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abstracfi The Ramsey Price Equilibrium (RPE) model is proposed by Miyag et al. 1992.

This model determines the optimal fares for urban transits under the competition between

automobiles and urban transits. The purpose of this paper is to investigate a computational
method for the RPE model. We apply a nonlinear sensitivity analysis based on the penalty
function method. Then we examine our metlod through numerical experiments and discuss

about the availability of the RPE model.

T.INTRODUCTION

It has been established that using marginal cost pricing resources are allocated fairly and

social welfare are maximized. However if the firm set price equal to marginal cost in the
context of economy of scale, the firm would not be sustainable for deficit. This situation is

usually observed in transit pricing for the most of middle-size cities of Japan. In this case

the second best pricing rules like a Ramsey pricing (1927) are important because the
marginal cost pricing is not useful for above reason. If a firm sets price using the Ramsey

pricing rule, then the social welfare subjected to break-even constraints would be

maximized.

An application of Ramsey rule to public transit pricing was conducted by Train( I 977) for
AC transit and BART, however, a network competition between transit and auto arising

from the pricing rule is not taken into account in that application. Miyag et al.(1992)

proposed a Ramsey Price Equilibrium Problem (RPEP) in which the Ramsey pricing rule is
restructured within the framework of multimodal network equilibrium and the RPEP is
formulated as a bilevel programming problem. This model consists of the upper problem,
being defined as maximization problem of the social welfare using the Ramsey rule, and the
lower problem with multimodal network equilibrium. Then Miyagi and Suzuki (1995)
further extended the RPE model to include the variational inequality formulation for the
binary modal choice / assignment model in the lower problem and proposed a

computational procedure based on the nonlinear sensitivity analysis for the restricted

variational inequality proposed by Tobin and Friesz (1988).
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Other studies also have been performed to apply bilevel programming problem to

transportation policy analysis, where the transportation network equilibrium problem is

included in the lower problem. For example, Fisk (198a) shows that Nash equilibrium

solution possibly provides a different solution from that generated by Stackelberg

equilibrium. Yang (1994) proposed a penalty function method to solve bilevel

programming formulatio n for general fr eeway-arterial corridor systems.

This paper has three m{or purposes. First, it aims at identifoing the difference between

the RPE model and the traditional Ramsey pricing rule through some numerical

experiments. The second purpose is to develop a numerical calculafion method in line with

the nonlinear sensitivity analysis proposed by Miyagi and Suzuki (1996). Finally, we

want to check whether the RPE model can be used to search the optimal subsidy level from

the view point of social welfare which is invested in construction of new transit systems.

2. RAMSEY PRICE EQUILIBRIUM MODEL

2.1 Notation Concerned with Network Equilibria

The expanded network is represented by a directed graph G(N, L) where N is the set of
nodes and L is the set of directed links. The set of all origin / destinations (O/D) pair is

designated by I. The network pernuts the flow of vehicles and transit passengers on links.

The transit vehicles follow fixed itineraries. The nodes n, neN, represent origins,

destinations and intersections of links; the links a, a e L , represent the road and transit

infrastructure of the urban area- The modes are desigrrated by index m which is I for the

automobile mode and 2 for the transit mode. The individual user cost ci for travel by

mode m on link a are given by monotong continuous and differentiable functions of the

linkflowofeachmode, vl o, ,!'. 
")(u"), 

,i(r")
The origin to destination demands, qi , i €/, for each mode m may use directed paths

k, k e N,where Ai is the set of paths, (Ai '. /), available for mode m and O/D pairi.

Thetotal origin todestination demands byboth modes, q' €R'and q' eR', aregiven

by a constant matrix { e R', where for OD conservation equation is given as :

qi+q?=Q,,iel (l)

The flows on paths k, h,satisfu conservation of flow and nonnegativity.

Dhr =qi, YieI,m =1,,2 and hr.O
tEAi

The link flows ul are given by

(2)

"i =D26*t*nt=L,Z,aeL
ia *sr?
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if link a belongs to path k

otherwise.

