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abstract: When ATIS (Advanced Traveler Information System) is applied as a traffic
control measure, short-term prediction of traffic demand is a critical issue. ~This study aims
to a simple prediction model of traffic demand based on on-line observation through traffic
detectors. Multivariate time-series (VARMA, Vector Auto-Regressive Moving Average)
models which predict 5-minutes traffic volume considering correlation between sites are
proposed to apply. Applicability of VARMA model to actual fluctuation of traffic demand
depends on adequacy of the hypothesis of stationary stochastic process. This study
confirms empirically the validity of stationarization and VARMA model through estimating
models using field data.

1. INTRODUCTION

Short-term prediction of traffic conditions is a basis for traffic control. Its importance gets
large when the ATIS (Advanced Traveler Information System) is applied as a traffic control
measure, because the effects of providing information for dispersing traffic depend on the
precision of forecast information. ~ Short-term prediction of traffic flow transition revealed
may be attained using some sort of dynamic traffic flow simulation, however, predicting its
input—traffic demand—is a critical issue. Minute to minute predictions of traffic demand
of which horizon is about an hour is necessary.

Many efforts have been devoted for traffic demand prediction based on on-line observation
through traffic detectors. They include “flexible” or “real-time” modeling approach such as
Kalman filter techniques and Neural Network, as well as traditional statistical models and
time-series models. However the “flexible” models might have potentials to improve
prediction, they have not achieved sufficient prediction comparing their computational loads
required [van der Voort et. al, 1996]. On the other hand, time-series models, which are
easier to compute, have not yet been examined thoroughly. In many cases, single-variate
time-series models have been considered. Multivariate (vector) models have been scarcely
applied. '

This study aims to a simple prediction model of traffic demand, considering the applicability
to a large-scale road network. Therefore, multi-variate time-series (VARMA; Vector
Auto-Regressive Moving Average) models are considered. Some VARMA/VAR models
have already achieved moderate prediction [Okutani, 1990]. But their time periods where
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traffic volumes aggregated are such lather long as 15 minutes or 30 minutes. ~On the other
hand, traffic control and providing information are conducted usually based on 1 to 5 minutes
period. It gets harder to predict traffic volume when its aggregation time period shorten,
because fluctuation of volume grows. This study tries to overcome the difficulty of
predicting 5-minutes traffic volume by considering correlation between sites. We examine
the capability of VARMA model for short-term detail prediction.

Time-series models assume stationary stochastic process. It means that the variables are
generated through a stochastic process of which mean and variance are stable. Therefore,
some data transformation, that is called as “stationarization”, is necessary to model an actual
phenomenon.  This study examines empirically the validity of stationarization and VARMA
through estimating models using field data.  Firstly, preliminary analysis is conducted, where
single-variate ARIMA for an on-ramp traffic volume is examined. Then multivariate
model—VARMA for section traffic volumes—is estimated.

2. THE MODEL

Applicability of ARMA model to actual fluctuation of traffic demand depends on adequacy
of the hypothesis of (weakly-)stationary stochastic process, which means the process
generating fluctuation is a stochastic process which has constant mean and variance. It can
hardly be expected that raw tiaffic volume data achieve stationarity.  So, data
transformation, that is called as “stationarization” is necessary. Here, an observed value of
traffic volume is decomposed into two elements:

X, =m, +2, M
where, x,: traffic volume at time period 7,
m, . mean for time period 7,

z,: stochastic fluctuation of traffic volume at time period 7.

The mean m, , which may be a function of exogenous variables, is not stochastic. The z,

is assumed to be a stationary stochastic time-series.
The general ARMA(p,q) model is formulated as follows:

P q
2, =202 — _Zlejal—j +a;, @3]
=

i=1
where, a,: white noise ~ N[0,07],
¢ parameters for AR (Auto Regressive) terms,
@: parameters for MA (Moving Average) terms.

