlooks or downgrades the importance of other objectives. For example,

thi objective of minimizing maintenance costs would find a policy that requires the least

cost compared to other polices, but most likely this least-cost policy would not provide the

highest level-of-service. Similarly, the highest level of service policy would cost more than

thi least-cost policy. To deal with such conflicting objectives, simultaneous multiple-

objective optimization is necessary.

A robust search technique known as Genetic Algorithms (GA), a branch of artificial

intelligence, formulated based on natural genetics (Holland 1975), has recently been found

", " 
*it"bl" algorithm for single-objective optimization of PMS problems (Fwa et al'

1994a, Fwa et ;1. lgg$b,Fwa et al.1996). GA is also capable to accommodate multiple

objectives (Goldberg 1989) of any form of linear, non-linear or any other complex

e*prer.iorr. The authors have successfully developed a multi-objective optimization GA

."h"*" to solve a pavement management programming problem (Fwa er c/. 1999)' This

paper provides the detailed background to the development work, and gives illushative

i*urnpi", to demonstrate its application. The methodology is tested with an example PMS

problem. The study covers thi case of two-objective, three-objective and four-objective

optimization.

2.APPLICATIoNoFGAToMULTI-oBJECTIVEoPTIMIZATIoN

2.1 Handling of Multiple Objective Functions

Conventional optimization techniques cannot be easily extended to true multi-objective

optimization -uirty because they were not designed to handle multiple solutions (Fonseca

ana fteming t995). On the otheihand, genetic algorithms have been identified as one with

good application potential for multi-objective optimization (Fonseca.and Fleming 1995)'

There are four GA based approaches generally adopted for multi-objective optimization:

(a) plain ag$egate"pprou"i, (b) Population-based non-Pareto approach, (c) Pareto-based

approach, an! (d) Niche induction technique'

(a) Plain aggregate approach: This approach is similar to other scalar fitness function, in

which objectives are weighted and combined to form a scalar function' The advantage

of this system is that it produces a compromized solution which requires no further

interaction from the decision maker. In the event that the compromized solution is not

acceptabletothedecisionmaker,theprogramhastobere-runtofindanother
compromisedsolution.Inadditiontothis,thereisnouniqueguidelineforthe
combination.

(b) Population-based non-Pareto approach: This was first introduced by Schaffer

(1985) where he termed the technique as Vector Evaluated Genetic Algorithm

iVpOA) In VEGA, GA solutions ,r" di't id"d equally and assigned to each objective

separately for evaluation to select to select fitter solutions. Next, these all groups of

fitter solutions are combined, crossover and mutation operator are applied to produce

new solutions. VEGA performs implicit combination of objectives which leads to split

the population into speties, a phenomenon known as speciation (Schaffer 1985)' It has

noted by Fleming and Pashkevich (1985) that the points of a. trade-off surface in

concave surface cannot be found by optimizing the linear combination of objectives'
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Although this approach does not use the concept of Pareto-optimality and also not
well-suited for problems with concave trade-off surface, VEGA has been found to
produce better results than conventional methods.

(c) Pareto-based fitness assignment technique: This technique was first proposed by
Goldberg (1989) where non-dominated solutions are identified and an equal probability
of reproduction is applied to each non-dominated solutions. Fonseca and Fleming
(1993) proposed a rank-based fitness assignment technique for defining Pareto
optimality. The rank-baseC fitness assignment technique has two advantageous (i)
Pareto-ranking is blind to the convexity or the non-convexity of the trade-off surface
and (ii) it rewards solutions with good performances with respect to all objectives
(Fonseca and Fleming 1995). This is a promising technique for multi-objective
optimization and therefore, this approach is adopted in this paper. The concept of
Pareto-optimality and fitness assignment is discussed in later part of this paper.

(d) Niche induction technique: In the Pareto-based approach all non-dominated solutions
receive equal probability of sampling but that dose not guarantee that they may be
uniformly sampled. Fonseca and Fleming (1995) noted that finite populations with the
multiple equivalent optima tend to converge to only one of them due to what is known
as genetic drift. To overcome the genetic drift, Goldberg (1989) proposed fitness
sharing scheme known as Niche Induction Technique. The goal of fitness sharing is to
distribute the solutions along the parero optimal frontier.

