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abstract: This paper explores an approach for improving the performance of an Artificial
Neural Network (ANN) freeway incident detection model. The performance of the model
was evaluated using real-world incident and non-incident data. Initial results revealed that a
high number of false alarms were caused by congested conditions. To improve operational
performance, a model that applies a variable decision threshold (depending on the time of
day) was formulated. The results reported here indicate that this model achieves improved
false alarm results without sacrificing the detection rate performance. These results also

suggest that additional improvements in performance may be obtained by implementing a

dynamic decision threshold.

l.INTRODUCTION

Freeway incidents are increasingly contributing to urban congestion, pollution and

deteriorated safety conditions. The high cost of congestion caused by incidents such as

accidents, disabled vehicles and other events that result in a capacity reduction of the
facility, has prompted a growing world-wide interest in developing efficient and effective
automated incident detection methods. Such incidents account for a large percentage of the

total delays and costs due to congestion on major freeways around the world. The adverse
effects of incidents are also expected to increase as freeway facilities in major cities around

the world become more congested.

The benefits to be derived from early incident detection and prompt response in terms of
providing real-time traveller information and timely dispatch of emergency services can

drastically reduce traffic delays, air pollution and improve safety and real-time traffic
control. Intelligent Transportation Systems (ITS) technologies are structured to address

these needs through Advanced Traffic Management Systems (ATMS) and Advanced
Traveller Information Systems (ATIS). For these systems to be effective, it is necessary to
develop reliable procedures for detecting incidents in a short time. Few of the algorithms
developed or proposed over the last two decades have been implemented in practice due to
varying operational levels in terms of detection rate, false alarm rate and mean time-to-
detect. Therefore, the need is pressing for more effective real-time incident detection
algorithms that maximise detection rate while only generating an operationally acceptable
level of false alarms.
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This paper first discusses the development of a neural network freeway incident detection

model. In contrast to published artificial neural network (ANN) incident detection

algorithms which relied on simulated or limited field data for model development and

t"rtirg, the models described in this paper were trained and tested on a real-world data set

of 100 incidents. The incident detection performance of the ANN model is first reported

based on a validation-test data set of 40 incidents that were independent of the data used

for training. The false alarm rates (FAR) of the model are then evaluated based on non-

incident data that were collected from a freeway section which was video-taped for a

period of 33 days. The initial FAR results revealed that a high number of false alarms were

due to congestion. To improve operational performance, a model that applies a variable

decision threshold (depending on the time of day) was formulated. The results for the

variable decision threshold model are then reported. These results clearly indicate that it is
possible to achieve improved false alarm results without sacrificing the detection rate

performance. They also suggest that additional improvements in performance may be

obtained by implementing a dynamic decision threshold.

2. AUTOMATIC INCIDENT DETECTION

Automatic incident detection systems involve two main components: a traffic detection

system and an incident detection algorithm. The traffic detection system provides the traffic

information necessary for detecting an incident while the incident detection algorithm

interprets that information and ascertains the presence or absence of incidents or non-

recurring congestion. Inductive loop detectors embedded in the freeway pavement are

typically used to obtain traffic data, primarily on occupancy (percent of time a detector is

occupied) and volume. Dual loop installations also provide speed data. More recently,

image-based video detectors have also been used for the same purpose in the

AUTOSCOPE (Michalopolous e, al., 1993) and IMPACTS (Hoose, 1992) incident

detection systems.

2.1 Incident Detection Algorithms

A number of AID algorithms have been developed from a variety of theoretical

foundations. Their structure varies in the degree of sophistication, complexity, data

requirements and the type of surveillance technology used for data collection. Some of the

most widely used algorithms include the comparative or pattern comparison algorithms, eg.

the Califomia-type algorithms (Lrvin and Krause, 1979); time series algorithms, eg. the

Auto-Regressive Integrated Moving Average (ARIMA) algorithm (Ahmed and Cook,

1982); and the McMaster algorithm (Persaud and Hall, 1989)'