Equation (2) includes two structural parameters p, ¢ (> 0), which denote orders of AR and
MA, respectively. The optimum orders of ARMA(p, ) should be identified for a concrete
dataset based on a suitable criterion. In this study, the AIC (Akaike’s Information
Criterion) is used. It is one of the criteria which are based on likelihood, and can be used
for selection between different types of statistical model [Hiromatsu et al. (1990), Naidu
(1996)]. The AIC is defined basically as follows:
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AIC = -2 X [maximum logarithmic likelihood] + 2 X (number of parameters). 3)

Based on AIC, the model which minimizes the value of AIC is selected as the optimum
model.

3. THE DATA

The data used are observed during October, 1994 at Hanshin Expressway Route 11 in Osaka,
Japan. It contains 5-minutes traffic volumes of road sections and on-ramps, which are
collected by supersonic vehicle detectors. Figure 1 shows the configuration of observation
sites. Each road segment has a single section where traffic volumes of entire carriageways
are observed. Notations of variables are given below:

b

Vi o traffic volume at on-ramp 7,

traffic volume at road segment i,

i, 1" no. of site,
J: no. of day,
k. no. of time period (5-minutes).

Yo Kuukou

Vo Toyonaka-Kita Hanshin Expressway
% Route 11(Ikeda)

Ys Meishin
Y5 Kashima

Y, s Tsukamoto
8. 5Km

Y, Umeda
Y1 Dojima

X, : traffic volume at road segment / . ; —_—

Y, : traffic volume at on-ramp i’

|
0.6Kn

v 0. 5k Ok
Figure 1 Configuration of observation sites: road segments and on-ramps.

4. PRELIMINARY ANALYSIS - Single Variate ARIMA for On-Ramp Traffic
Volume

Applicability of ARMA models to traffic volumes depends on the pre-process of
stationarization. In this section, single-variate model is examined in order to assess
the validity of stationarization. We assume stationary mean function m, as shown in
equation (1). In addition such transformation, difference, which is a standard
technique for stationarization, is also tested in this chapter. The ARMA(p, g) model
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based on differenced data-set is denoted as ARIMA(p, d, g), where d is the order of
difference.

Two cases of d = 0 and 1 are estimated for some combinations of p, ¢  The dependent
variable is an on-ramp traffic volume y,.  (Single-variate model is suitable for on-ramp
traffic volume because it would have little relation with other site traffic volumes.) The
models are estimated following the procedure shown below. The data used is 7 days data
from 1 Oct. to 7 Oct.

1) Inorder to attain stationary variance, transformation y,, =/, is conducted.

2) Deviation z, =y,,—m, is calculated, where m, is given by 30 minutes moving

average of y,,.

3) SACF (Sample Auto Correlation Function) and SPACF (Sample Partial Auto
Correlation Function) are calculated to assess stationarity of z, and to limit the range of
p, d, and q in following procedure.
Figure 2 plots SACFs and SPACFs of z4 (¢=0) and differenced data z’y (¢=1). These
figures show that a) MA term is dominant and MA(4) or MA(5) models are suggested
as shown by drastic declination of SACF, but ARMA model might be appreciated
considering the contraction of parameters, b) there seems no periodic factor to reside,
stationary time-series are achieved for both @=0 and @=1.

0.1
0
-0.1
_02 - . bR ‘ + oa: ‘ . .SACF (d:o) .......
: : P i | SACF (&=1)
_03 - S eee. 4 = CREE
-04
-05

_— el wn r~ [} ~— el w ~ D

lag
Figure 2 (a) Sample auto correlation function of z,.

0
-0.1
-0.2 ,,,,, Lo - |
. | mSPACF (a-0)
-0.3 N SPACF (a&=1) [
-0.4
-0.5

2 el n ~ (=2} — el w ~ (=2
-— — -— -— —

lag
Figure 2 (b) Sample partial auto correlation function of z,.
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4) ARIMA models of z, are estimated for combinations of p=0to 4, d=0to 1, ¢=0 to 4.
The optimal models for each d are selected based on AIC.
Table 1 shows AICs. As for @=0, ARIMA(2,0,3) (=2, g=3) results in minimum AIC,
and ARIMA(4,1,4) (p=4, q=4) for d=1. Comparing these two models, ARIMA(2,0,3)
is superior in any diagnostics (except Adjusted R-squared) as shown in Table 2. The
model achieves good reproducibility of fluctuation as shown by Figure 3 which plots
actual time series ys;, squared mean function m’ and one-term predictions by
ARIMA(2,0,3).