2.2 Concept of Pareto-optimality

Unlike single-objective optimization, the solution to the multi-objective problem is not a
single point but a family of points of non-dominated solutions. The set of non-dominated
solutions is known as the Pareto set. For a two-objective problem, this Pareto set can be on
a curye which is known as Pareto front while in the case of three-objective problem, it
would be a surface. The whole purpose of multi-objective programming is io find the
global Pareto front from where decision maker would select a maintenance policy. The
solutions in the Pareto set provide an insight into the characteristics ofthe problem before
a final decision is made. In the GA process, the optimization process continues untill the
globally non-dominated solutions are obtained. This global Pareto set is know as the pareto
optimal set. In this study, by the introduction of improved algorithm (discussed later) and
avoiding any duplication of solutions, no genetic drift is observed. The improved algorithm
works well enough to prevent any genetic drift for the optimization process.

3. EXAMPLEPROBLEM

3.1 Discription of Problem

A network level pavement maintenance scheduling problem solved by Fwa et al. (1998)
using the plain-aggregate approach is considered for the development and analysis of
multi-objective programming. This classic pavement maintenance problem was initially
solved by Fwa et a/. (1988) using integer programming. Later on, GA was employed (Fwa
et al. 1994a) to solve the problem. It includes resource constraints, rehabilitation
constraints, highway classes, severity distress levels, priority to each repair activity and
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more importantly, several objectives can be derived for the problem' Interested readers are

referred to the literature (Fwa er a/. 1988) for in-depth knowledge of the problem' only a

few aspects ofthe problem are discussed here.

There are five constraints, namely budget constraint, manpower availability, equipment

availability, production constraints and rehabilitation constraints' The example problem

considers lour highway classes (I, 11, 11I and IV), four repair activities (A, B, C and D) for

defects and three need-urgency levels (high, medium and low). The necessary input data

are recorded in Table 1 to Table 3.

Table I Resource Requirements

(a) Required WorkdaYs for RePair

ir ActivitY

{Need UrgencY:
high, medium,

{Need Urgency:
high, medium,

{2,3, 18}{8,2, l3}{6,4,2s\
{2,8, ls}{9,8, 15}{6, 10,20}
{s, 10, 10}{6, 10, 15}{8,2, ls}{5, 5,5}

{8, 12, l8}{4, 16, 1s}{3,4, 1s}

(b) Required Man-daYs

(Man-days/Production DaY)

0

I
2

4

4
5

5

2

)
I
3

2

(b) Required Man-daYs

(Equipment-d"Ytttodu.t,o! Da)2
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Table 2 Repair Priority and Rehabilitation Constraints

(a) Work Production and Costs

(b) Resource Availability

Parameter Value
Analysis Period
Budget Allocation

Manpower Availability

Equipment Availability

45 working auy
$ I 8,000 (shallow patching), $20,000 (deep patching),
S13,000 (premix leveling), $9,000 (crack sealing)
90 man-days (supervisors), 135 man-days (drivers),
270 man-days (laborers), 90 man-days (operators)
135 days (dump trucks),45 days (pickup trucks), 45 days (crew

cabs), 45 days (distributors), 45 days (loaders),45 days (rollers)

3.2 GA Coding and Operation

Coding of problem parameters is a key element in GA optimizationbecause GA does not
work on the problem itself directly but on the coded parameters. There are altogether 4g
decision variables, i.e., maintenance decisions in equivalent workdays unit. The decision
variables are integer numbers and therefore, integer coding is adopted for the example

Highway Class &
Otler Parameters

Repair Activity
A

{Need
Urgency: high,
medium, low)

B

{Need
Urgency: high,
medium, low)

C

{Need
Urgency: high,
medium, low)

D

{Need
Urgency: high,
medium, low)