2.2 Artificial Neural Networks

Few of the previously developed algorithms havs been implemented in practice due to
various limitations and varying operational levels. Therefore, the need is pressing for more

effective real-time incident detection algorithms. Furthermore, desired new-generation

algorithms should also lend themselves to implementation on new platforms such as

parallel computers and must have the required flexibility for the smooth integration with
emerging ITS technologies.
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One promising approach to address these objectives involves the application of artificial
neural networks. Ritchie and Cheu (1993) demonstrated successfully the feasibility of
using ANNs for freeway incident detection. They tested a multi-layer feed-forward (MLF)
ANN on a freeway section using simulated traffic detector data. The results confirmed their
hypothesis that spatial and temporal traffic pattems could be recognised and classified by
ANNs. However, their results were limited in the sense that they trained and tested the
ANN models on simulated data. Only a small set of field data with several lane-blocking
incidents were used to evaluate the trained ANN models (Cheu and Ritchie, 1995). More
recently, Stephanedes and Liu (1995) developed an ANN model that was based on real-
world incident data collected from a freeway in the Twin Cities Metropolitan area. The
results of their work, however, were also limited in that the model was trained and tested
on the same data set. In addition, the models developed in both studies used only volume
and occupancy data and did not address operational issues such as the impact of detector

malfunction and quality of input data on model performance. The work reported here is
part of a research program that addresses these unresolved issues.

2.3 Performance Measures for Incident Detection Algorithms

The performance of an incident detection algorithm is measured by three criteria: detection

rate (DR), false alarm rate (FAR) and time-to-detect (TTD). The DR is defined as the

number of incidents detected by the algorithm divided by the total number of incidents
known to have occurred during the recorded time. The FAR is defined as the number of
incident-free intervals which gave false alarms divided by the total number of incident free

intervals. Finally, the TTD is the difference between the time of occunence and the time at

which the incident was declared or an alarm was raised by the algorithm. When an

algorithm is being evaluated, however, it is customary to seek the mean time-to-detect
(MTTD) a set of (n) incidents. The occurrence time of an incident is usually not known

precisely and an estimate has to be deduced from loop detector data or records kept by
police, traffic control centres or towing companies.

The above definitions clearly show that both the DR and FAR measure the effectiveness of
the algorithm while the MTTD reflects its efficiency. The DR and FAR are, however,
positively correlated. In order to detect more incidents, the algorithm thresholds are relaxed
which causes some incident-free intervals to be interpreted as alarms. Since many false
alarms are caused by random fluctuations in traffic flow, a persistence test is usually
performed by testing warnings in a few consecutive intervals before declaring an alarm.
This method, in conjunction with increased duration of the persistence test, has been shown
to reduce the FAR. However, this was also found to reduce the efficiency of the algorithm
since it increased the MTTD considerably. Clearly the three performance measures are all
inter-related. The relative importance of the measures, however, is typically DR, FAR and
MTTD.

3. DATA FOR TIIE DEVELOPMENT OF THE ANN MODELS

In order to train a neural network to perform incident detection, the network must be
presented with examples of input detector data (speed, flow and occupancy) and output
states for both incident and incident-free conditions. Therefore, the data required should at
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least have a description of the state of traffic along the freeway in addition to detector data

comprising traffic flow measurements at regular time intervals for each detector station.

3.1Data Collection

The data required for model development were assembled from two data sources held at

the VicRoads Traffic Control and Communications Centre (TCCC) in Melbourne,

Australia. The first data source comprised information logged by the operators at the TCCC

regarding the incidents that occurred on the freeways. This information is received by the

operators from a variety of sources including motorists using either private mobile phones

or the emergency phones located near the freeway. The second data source comprised the

loop-detector data which consisted of speed, flow and occupancy measurements in 20-

second cycles. Each of the collected incidents was then examined individually. The log
entry for the incident was compared against the detector data to find out if the incident
could be detected from the loop data. This was accomplished by monitoring the immediate
upstream and downstream stations from the incident using a graphical computer program
that was developed to plot the detector data. A total of sixty incidents were clearly
detectable from the detector data and could be confirmed from the operator's log. These

incidents were used for model development in this study.