LO49

where

6* ={;

CrQ) = \6*c;(v"), k eti,,Yi aI, m = 1,2.

tet piQ) be the least cost using mode m for a O/D pairs i:

pi(v)=min.*er? Cr(r), Yi e I, rn =1,2. (5)

We now consider the case where a mode choice function C,(*,) is the logit model, that

depends on the travel costs by the two modes via their difference w,,

w, : p!(v) - p?(r) For each centroid pair, one can eliminate the transit demand

using(2) and it is possible to derive function G so that tle auto demand can be obtained

from ql = e,G,(w,). rt ir assumed that G,(w,) is a strictly decreasing function with

inverse W,(qi t q,). Sio.. q-, is constant for a given I we refer to the inverse function as

w,(qi)

The binary mode choice/assigrment model is formulated by supposing that no traveler has

the incentive to change mode

pi - p? = w,(qi'), i aI (6)

and that for each mode the path choice satisfies Wardrop's user optimized behavioral

principle.

The cost of each path Cp(v) is the sum of the user costs of the links in the path

[=0 if h: >O-
c; -pl't= o y n-* = ot, 

k er{,Yi et,m =1,2

subject to the feasibility constraints (l),(2)and (3).

2.2 Formulation

We formulate Ramsey price equilibrium problem (RPEP) with the application of the

binary choice / assignment model described in the previous section. Mutual exclusive

transit networks are assumed to handle a multimodal network equilibrium problem within
the context of the binary modal choice formulation. While demand shares between private

(4)

(7)
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automobile and public transit systems are determined by a logit modal split function,

demand for each public transit available is determined as the path flow on each public

transit route with user equilibrium mechanism. The break-even constraints are imposed on

transit routes as a whole.

Algebraically, RPEP can be written as follows:

TRPEPI

tU0l

Max. n,(h, p) = u1n," J,*o[#] . 
U ]t" hr - n(

s t ) )_lprhr - n(n(p))l= x
iel *el{? -

p0l
itr,q) i. the solution for the following binary mode choice / assigrment model proposed by

Florian and Spiess (1983):

Min. z = 
"AI' 

c)(x)ax.)I' c'.(x)a*- Df' w|)av
subject to (1),(2) and (3).

In the objective function of [Ul], the first and second terms represent consumer surplus

and producer surplus, respectively. The constraint function describes the brake-even

condition for public transit service provider, in which p, denotes a price for the service i,

K the money transfer from the government to each public transit service and 4 (ft(p)) it
the joint cost function of producing public transit services wrth respect to a k1h transit line.

For p0], tle necessary conditions for the lower problem can be replaced by the

following equations:

(8b)

(e)

(cr-ti)hr:o

Cr - lti >0

Dhr : q!
,te^l

zlr:q, -q!

ke.N,ieI,m=L,2

keN,ieI,m =1,2

h>0
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3. MODELS

We consider a network which consists of three centroids and one intermediate node

connected by seven links. The centroids 1 and2are suburb areas and 4 is a central business

district. It is assumed that 20 thousand people is traveling from both suburb areas to the

central district. LRT is planed by public transportation agency in the area If LRT will be

completed, OD pair l-4 will be connected by public transits (bus and LRT) and

automobile networks of which each mode consists of only single route. OD pair 2-4 is

connected by two automobile routes, in which one is a short and nrurow route and another

is a long and wide one. The bus and automobile flow mutually independent on links

(1,3,6,7). The interaction of automobile trips for the two oD pairs (l-4 md 2a) occurs on

link 3 where two routes, 1 andZ, overlap.

Path

automobile

4>
transit

bH----ffi**

LRT
rrtttrrr/l/7lr

Figure I Simplified Urban Transportation Network

Algebraically, RPEP for the simplified urban transportation system depicted in Fig I can

be written as follows:

1051

IRPEP-l]
tuu

Max. fl(h, p) = A + 0q,, ln> 
"-pf -.e2 \

'r. \Ptr-rr@$))f= 
x

pll
the same as [L0]

where I = 24,A, represents the total transportation benefit for the total trip

(l la)

(l lb)

+) q,tti + }lP,n, -n\b)\l
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The objective function of Ul represents a maximization problem of social welfare. The

first three terms show the consumer surplus for travel between all OD pairs, the last term

represents producer surplus. The constraint is a break-even condition which denotes the

company to make zero profit given a constant level of subsidy K.