I PrioriW {90, 63,54} {100, 90, 60} {70,63,42\ {50, 4s, 30}
Rehabilitation

Factors
{0.82, 0.7, 1.0} {0.83, 0.9, 1.0} {1.0,0.9,r.0} {0.8, 1.0, 1.0}

T Priority {72, s4,4sl {80, 70, 50} {56,49, 35} {40,3s,2s\
Rehabilitation

Factors
{0.93, 0.84,

0.81)
{1.0, 1.0, 1.0} {1.0, 1.0, 1.0} {0.92,0.e6,

0.e)
m Priority {76.5, 58.s,

40.5)
{85, 75, 65} {s9.s, s2.s,

31.5)
{42.s,37.s,

22.51
Rehabilitation

Factors
{0.e2,0.78,

0.8)
1.0, 1.0, 1.0) {r.0, 1.0, 1.0} {0.83, 0.91,

0.96)
ry PrioriW {70.5,36, 18} 165,40,201 145.5,28, t4\ 132.s,20, t}l

Rehabilitation
Factors

{1.0, 1.0, 1.0} {1.0, 1.0, 1.0} { 1.0, 1.0, 1.0} {1.0,1.0,1.0}

Table 3 Work Production, Costs and Resource Information

Maintenance Activity Production Rate Unit Cost
Need Urgency Level Need Urgency Level

Low Medium Hieh Low Medium High
Slallow fatctung 1tg/aay; 6,537.6 3,813.6 2,542.4 0.0938 0.1311 0.1751
Deep Patching (kg/day) 17,978.4 9,443.2 6,174.4 0.0852 0. I 333 0. t 8l7
Premix Leveling (kgldav) 10,896.0 80,448.8 49,940.0 0.0403 0.0420 0.0467
Crack Sealing (km/day) 10. l 13.5 t6.4 81.37 70.19 63.98
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problem.Eachdecisionvariableislocatedatthegeneandallthegenesconstitutea
chromosome,andthenumberofgenesisrepresentedbythestringlengthorlengthof
chromosome.

GA analysis starts with generating a pool of-initial solutions randomly' These solutions are

evaluated against trre prZdefineO-obiective functions and based on their evaluation values

artificial fitness are urrign"A. Next, generation of solutions (offspring) is created from the

best of the last generation through reproduction and mutation operations' The creation of

oiitpti.g and ev-aluation is continued till the stopping condition is met'

Theefficiencyofgeneticalgorithm,however'dependslargelyonhowconstraintsare
modeled. GAs tend t" p."arJ" t number of invalid offspring durinq offspring generation

process. There are r"u"iui*tniques to handle various constraints' One of them is Decode

andRepairAlgorithm.Inthis,.thod,initialGAsolutionsaregeneratedsuchawaythat
alloftheconstraintsaresatisfiedandoffspringarecheckedagainst.each".f.l"'*,j111]i1:
and if any constraint violation is identified, the invalid solution is repaired by a repatr

algorithm. This study 
".pr"v"a 

un d"cod" and repair algorithm for the example problem'

3.3 PMS Problem with Two Objectives

Two-objectiveproblemisthesimplestformofmulti-objectiveoptimizationproblem
because the probtem ;*;;i;t" "an 

be easily analyzed and. visualized graphically' The

problem with more tti, t*" 
"U:tctives 

is difficult 
1" 

*|v:t 1l:::^y 
involvement of too

manyattributesanddimensions.InordertoexplainGAoperationsformulti-objective
optimization, tt" "rumpr"-froblem.is 

solved for two objectives initially. The two

objectives are (a) to maximize the maintenance work production in-workday units and (b)

to minimize the total maintenance cost. The maintenance work production is calculated as

the sum of the number of equivalent workdays for each maintenance multiplying with

associated priority weights. The total mainten;ce cost is computed by the unit price listed

in Table I and the nonib.' of workdays for each maintenance activity'

3.3.1 Fitness Assignment

when the two objectives are optimized simultaneously, the solutions in the pool spread all

over the two-dimensio; ap; as shown in Fig. l. Ii is obvious from the figure that none

of the solutions from the pool may be chosen irittrout having an artificial fitness for each

solution. This is where multi-objectives optimization differ from single-objective

optimzation. f, ,ing1"-ol.i""ti'" oitimization' fitness are computed by the objective

function values of that objective only while'for multi-objective optimization, all the

objective function val.,es are to be accounted for in fitness assignment'

Goldberg(19s9)proposedthefirsttechniqueforfitnessassignment.Thismethodworksby
assigning rank I ti all the non-dominated solutions and removing them from the

contention, and then finding a new set of non-dominated solutions and ranking them as

rank2,and so forth. Fonsela and Fleming tlss:l proposed a slightly different approach

where the rank of each solutio, is determini ry itr" numuer of solutions in the pool that

dominates the subject ,oiution. Those solutions that are not dominated by any other
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solutions have a rank of 1. The solutions with rank 1 is the non-dominated solutions.
Equation (l) can be used for the rank calculation.