Table 1(a) AICs for ARIMA(p,d,q) (d=0, dependent variable: Zy).

Dependent Variable = z, d= 0
q

P 0 1 2 3 4

0 2,072.8 1,8420 18276 1,778.7
1 2,761.2 N/A 1,836.7 1,778.9 N/A
2 24853 1,7755 1,750.5 17485 1,750.3
3 2,299.8 1,759.1 N/A N/A N/A
4 2,183.7 17555 1,763.1 N/A N/A

Number of observations = 2,010

Table 1(b) AICs for ARIMA(p,d,q) (d=1, dependent variable: z '4).

Dependent Variable = Z 4 d= 1
q

p 0 1 2 3 4

0 28398 31203 13,0553 26277
1 4127.3 N/A 3,518.5 N/A N/A
2 3,7243 26044 25576 2,395.1 N/A
3 33928 2,325.7 12,4889 N/A N/A
4 3,154.0 21899 21917 N/A 1,852.0

Number of observations = 2,010

Table 2 Diagnostics of optimum models for each d.

ARIMA(2,0,3) ARIMA(4,1,4)
Dependent variable 2y z',
Number of observations 2010 2010
Mean of dependent variable -0.197943E-03 0.205327E-03
Std. dev. of dependent var. 0.490162 0.757778
Sum of squared residuals 279.487 293.355
Variance of residuals 0.139395 0.146604
Std. error of regression 0.373356 0.382890
Adjusted R-squared 0.420991 0.744888
Durbin-Watson statistic 1.99939 2.06712
AIC 1748.5 1852.0
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Figure 3(a) Time series of ys and squared mean function ;.
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Figure 3(b) Time series of y, and predictions by ARIMA(2,0,3).
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The preliminary analysis described above concludes as a) using mean function m;, (¢=0) is
sufficient for stationarization and the difference (¢=1) is not necessary to consider, b) good
reproducibility of traffic volume fluctuation can be achieved by using ARMA model.

The capability of ARMA model, mentioned above as conclusion b), is confirmed by
estimating another model for a different site, of which dependent variable is zs (ys). Table 3
shows that the optimum model is ARIMA(2,0,2). Figure 4 shows that the optimum model
for ys also achieves good reproducibility. The result certifies the applicability of the ARMA
model. In addition, comparing the parameter estimates of the models for z, and zs, these
models have similar values of parameters as shown in Table 4, in spite of the difference of the
order gq. It suggests that the ARMA model for on-ramp traffic volume could be spatially
transferable.

Table 3 AICs for ARIMA(p,d.q) (¢=0, dependent variable: zs).

Dependent Variable =  Z< d=0
q

P 0 1 2 3 4

0 2,088.2 11,8308 18295 1,801.0
1 2,6843 21139 N/A 1,823.9 N/A
2 24379 17969 1,790.75 1,7924 1,793.0
3 2,2542 1,790.76 11,7940 1,796.6 N/A

4 21261 1,7923 1,794 N/A N/A

Number of observations = 2,010

Table 4 Parameter estimates of the optimum ARIMA for z; & zs.

Dependent
variable 2, Zs
ARIMA(2,0,3) ARIMA(2,0,2)
Parameter t-statistic Parameter t-statistic
Estimate Estimate

) 0.706563 12.7762 0.57741 7.58152

9, -0.31026 -5.79272 -0.32972 -12.0267

2 1.39184 241766 1.21207 15.1327

6, -0.31806 -3.51996 -0.24739 -3.16017

0; -0.1072 -1.95393 -
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Figure 4(b) Time series of ys and predictions by ARIMA(2,0,2).
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S. VARMA MODEL FOR TRAFFIC VOLUME PREDICTION

Traffic volumes of road segments are related mutually, especially with successive up/down-
stream segments. Considering correlation between sites, the single-variate ARMA model is
extended to multivariate model, that is called as VARMA (Vector ARMA). In this chapter,
VARMA model is estimated and its ability of forecast is assessed empirically. The data
used in this chapter consists of 23 weekdays data in October 1994. The number of
observations (5 minutes traffic volumes) for each site is 12 X 24(hour) X 23(days)=6,072.