We hare to specifo the functional forms of Il (') an A [nk cost functions which are used

in the above RPE model. The relationship between travel times and flows on road links are

described by BPR type function:

t,(v.) =r.,{r+ 0.t5(v. lQ.)'"} , a a1,2,3,4 (12)

t,(v.):traveltime on link a

{o:free flow travel time on link a

vo:flow on link a

Q.:capacity of link a

and a link travel time function for bus is described by a monotone increase function:

t.(v,) = r.. {1+ o.rs(u. / +o)} , a e6,7 (13)

The travel time of LRT will be fixed regardless of LRT flow level. The travelers using bus

and LRT between OD pair 14 are assumed to be in the user equilibrium situation with
respect to generalized transportation costs, the composite cost oftransit fares and travel

time, with tle value of time being 3.3($/min.). The operational characteristics concerned

with LRT and bus are shown in Table 3.1.

Table 1 Data of Numerical Example

LRT BUS

Route Di$ance

Frequency

Operation Times

Total Service Distance

Constrauction Costs

Subsidies

1Okm

20km/hr

7:OO -22:00

1200km/day

1.67 x 10zUS$/km

65Vo of. Cons.Cost

1Okm

1Okrt/hr

7:00 -22:00

300km/day

8.33 x passengero.Tus$

(Xexchange rate I us$: 120 yen)

The cost of producing services for both of LRT and bus may be described by the following
Cobb-Dauglus function:

r(h,,h,\ =(FC, + FCL) +vc =(FC, + FCL) +t P"Q""t" (14)

Joumal of the Eastem Asia Society for Transportation Studies, Vol. 2, No. 4, Autumn, 1997



A Ramsey Price Equilibrium Model and is Computational Procedure

where FCr:Fixed cost for bus (FC,:O is assumed)

FCr:Construction cost for LRT (1.67x 107 us$)

VC :Yariable cost
P I Operating costs perday (500$/day)

Q I passengerperday

I : total operating distance (tsoo tcnyaay)

T2G12d2td3l parameters ( o.oot ,0.2,2.0,0.5)

Parameters are estimated using data of 8l bus companies in Japan. (lr,fiyagi and

Nakatsuharq 1996). We introducethe subsidy rateB defined by the following
expression:

K = pFCL. (15)

4. NUMERICAL EXAMPLE

In the first place step the ramsey pricing problem(RPP) for transit fares is dealt with the

single mathematical programming to compare wrth Ramsey Price Equilibrium model. The

difference between RPP and RPEP lies in whether tle automobile network congestion is

taken into account or not. In tlte second place we apply a slightly modified procedure of
sensitivity analysis proposed by Miyagi and Suzuki (1996) to solve the optimal fares in

Stackelberg equilibrium. Furthermore we conduct parametric analysis to fined out the

optimal level of subsidybychanging the subsidy rate defined by (15) over a specified

ran8e.

4.1 Solving the Ramsey Pricing Equilibrium Problem without Road Congestion

Supposingthat link travel times on all links are given and fixed, then [RPEP-I] is reduced

to the single nonlinear optimization problem where the objective function is maximized

subject to the break-even constraint (l2b) and the logit type modal split function (l0a).The
assumption implies that the transit service provider knows that optimal user's behavior for
transportation mode choice is affected by the fare of each transit mode. An argumented

quasi-newton's method with penalty function is used to solve the RPP; the optimal transit
fares are determined to minimize the objective function ( aa) with penalty function
defined by constraints (4-4b)-(4-ae).

In this problem the variables are transit fares (pa,p5) and flows (lq,h:) If for given bus fare

we put ea = eq + {, (mass transit demand), then [RPEP-2] can be depicted in tkee
dimension space as is shown in Fig.2, where AC, MC, DD are average cost, marginal cost,

transit mode demand surfaces. The cost-trip relationship at 900 bus trips is shown in Fig.

3. This figure tells us that the marginal cost pricing (the point A) makes the provider

deficit because the cross point is under the corresponding average cost (the point B). The
Ramsey equilibrium problem provides us that the optimal LRT fares and flows, 2.60$ and

3752 trips, and for bus those ue2.235 and 984 trips (the point C).
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min.rr = -(2oooo, onl"-o(ff) . *(#) 
]

+ P,h, + P,h, (tsa)

- 0.0001 x 600000" x L500"(ft. * h,)- -7.6 xl}'