3.2 Assignment of Desired Output States

As was mentioned previously, training a neural network to perform incident detection

involves presenting the network with examples of input detector data (speed, flow and

occupancy) for the upstream and/or downstream stations in addition to providing the

desired output states or correct responses for each input vector. Two output states are used

to describe the traffic conditions within the section under consideration: State l, {0},
representing incident-free conditions and State 2, {11, representing incident conditions.

3.3 Creation of Training and Training-Test Data Sets

The next activity involved compiling the training and training-test data sets that will be

used for training the ANN incident detection models. The training data set will be used for
determining the network parameters while the training-test data set will be used to prevent

the network from learning the idiosyncrasies in the training data set and thereby enables the

model to generalise better (Masters, 1993). Therefore, the two data sets are essentially used

for training the ANN model and are thus referred to as the 'training data sets'. The ANN
models should be trained on a set of incidents that are representative of the population to
which the network will ultimately be applied. Training an ANN model with a wide range of
incidents that include different pattems under a variety of flow conditions and traffic
periods helps improve the robustness of the model in detecting incidents under varying
conditions. Therefore, the data was stratified according to incident severity (in terms of the

number of lanes blocked due to the incident), prevailing flow conditions prior to the

occurrence of incidents (heavy, moderate and light), traffic period of the day (peak or off-
peak) and incident duration. Two data sets, each comprising 30 incidents, were then

selected randomly from the sixty incidents to form the master training and training-test data

sets (Dia and Rose, 1995).
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4. DATA FOR TIIE VALIDATION OF ANN INCIDENT DETECTION MODELS

In addition to the training data sets required for model development, a third data set is also
needed for validating the performance of the trained incident detection models. This data
set should be independent of the data sets used for model training. The validation data set
compiled in this study comprised 40 incidents that were detectable from the detector data.
Of these, 25 occurred on the Tullamarine Freeway and 15 occurred on the South Eastern
Freeway in Melboume, Australia.

The 100 incidents collected for this study (60 for training and 40 for validation) are
believed to be the largest set of 'real world' lane-blocking incidents available for the
development of freeway incident detection models using field data. The 60 incidents in the
training set comprised a total of 25,333 observations while the 40 incidents in the
validation-test data set comprised a total of 14,149 observations. In total, the 100 incidents
comprised 22,186 incident-free observations and l7 ,296 incident-conditions observations.

5. A FRAMEWORK FOR AUTOMATED INCIDENT DETECTION USING ANNS

The general framework for automated incident detection using artificial neural networks is
shown in Figure 1 (Rose and Dia, 1995). Consider the section of freeway shown in Figure
l(a) which is defined by upstream and downstream detector locations. A corresponding
ANN incident detection model structure is shown in Figure l(b). The detector station data
form the inPut to the ANN. The output is a {0,1} variable indicating the absence or
presence of an incident in the freeway section, respectively. In order to train the ANN (in a
supervised mode) to perform incident detection, the network must be presented with input
detector data and output states for both incident and incident-free conditions. Therefore, the
input to the ANN model comprises real-time speed, flow and occupancy measurements in
20-second intervals from each of the upstream and downstream stations. The output of the
ANN model is the traffic state within the section. Output State I {0} represents incident-
free conditions and output State 2 { I } represents incident-conditions.

Cheu and Ritchie (1995) tested three ANN architectures suitable for incident detection and
real-time classification problems. These included the multiJayer feed-forward (MLF)
neural network, the self-organising feature map (SOFM) and the adaptive resonance theory
(ART). The MLF, implemented with the back-propagation (Bp) training algorithm, proved
to be superior to the other architectures tested. The MLF was chosen for implementation
in this study based on its demonstrated superior incident detection performance over the
other ANN architectures. In particular, the standard three-layer feed-forward neural
network, shown in Figure l(b),has been chosen for this study (Dia and Rose, 1995).
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5.1 Incident Detection Parameters

One of the main issues in incident detection modelling is the selection of an appropriate set

of input features. The choice of traffic flow variables, detection logic and other related
parameters is a function of the desired complexity of the model and the surveillance
technology used. The issues related to the input features that were investigated in this study
included the selection of the number of stations required to identify incidents within a

section (upstream, downstream and both stations were investigated), the number of
preceding time intervals needed for each decision regarding the presence or absence of
incidents at any time interval / (intervals t to t-4 were investigated), and the station input
data (data provided on a lane-by-lane basis, from the fast lane and averaged across all lanes

were investigated). The detailed results of this investigation are provided in Dia and Rose

(1997). These results clearly indicate that models using dual stations perform better than

models using a single station. The model's fault-tolerance under conditions of comrpt or
missing data and the impact of loop detector failure/malfunction on the performance of the

model are also provided in Dia and Rose (1997).