Here, we consider all sites’ traffic volumes depicted in Figure 1 as dependent variables
simultaneously. The dependent variables consist of 14 x’s (road segment traffic volumes)
and 7 y’s (on-ramp traffic volumes). The VARMA model is formulated as an extension of
€q. (2) by using vector expression as follows:

(”’] = fm(““'"} ~3 0,0, +a, @

Yt m=1 Yit-m n=1

The model is estimated through the manner that is similar to the manner mentioned in chapter
4 for a single-variate model. Exceptions are as follows; (There is no substantial difference
betweenx and y. So, x represents y for simplicity.)

1) Stationarization is conducted by only subtracting mean from raw data complying eq.(1).
2) Meanm;ineq. (1) is defined as:

1 J

me=mg=—73 X, 5)
JiE

where, time sequence 7 is transformed to day j and time & for each day.

It means that only a daily cycle is considered as a systematic component of a traffic
volume fluctuation. Note that only weekday data are used.

3) Parameter matrices @, @are restricted as that at most two segments upstream/
downstream are correlated.  Eq. (4) is reformulated as eq. (6) by using A, which is
given as an incidence matrix (Table 5):

P 9
=X £ 0680010 06,0010
A \m=1 n=1 (6)

P
+ Z#(laA)yi‘(i,A),t—m +3a;;
A m=1
where, i'(i,A) : no. of site defined by incidence matrix.

The element of an incidence matrix gives a distance between sites. The null element
means that correlation between corresponding sites is not considered. The parameter
matrices @, 6 have similar structure to the incidence matrix. The parameters
corresponding to null elements are eliminated.
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Table 5 Incidence matrix.
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considers upstream correlation. A <0 are eliminated.

CaseIIl:  considers both upstream and downstream correlation.
, Figure 5 plots actual traffic volumes of road

It reproduces even the fall at time sequence 100-130, in spite

only considers auto-correlation.

Case I:
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Al X1 X310 X510 X710 X910 X111 X3
'
|
'
---—-—-'----1-—-:---1---!--—1---
1
'

Xyl +1
1
'
P Rk e
1
R

X9
X13
- .- b -
X3
X3g
Ya
Ve

not followed properly and results large residual, the model predicts the tendency of

increase/decrease correctly.

term is dominant, in contrast to the single-variate model for on-ramp described in chapter 4.
The reproducibility of the model is assessed by comparing the fluctuations of one-period

and AIC shows that ARMA(2,1) in Case III is optimum. Comparing the cases, it is

The optimum model is selected based on AIC. Table 6 which lists number of parameters
confirmed that considering correlation between sites is effective.

ARMA models are estimated for some combinations of p, ¢ for 3 cases of incidence matrix:
of parameter estimates of the optimum model ARMA(2,1).

segment 1 x; and the values predicted by ARMA(2,1).

fluctuation pattern very well.
of that the model assumes stationary stochastic process.

predictions and observed. For example
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Table 6 AICs for Vector ARMA(p,q).

Casel Casell Case lll
(A=0) (A=0t02) (A=-2t02)
AR(1) 21 57 81

12887.5 9899.7 72741

AR(2) 42 114 162
10969.6 8671.3 6514.0

ARMA(1,1) 42 101 149
12495.7 9170.0 6685.6

ARMA(2,1) 65 158 230
10985.6 8755.0 6356.5

ARMA(2,2) 84 202 298
10933.2 8756.6 6441.3

upper : no. of pams., no. of variables = 21

lower : AIC -2210000 no. of observations = 127,512 (= 6,072 X 21)

Table 7 Parameter estimates of VARMA(2,1) (portion).