+ lO(X)Ir,o' -?-}e[J[(/,/i"

st. pth+ prft, -0.0001x 600000'x15000'(ft. *hr)^ - 7.6x10' < 0 (l5b)

ho +h, 2oooo (tscl,*"*O@
q : >hr =?looc[ (tsal

t€l'4,5

Or = (tse)

pr I fareof k th path (k correspond to each mode, p, = 0 is assumed)

/* I travel time of k th Path

ft, : flow of kth path

1,ti' : Ue given least travel time for mode m between OD pair i

ar I the value of time

0 I parameter (:100)

3000
tansit flow @us+LRT)

4m0

Figure 2 The example of RPP

qM (trips)

3

LRT fare
2

1l
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MC

DD

lransil flow

au (nips)

Figure 3 The section of Fig. 2 at 900 bus trips

We can easily see that the optimal fares derived from [RPP] are not valid when road

congestion prevails. If we calculate a congested network equilibrium given these fares, the
modal split function shifts upwards from the original one. The reason is that when transit
fares are raised, some users change transportation mode from transit to automobile so that
the congestion level changes on automobile network. This may affect on the transit
agency's decision-making on the fare. Therefore, the optimal decision on public transit
fares consistent with transit demand should be made not only on user's behavior but also

on changes ofthe congestionlevel induced from the changes oftransit fares.

masstransit passengers

-(tips)

3250 3500 3750 4000 4250 4500 4750 '
Figure 4 The shift of modal split function due to congestion of automobile network

4.2 Solving the Ramsey Price Equilibrium Problem with road congestion

In the case of solving Stackelberg equilibrium, it is implicitly assumed that the transit
service provider seeks an optimal solution with information on how much modal choice
and the resultant network flows is changed due to an addition increase or decrease for the
current fare level. In order to treat the simultaneous changes in modal choice and road

.JJJJJIJJJ
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network congestion, network equilibrium conditions (10) must be incorporated into a

optimization progam tRPP-l]. However, since network equilibrium conditions are

generally described by the complementarity condition, it is difficult to handle it as one of
the penalty functions.

One needs methods to approximate numerically a new equilibrium solution resulting from a

change of decision variables in the upper problem. If it is already known that a solution of
nonlnear equation systems (10) exists and is uniquely determined, then a parametric

optimal solution q* and Lagrange multiplier may be represented by implicit functions as

pice vector beingindependent variable (Simizu 1982). Thus, once tlre derivatives of the

iower level is obtained with respect to the decision variables of the upper level, a penalty

function method can be utilized to solve [RPEP-I]. For this purpose, the nonlinear

sensitivity analysis is useful because that any parameter perturbation will generally results

in the network equilibrium solution and that this type of sensitivity analysis requires the

calculation of decision variables and constraint multipliers with respect to perturbation

parameters (Fiacco 1983; Tobin and Friesz 1988).

The results are shown as figure 5 to 9. Since the calculation converges speedy to local

minimum at 9th iteration, the nonlinear sensitivity analysis method is useful for RPEP in a

case of this example. In the equilibrium the fares of LRT and bus are 2.63$ and 2'26$,

flows are 2556 and 984 trips. These solutions are calculated by the provider considering

not only mass transit but also automobile network taking into consideration , the optimal

fares are decided for whole of the urban transportation system. Therefore from the view of

the making good use of pricing to control whole of the urban transportation system, to be

given the subsidies for the transit provider operating the RPEP is justified.

objective function value ($)
-416,600

-416,8OO

-4L7,OOO

-4t7,2o0

-4L7,400

-4L7,60,0

-4L7,800 iterations
35791113151-7192L23

Figure 5 Convergence of objective function

Joumal of the Eastem Asia Society for Transportation Studies, vol. 2, No. 4, Autumn, 1997
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LRT fare ($)
2.6'7 r'

2.66 R-

2.6s l-l l

2.34

3 5 7 9 r-r. 13 ',ts L7 L9 2t 23

Figure 6 Changes of LRT fares with iterations
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iterations

2.32 l\', - -i -

2.26

2.24 l-

,))

rl

iterations35?9111315L7L9
Figure 7 Changes of bus fares with iterations

Figure 8 Changes of LRT flows with iterations
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bus fare ($)

2.30

2-28

2620 l- I t -;- - i - i - -; - -i- - i - -; - -i- - i - -;- -i- - i - I - -i- - i - i - -i- -i- - i - -i - -i
I il : | | | : r i r r | | i I i | : :