5.2 Model Evaluation Using Performance Envelopes

A graph that helps to show the relationship between DR and FAR can be obtained by
evaluating the DRs and FARs for many possible decision thresholds (DTs). Typically, a

decision threshold of half-activation (a value of 0.5) is chosen for making the decision
regarding the presence or absence of incident conditions. If a vector of input data is
presented to the ANN model which results in the output PE being activated to at least a
value of 0.5 (half-activation), it is concluded that incident conditions are present for that

time period. Otherwise, the data for that time period is classified as non-incident
conditions. Therefore, the value selected for the decision threshold plays an important role
in the classification of the input data and consequently in determining the incident
detection performance of the model. The plot of DR against FAR (shown in Figure 2) is
called the Performance Envelope Curve (PEC) of the network.

Idral PEC

40 50 60

fhlsAlannRrE(%)

Figure 2- A performance envelope curve
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In this study, the ANN model was trained to produce an output value between 0.2 and 0.8.
The lower-left corner (0,0) of the PEC will always be one endpoint of this curve. It
corresponds to a DT slightly larger than 0.8. At this DT, an observation is classified as an

incident condition if it activates the output PE of the network to a value slightly greater
than 0.8. Since this is not possible, all observations will be classified as non-incident
conditions. Therefore, both the DR rate and FAR will be zero. The upper-right corner
(lOOVo,lOOVo) will be the other endpoint of the PEC. This point corresponds to a DT slight
smaller than 0.2. At this DT, an observation will be classified as a non-incident condition if
it activates the output PE to a value less than 0.2. Again, since this is not possible, all
observations will be classified as incident conditions. Therefore, both the DR and FAR will
be lOOVo.

A network that is able to correctly classify all observations would have a PEC that is at a
right angle (as shown by the dashed lines in Figure 2). At the ideal performance DT, the
DR would be l00%o and the FAR would be zero. For all lower thresholds, the DR would
remain at lOOVo, while the FAR would increase to lOOVo. For greater thresholds, the FAR
would remain at zero, while the DR would drop to zero. The quality of performance of the
network is demonstrated by the degree to which the PEC pushes upward and to the left.
This can be quantified by the area under the curve (PECA) and the slope of the curve
(particularly for low values of FAR). The PECA for a perfect discriminator (Masters, 1993)
will be 10,000 (ie. l00xl00). This procedure is particularly useful since it helps with
evaluating the model's performance based on the total picture of DRs, FARs and DTs by
using a single index, ie. the area under the PEC.

6. RESULTS OF TRAINING

A total of 500 models consisting of different input parameters and hidden units were
designed and trained in this study (Dia, 1996). ln order to compare the performance of the
different groups of models and determine which model types had better incident detection
performance, statistical analysis techniques were used to investigate the trade off in
performance between these groups of models. The results from the statistical analysis and
refinement of a selected number of models (Dia, 1996) revealed that the architecture of the
best performance model was similar to that shown previously in Figure 1 (model MLF).
This model uses dual stations, traffic data (speed, flow and occupancy) averaged across all
lanes and only from the current time interval t. The optimal number of hidden PEs for this
model was found to be 14.