X X3 X5 X7 X9 X1 X3 X5 X7 Xy
#rG+2) | 0414 0521 0456 0.180 0.199 0.132 0.081 0060 0.165 0.402
#3G.+2) |-0.085 0080 0.025 0074 0019 -0.051 -0.057 0.000 -0.027 -0.069
gri+) | 0021 -0.345 0139 0367 0242 0274 0214 0.154 0062 0.080
| #3G+D_ | 0061 -0238 -0.102 -0.061 0060 0.050 0.087 0086 0042 0.068

#1G.,0) 0.161 0.177 -0.074 -0.225 -0.074 -0.127 -0.016 0.040 -0.052 -0.091
$3(,0) 0.148 0.241 0030 -0.230 -0.207 -0.141 -0.088 -0.009 0.043 -0.005

#3G-D | -0025 0.013 -0.006 0.251 -0.011 -0.050 0.030 -0.039 0.056 -0.018
#1(i,-2) 0.045 0214 0071 0158 0323 0.259 -0.028 0.087 -0.036
$5(i,-2) 0.024 0.096 0.025 0180 0.109 0073 0.128 0.071 0.197
67G,+2) |-0.015 -0.034 0009 0107 0045 0058 0017 0076 0028 0.016
6rG+1) | 0024 0102 0031 -0.055 0094 0037 0014 0013 0.033 0.012

6y (i.-2) 0029 0.029 0.030 -0.044 -0.068 -0.077 0.009 0.003 -0.038
7 (i,:+2) 0.420 0.142 0.218 0.254 0.594
3 (.+2) 0.027 -0.065 -0.190 -0.258 -0.201
#7G+) | 0.198 0.289 0.148 0.228 0.264
¢35+ | 0.011 0.042 0.134 -0.030 -0.028
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Figure 5 Time series of x; and predictions by VARMA(2,1).

Capability of ARMA model to forecast is assessed by applying ARMA(2,1) estimated above
to the data of 30 Oct. which is preserved from model estimation. 4-periods predictions are
calculated and compared with observed values. Figure 6 shows that the model forecasts
generally well, especially even the peak without delay. But accidental fall can not be
forecasted such as x; and x3 during 9:45-11:15. Note again that the model is estimated
statically based on the mean function. As shown in Figure 7 which focuses on the
discrepancy of xi3, the deviations from mean are very large and the change is suddenly.
Considering these conditions, it should be noticed that good deals of corrections from mean
are attained by the model. Therefore, improvement of forecast would be achieved if more
lags, that are larger p and g, were considered when estimating the model.
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Figure 6 (a) Time series of x3 and 4-periods predictions by VARMA(2,1).
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Figure 6 (b) Time series of x;3 and 4-periods predictions by VARMA(2,1).
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Figure 6 (c) Time series of x,o and 4-periods predictions by VARMA(2, 1).
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Figure 7 Time series of x;3, mean and 4-periods predictions by VARMA(Z2,1).

6. CONCLUSION

This study aims to a simple short-term prediction model of traffic demand, considering the
applicability to a large-scale road network. We assumed stationarity of traffic volume
fluctuation and estimated time-series model for short-term prediction empirically. It can
hardly be expected that raw traffic volume data achieve stationarity. Therefore, mean
function was introduced for stationarization and the deviation was treated as a stochastic
time-series. A single-variate ARMA model for on-ramp traffic volume and a Vector
ARMA model for road segment traffic volumes were proposed to apply. ~ The validity of
stationarization and the capability of ARMA models were examined empirically. The
results confirmed basically that traffic volume fluctuation could be modeled by VARMA with
stationarization. In spite of simple treatment of considering only daily cycle, fairly good
forecast was achieved.

However, this study is on the first step and examined only the simplest model.  There exist

some issues to improve:

1) stationarity of variance is not always attained. ~Especially when the traffic volume is
large and congested, volatility tends to grow. Therefore, some more complex model
such as GARCH (Generalized Auto-Regressive Conditionally Heteroscedastic) model
which considers varying variance should be examined.

2) spatial and temporal transferability should be examined on the larger road network. To
attain transferability, parameters which are specific to sites should be contracted.
Contraction of parameters also contributes computability of more complex model
mentioned above.
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