R(S'):I+S, (l)

where, R(S,) = rank of solution S, in any particular pool;
S, : number of solutions that dominate S, in that pool.
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Fig. I Distribution of GA solutions on two-dimensional plane

Fig.2 plots the solutions with rank 1 to rank 10. According to the direction of objective
functions, the solutions that require less costs but produci better work production are
preferable. It should be noted that this rank-based fitness changes after every GA iteration
because once new solutions come in the fresh fitness of each solution has to be determined.
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3.3.2 Optimization by Simple GA (SGA)

The GA procedures for multi-objective programming is similar to that of single-objective

optimizaiion as shown in a flow chart (Fig. 3). The main difference is in the evaluation and

fitness assignment technique as explained earlier. Another important factor to consider is

the optimization direction. GA performs the optimization in one direction only, i.e., either

minimization or maximization. For multi-objective programming the inherent objective is

to find global non-dominated solutions (solution of rank l). Thus, the direction of GA

optimization would be to find solutions with rank l. In other words, GA would work to

minimize the ranks of the solutions.

Fig. 3 Multi-objective optimization procedure by SGA

Initially, it was assumed that Simple GA operation procedure would be able to perform

,"uronubly. However, the results revealed that GA convergence may not occur after a large
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number of iterations. Fig. 4 plots the convergence trends with the number of GA iterations.

A pool of200 solutions with 80% offspring at each iteration could not reach convergence

even after 500 iterations. This could happen because oftwo possible reasons. First, in each

iteration the GA solution pool maintains only 20o/o best solutions from the parent pool and

80% new solutions are generated. There is no guarantee that the newly generated 80%

solutions would have better fitness compared with their parents. A number of inferior
solutions are generated in each iterations while some of the fitter solutions in the parent

pool are not maintained in the new pool and this leads GA operation to lose many fitter
solutions.
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Work Production (Workdays)

Fig. 4 Convergence of Pareto frontier by SGA optimization

Second, unlike single-objective optimization, multiple objective programming cannot

concentrate on a single point or solution. In single objective programming it may be

beneficial to have many duplicates of the best solution because this increases their

4500
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possibility of being chosen for the next generation. However, if it is allowed to produce

duplicates of the best solution for multiple objective programming, there is a high

possibility that the solution pool will consist of only a few individual solutions. When

plotted on a graph all the duplicate solutions merged into a point and they will not appear

as a Pareto Frontier (Fig. a). Thus the purpose of finding a Pareto Frontier may not be

achieved.

3.3.3. Optimization by Improved GA (IGA)

The aforementioned two reasons suggest that if it is possible to prevent losing better

solutions from the parent pool and not to allow any duplication, the convergence problem

could be solved. This study proposes an improvement algorithm that is capable of serving

the purpose.

In the simple GA approach, offspring pool is created by copying certain number of the best

solutions from the parent pool and the rest ofthe offspring are generated by crossover and

mutation operation (Fig. 3). The improved algorithm works slight differently from the

above approach. The stepwise procedures are shown in Fig. 5.

Offspring solutions are generated first from the best solutions and their fitness are assessed

against parent solutions. By comparing the ranks of all solutions in the parent pool and all

newly created solutions, a new pool is obtained with the fitter solutions. This approach

guarantees that no fitter solutions are left in the parent pool.

The above approach coupled with the "no-duplication" strategy has worked well. Fig 6

plots convergence curves. The difference is more evident when Fig 6 is compared with Fig

4. The improved GA, after 50 iterations, was able to produce a well-defined Pareto

frontier. Though the program was executed for 500 iterations, it is clear that the IGA could

converge after 250. It is to note that the both approaches took almost same computation

time of less than 1.0 CPU second, while running on Silicon Graphics Workstation

(IMPACT R10000). The superiority of the improved algorithm (IGA) is obvious.