7. PERFORMANCE EVALUATION UNDER INCIDENT CONDITIONS

The evaluation of the ANN model under incident conditions will be based on the
application of model MLF to the validation-test data set, which comprised 40 incidents.
This evaluation will give an indication of the prediction ability of the model in detecting
incidents that the model had not previously seen. For the purpose of this study, an incident
will only be declared as detected if the algorithm takes no longer than 5 minutes for its
detection. Therefore, the failure to detect an incident could be either due to the inability of
the algorithm to detect the incident at all or the inability of the algorithm to detect the
incident within 5 minutes.
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Investigation of several techniques with the potential to reduce the FAR (Dia, 1996)
revealed that model MLF is best applied using a DT of (0.640) and a two-interval
persistence test. The incident detection performance of this model, which will be referred
to as model MLFI, is shown in Table I and Figure 3 below. It should be pointed out here
that a FAR of O.lVo corresponds to about 4.3 false alarms per day per section (0.17o x 3

decisions every minute x 60 minutes/hour x 24 hours/day).

Table l: Incident detection performance of model MLF based on the validation-test data set

Data Set Model
ID

Decision
Threshold

(DT)

Incident Detection Performance

Detection False
Alarm
Rate

Time to
Detect

Number Rate
(vo)

(vo) (Second)

Validation -Test Set
(40 incidents)

MLFI

MLF2

0.300
0.400
0.500
0.620
0.640
0.650
0.695
0.700
0.710

36t40
36t40
35t40
33t40
33t40
30t40
20t40
18t40
13t40

90.0
90.0
87.5
82.5
82.5

75.0
50.0
45.0
32.5

0.755
0.442
0.273
0.091

0.065
0.026
0.013
0.013
0.000

156

r70
l8l
199
203
205
216
216
200
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Figure 3- PEC for model MLF based on the validation-test set of 40 incidents

Table I and Figure 3 also show the performance measures for model MLF based on the
application of a two-interval persistence test and a wider range of DTs. The tradeoff in
performance using different DTs is best illustrated by comparing the DR and FAR of

y' o'tq"= 4'3 Alarms/DaY/Section
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model MLF1 with model MLF2 which uses a higher DT of (0.695). The application of a
higher DT clearly results in a reduction of both DR and FAR. Model MLFI was selected

for the evaluation of the incident detection performance based on the results shown in
Table I and Figure 3. The results for model MLF1 will also be used as an indicator of the

expected incident detection performance of the model when it is implemented in the field.
The results for model MFLI based on the Tullamarine (Tulla) and South Eastern Freeway

(SEF) data sets are shown in Table 2.

Table 2: Incident detection performance of model MLFI based on the 40 incidents

Data Set Number
of

Incidents

Incident Detection Performance

Detection
Rate

False

Alarm
Rate
(7o)

Mean
Time-to-
Detect

(Second)No. Vo

Validation Test Set-Tulla
Validation Test Set-SEF

25

l5
19t25
t4/15

76.0
93.3

0.09
0.00

188

224

Total Set 40 33t40 82.5 0.065 203

These results indicate that the DR and FAR performance of model MLF1 on the validation-
test data sets is generally consistent with its expected performance in Table I (82.5Vo DR,
0.065Vo FAR and 203 second MTTD). The results also show that the reported FARs vary
according to the incident data set under consideration. One possible explanation for this is
related to the fact that not all incidents in the data sets had similar characteristics in relation
to the 'noise' or general 'cleanliness' of the incident. The presence of a larger number of
'noisy' incidents in a certain data set would therefore affect the performance of the model
(especially in terms FAR) on that data set.

The performance of the model was also examined by segmenting the results on the basis of
incident severity (one, two or three lanes blocked), prevailing flow conditions (light,
moderate or heavy) and period of day (peak or off-peak). The detailed results from this
analyses are provided in Dia (1996). However, these results have shown that:

(a) The poorest performance was achieved for incidents which only involved a single lane
blockage. The DR of the model in this case was 66.7Vo with a corresponding FAR of
0.lvo.

Even under light flow conditions the model was able to detect 75.OVo of the incidents
with a corresponding FAR of O.OVo. The false alarms generated by the algorithm were
primarily associated with heavy flow conditions.

The model's performance is consistent across the periods of the day with respect to DR
(82.4Vo in the off-peak versus 83.37o in the peak) and MTTD (201 & 216 seconds in
the off-peak and peak respectively). The FAR results, however, showed more
variability and were ten times as high during the peak period than the off-peak period
(O.25 Vo versus 0.029 7o).

(b)

(c)
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The performance of the ANN model according to the time taken by the algorithm to detect
incidents is also of interest. The model detected 72.7Vo of incidents in less than 4 minutes,
39.47o in less than 3 minutes and 18.2?o in less than 2 minutes. Inspection of the operators'
log files revealed that 2 incidents were detected by the operators before their impact on
traffic was confirmed from the detector data. It should be mentioned, however, that when
operators are busy managing incidents, it is not uncommon for important details (including
the time of detection of incidents) to be left out. Only 18.4Vo (7 incidents) of the remaining
38 incidents were detected by the operators within 3.0 minutes of their occurrence. The
average time taken by the operators to detect the 38 incidents was 6.9 minutes after their
estimated occulrence times. The results reported in this study for the MTTD of model
MLFI (Table 1) was 3.4 minutes (203 seconds). This suggests that the ANN model has the
potential to provide a 50Vo improvement in efficiency compared to the average time taken
by the operators to detect incidents.

8. PERFORMANCE EVALUATION UNDER NON.INCIDENT CONDITIONS

The FAR results reported previously for model MLFI were based on the non-incident
conditions immediately before/after the occurrence/clearance of incidents. The unstable
traffic conditions during these periods may cause the algorithm to generate a higher number
of false alarms than would be expected during normal traffic conditions. In addition, it is
also desired that the model's FAR performance under daily traffic conditions (especially
during peak-hour periods) is evaluated and reported. To investigate the off-line FAR
performance of the model over an extended period of time, Section S4-S5 of the Tullamarine
Freeway (Figure 4) was continuously video-taped (on 24-hour basis) for a period of 33 days
(a total of 141,655 observations). The location of the video camera and the field of view
captured through the camera is also shown in Figure 4.

gh cf Motdad R(l Nfidvffia$ NtrdDar$ NtrdEE*tct(S

L- -r - ' _,
' t(rh I se&n | &, I

Figure 4- Schematic of section S4-S5 on the Tullamarine Freeway used for
video monitoring and evaluation of the off-line FAR

lapse video recorder was used to monitor traffic conditions within the section. In
to the video data, traffic data from the detector stations at s4 and s5 were also
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collected for the duration of the period. In this way, the model could be run on the detector

data and when an alarm was raised, the video could be advanced to that same time period

to see what traffic conditions had caused the alarm'

8.L Analysis of Detector and Video Data

The results from an initial appraisal of the off-line FAR indicated that a large number of
alarms were generated during peak-hour periods. Therefore, it was decided to divide each

day into five periods, as shown in Table 3, such that the performance of model MLF is
evaluated separately for each period.

Table 3: Classification of periods of the day for the off-line FAR evaluation

Period of Day Time Frame Total Number of
2O-Second Observations

for the 33-Day Test Period

A
B
C
D
E

00:00-06;00
06:00-10:00
l0:00-16:00
l6:00-20:00
20:OO-24:OO

35,446
23,642
35,394
23,714
23,459

Total 00:00-24:00 141,655

For the purpose of evaluating the offJine FAR, model MLF was applied to the 33 days of
detector data using the two DTs described previously: 0.640 (ie. model MLFI) and 0.695
(ie. model MLF2). The two models were run in 'prediction' mode using the 33-day

detector data. In this mode, the models were presented with only the input values (ie. the

speed, flow and occupancy data at both the upstream and downstream stations). The output
of the model in response to these inputs represented either an incident or incident-free
condition for the specific time period under consideration. This procedure was adopted

because the model will be run in this mode when it is eventually implemented in the field.
The model's output or decisions (every 20-seconds) were monitored and all the alarms

generated by the algorithm, along with the time at which they occurred, were written to a
file for later inspection.

The next step in the evaluation procedure involved the examination of the individual
alarms generated by the models and investigating the causes of these alarms by checking
the video tapes using the timeJapse video recorder. This was made possible because the

video tapes included a time stamp that was synchronised with the time stamp in the

detector data files. A total of five incidents occurred within section S4-S5 during the 33

days of offJine evaluation. These incidents were confirmed using the video tapes which
also allowed for the determination of the true start and end times of the incidents. The
incident detection performance of model MLFI on these incidents consisted of a DR of
lOO.OVo (5/5) and a MTTD of 108 seconds. The performance of model MLF2, however,

comprised a DR of 60.07o (3/5) and a MTTD of 146 seconds.
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The major causes of alarms generated by the models were found to fall into three main
categories as shown in Figure 5 below: incident related (incident conditions and rubber
necking), traffic flow related (absence of traffic and congestion) and 'other' (non-
incident/false alarm related). The nature of the alarms generated within each of these

categories and their causes are described below.