3.4 PMS Problem With More Than Two Objectives

For illustration purpose, the example problem is also solved for three and four objectives

respectively. The three-objective problem assumes an additional objective to maximize

pavement conditions for the network together with the previous two objectives. The

inclusion of the third objective, i.e., maximizing pavement condition, helps achieving

better pavement conditions (Fig. 7(a)) while compromizing on the other objectives. This

means, better pavement condition is achieved at the expense of more costs (Fig. 7O). It is
noticeable that better pavement conditions can be obtained by the three-objective

optimization.

The fourth objective was to minimize the total manpower (in mandays) requirements. This

objective conflicts with that of maximum work production and highest pavement

condition. However, due to manpower shortage many authorities may prefer to have a

maintenance program that would require minimum manpower while other vital objectives

are not overlooked. The inclusion of the fourth objective produces results that are not
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easily explainable. Certainly, the program produces a pool of non-dominated solutions that

requires less manpower compared to that of 2-objective and 3-objective (Fig. 7(d)).

Interestingly, the final pool of solutions require more costs than the other two cases (Fig.

7(b)). This could due to be the complexity of maintaining all the four objectives

simultaneously. It is also interesting to note that while the program spends so much budget,

it fails to produce better pavement conditions and higher work productions. Thus, the

inclusion of the fourth objective only ensures minimum manpower requirement but all
other objectives are compromized.

Fig. 5 Multi-objective optimization procedure by IGA

Define problem variables and

determine input parameters

Generate initial pool of solutions

Evaluate solutions for all objecti

New Pool
Select the best from

parent pool and

generated offspring
solutions to form

new pool

Stopping
criteria met
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Generate offspring

solutions by mutation
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Print all non-dominated solutions (Pareto set)
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Print best selected maintenance program
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Solutions arranged in desceding order of manpower requirements

Fig. 7 Effect of third and fourth objectives on various parameters (continued)

4. SELECTION OF MAINTENAI\CE PROGRAM

The multi-objective optimization program, whether two or more objectives are considered,

produces a pool of non-dominated solutions as explained earlier. All these non-inferior

maintenance programs bear the same level of preference. Now the problem arises as to

how a non-dominated solution from the Pareto set should be selected. In other fields of
engineering, there are many ways to select one where an individual can exercise his or her

judgement in selection. One of such techniques would be to select a maintenance progrirm

that would require a maintenance budget close to the expected goal (target of maintenance

budget set after the analysis). Considering the 2-objective analysis for the example

p.obl.rn, if the authority is likely to fix a budget of $35,000, the optimum maintenance

progr* would be the one that requires a total maintenance cost of $34,984. Similarly, an

optimal maintenance progrirm for the 3-objective and 4-objective analysis can be selected

accordingly.

5. CONCLUSION

This paper presents the methodology and procedure of multi-objective optimization of

fUS proUlems using rank-based fitness assignment technique and genetic algorithms' The

methodology was developed to find the Pareto optimal set of solutions (i.e., maintenance

programs) *a *"t tested with an example maintenance planning problem. Two sets of
procedures (optimization by Simple GA (SGA) and Improved GA (IGA)) have been

ixamined to study the various aspects of multi-objective optimization. It was found that

SGA did not perform satisfactorily while IGA's performance was excellent. The idea for

the development of IGA was not to generate any duplicate solution and select the new pool

of solution such that fitter solutions are not left out in the parent pool' This procedure

worked very successfully for the analysis of the example problem'
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(d) Effect on Manpower Requirements
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In addition to the 2-objective problem, this paper also examined the implications and
effects of inclusion of third and fourth objectives to the optimization. It was revealed that
as more objectives were considered the problem became more complex and it was very
difficult to explain a problem physically. However, it was obvious that the inclusion of any
particular objective led to better value of that objective while compromizing on other
objectives. The selection of a maintenance program from the Pareto set is also important.
One of the selection methods could be to fix the budget as a goal after the analysis is done
and find a solution close to that goal. This method can be applied to any analysis that
comprises two or more objectives.
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