Model MLF1

Model MLF2,*l

I.

r60

Id&CordfloE RnkNeddrg Aka of THflc Corgeson O&E

CasdAlrm

Figure 5: Causes of alarms generated during video testing

Incident Related Category

The alarms that were generated within this category fall into two sub-categories:
incident conditions and rubber necking conditions. As was mentioned earlier, a total of
five incidents occurred within section S4-S5 during the 33 days of off-line evaluation.
The high number of incident conditions shown in Figure 5 is due to the repeated alarm
declarations during an incident and are therefore not considered as false alarms. During
the analysis of the detector data, it was noticed that the ANN models generated many
alarms within the test section when an incident occurred on the other side of the
carriageway. When the video tapes were examined, 'rubber necking' conditions
became evident when it was observed that drivers were slowing down due to the
presence of an incident on the other side ofthe freeway.

Traffic Related Category

The alarms that were generated within this category also fall into two sub-categories:
absence of traffic and congested conditions. The alarms generated for the absence of
traffic category were easy to discern since the detector stations were not providing any
data during these periods due to the absence of traffic. Data for these periods consisted
of zero values for all input parameters for both the upstream and downstream stations
of the section. This caused the models to generate a false alarm. For these periods, the
video tapes did not show any abnormal traffic conditions. In fact, about 5OVo (2781553)
of model MLFI alarms were generated during the period from 00:00 to 06:00 in the

II.
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morning when the traffic volumes inbound were light. The 'absence of traffic' alarm
conditions cannot be considered as legitimate false alarms because they were basically
due to the lack of'valid' detector data.

As for the congested conditions, these were identified by checking the prevailing traffic
flow conditions on the video tape for the designated alarm periods. A major part of
these alarms was detected on the inbound direction of the section for the periods
between 06:00 and 10:00. The detector data showed a significant drop in the speeds and
flow; and an increase in the occupancy values during these periods for which the ANN
models generated a series of false alarms. Investigation of the video tapes clearly
showed congested conditions and slow moving vehicles for these periods which
comprised the major part of the morning peak-hour for the inbound direction.

III. Non-Inci dent Rel ated/False Alarm Category

The few alarms that were generated within this category ('other' in Figure 5) were
those that could not be accounted for or justified from the detector or video data and
were therefore considered false alarms. A total of five false alarms were generated for
model MLFI and three false alarms for model MLFZ.

The results shown in Figure 5 clearly demonstrate that, based on the 33 days of video
testing, the application of a higher DT (0.695 instead of 0.640) resulted in the elimination
of all the alarms that were due to the absence of traffic (553 alarms). It also resulted in the
reduction of the alarms that were due to recurrent congestion from I198 to l2l (by about
9OVo). This, however, was at the expense of detecting only three of the five incidents that
occurred during video testing.

9. FARANALYSIS USING TTIE COMBINED MODELS MLF1 AND MLF2

As was discussed previously, model MLF2 was shown to have the potential to reduce the
large number of alarms that were generated during peak-hour conditions (by about 907o).
The expected DR of model MLF2, however, was only Sovo (Table 2). Model MLFI, on the
other hand, was shown to have a superior incident detection performance with a DR of
82.59o.

Analysis of the results reported for model MLFI during the video testing period revealed
that about 87Vo of the alarms were raised during the periods A, B and C (from 00:00-16:00)
and that about'l5.3%o of the alarms occurred during moderate to heavy flow conditions
(Dia, 1996). This suggested that an overall improvement in incident detection performance
may be obtained by applying model MLF2 to periods A, B and C while applying model
MLF1 to periods D and E. It should be pointed out here that models MLFI and MLF2 have
exactly the sarne parameters. The only difference between the two models is the DT value
used to declare an incident alarm. The parameters of model MLF (and hence models MLFI
and MLF2) were determined using the 60 incidents in the training set. The combined
model strategy can therefore be thought of as a method to 'fine-tune' the performance of
the trained ANN incident detection model. The alarms generated using this scenario of
model combinations are shown in Figure 6 below. The implementation of the combined
models MLFI and MLF2 resulted in the detection of all the five incidents and the reduction
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of the total number of 'non-incident related' alarms from 1756 for model MLFI to 206 for
the combined models (by about 887o).

IrifuCordfloE tufuNeddrg AkEof Tr$tc OtE

CasdAhm

Figure 6: Causes of alarms for the combined model strategy

Table 4 presents FAR calculations for models MLFI, MLF2 and the combined models that
are based on three different scenarios. In the first scenario, the FAR is calculated by
excluding the legitimate incident-related alarms which included incident and rubber-
necking alarms. In the second scenario, the FAR is calculated by excluding the incident-
related alarms along with the alarms that were caused by the absence of traffic. As was
mentioned previously, the alarms that were generated due to the absence of traffic cannot
be considered as legitimate false alarms because they were basically due to the lack of
'valid' detector data. In the third and final scenario, the FAR calculations are based only on
the alarms that could not be accounted for from the video and detector data and were
therefore deemed as false alarms.

The FAR results shown in Table 4 clearly demonstrate the effectiveness of implementing a
,:ombined model strategy. The expected DR using this technique (based on the 40 incidents
in the validation-test data set) would be between SOVo and 82.5Vo, although based on the
five incidents that occurred during the off-line evaluation, the DR was found tobe lOOVo.

The improved FAR results obtained by using two different DTs suggest that additional
improvements in performance may be obtained by implementing a dynamic DT, eg.
implementing a variable DT based on the traffic volumes during the previous l5 minutes.
There are, however, many issues that need to be investigated in this regard such as the
number of dynamic DTs to use, the trade-off in performance between the DR and FAR
using these thresholds and a more detailed analysis of the volume categories to which
variable DTs need to be applied. These important issues are currently being investigated by
the authors. The FAR calculations shown in Table 4 reveal that the implementation of a
combined model strategy would result in a worst case scenario of O.073Vo FAR which is
equivalent to about 6.2 false alarms per day (206133 days) on both directions of section 54-
s5.

Model
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Table 4: Summary of FAR calculations for the 33-days of off-line video testing on section
54-S5

10. CONCLUSIONS

The results presented in this paper have demonstrated the feasibility of using 'real-world'
data for developing ANN incident detection models. These results provide a
comprehensive evaluation of the ANN models and confirm that these models can provide
fast and reliable incident detection on freeways. The performance of the selected model,
especially in terms of FAR, was substantially improved by implementing a combined
model strategy where higher decision thresholds were applied to the peak-periods of the
day. Efforts are currently underway to further improve the model's performance by
implementing a dynamic decision threshold based on prevailing traffic flows rather than
periods of the day. The upcoming implementation of the ANN model on Melbourne's
freeways will provide a unique opportunity for evaluating the on-line performance of the
model over an extended period of time. There is also scope in future research efforts to
compare the performance of the ANN model with other overseas models (eg. California,
McMaster or Minnesota algorithms) based on the same data set of 100 incidents used in
this study.
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Basis for FAR Calculations FAR for Model
MLFI

(DR=82.5Vo\

FAR for Model
MLF2

(DR=50.07o)

FAR for
Combined Models
(DR=50Vo-82.5Vo\

(1) All alarms except:
- incident alarms
- rubber-necking alarms

(2) All alarms except:
- incident alarms
- rubber-necking alarms
- absence of traffic alarms

(3) All alarms except:
- incident alarms
- rubber-necking alarms
- absence of traffic alarms
- congestion alarms

r756t282890
0.621Vo

1203t282337
O.426Vo

5t281139
0.00187o

12U283061
0.043Vo

12U283061
0.043Vo

0t282994
0.000Vo

206t282934
0.073Vo

20,/283286
O.07lVo

3/282864
0.00lVo
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