26c;0l-11; i r i i r I i r-i I i I i i I I i I i I

2s4L. l- ) -

2+aO iterations
13579111315L7192L23
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bus flow (trips)
l:i:

100()

980

960

940

920

900

880
iterations

9 r.1 13 L5 t7 t9 2L 23

Figure 9 Changes of bus flows with iterations

4.3 Sensitivity Analysis of the Level of Subsidies

In this section we look into the effects of changingthe level of subsidy rate on readership

ofpublic transits. These calculations are carried out using nonlinear sensitivity analysis for

,olrirg Stackelberg equilibrium. The results are shown in Fig' 10 to l4'

As are indicated in Fig.l0 and 11, if subsidy rate is brought down, optimal transit fares

would be increased so that the loads of transit user would increase. while transit users

change their transportation mode to automobile, congestion on automobile network

becomes more heavy. The same situation occurs in bus fare and trips as well' Thus, as is

shownin Fig. 12 this effect spreads overoD pur2-4 which consists of only automobile

network. luJgng from the above results, the level of subsidy and fare of public transit have

to be decided in the contexts of the whole of the urban transportation system'

Fig. 12 shows that increasing subsidy makes the oD travel times smaller, which in turn

irrfrties that increasing subsidy rate results in the increase of social welfare' Unfortunately'

the Ramsey equilibrium does not directly provide the optimal level of subsidy, however,

we are able to find it by parameterizing the levels of subsidy as is conducted in Fig' 13'

TheFig. 14 showsthe cumulative change of social welfare and subsidy. This histogam is

usefulio explain the existing of the lower limit with respect to effective subsidy rate' In

this example the effective subsidy rate is 50%.

Journal of the Eastern Asia Society for Transportation Studies, Vol, 2, No. 4, Autumn, 1997
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z.sol : r" i

er.)erlaraohohoh
=Shh\O\Of\F€AO\O\=

Figure l0 Change ofLRT fares with different subsidy rate

LRT flow (trips)

1059

subsidy rate

(v.)

subsidy rate

(v")
c)hohehohoho6s=hh\o€rFr€<t6d=

Figure I I Change of LRT flow with different of subsidy rate

automobile travel time (min.)

--t- travel time between OD pair 1-4 - |

---- travel time between OD paft 2-4 |

t,t,
l,

251 I i i , , ' , , , , , i subsidyrate
alaClaQ\Oc)!Outo\ao
==rnh\O\Of-t\€<r6cli

= 
(vol

Figure 12 Change of automobiletravel time with different subsidy rate
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tr Changes of social welfare

I Changes of subsily rale
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14,000

12,000

10,000
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llor)\o \o

€
I

ca

horno+hr}\o
llllohora<'{\ra

ll)ho((,o\a

subsidy rde

(vo)

subidy
rate

(vo)

Figure 13 Change of social welfare with change of subsidy rate

tr cumulative changes ofsocial welfare

I cumulative subsilly8,m0,000

7,m0,000

6,m0,000

5,m0,000

4,m0,000

3,m0,000

0

-1,000,m0 SBBBBRFABSEEi+*;ddtrsd*i
Figure 14 Cumulative changes of social welfare and subsidy

5. CONCLUSIONS

The conventional applications of the Ramsey rule to pricing of transportation services

which have been discussed by economists are unrealistic and insuffrcient in a sense that

network congestion effects on pricing have been neglected. On the other hand we

proposed a Ramsey price equilibrium model in which the Ramsey price rule is restructured

within the framework of multimodal network equilibrium to consider the effects of
congestion of agtomobile network for pricing and its solution algorithm. In this paper the

validity of solufion algorithm and the deference between the conventional ramsey pricing

rule for transit fares without considering network congestion and ramsey price equilibrium

cumulative chaqges of welfarc ($)

Journal of the Eastem Asia Society for Transportation Studies, Vol. 2, No. 4, Autumn, 1997



A Ramsey Price Equilibrium Model and its Computational procedure

model are examined thorough the numerical example.

We apply the nonlinear sensitivity analysis which correspond to Stackelberg equilibrium to
simplified urban transportation system. It is confirm that the method converges to at least

local minimum. The effects for transit pricing spread whole of tle urban transportation
system through congestion on the automobile network. Therefore public transport
operated under the zero profit and given a certain subsidy must set fares to maximize social

welfare for whole of the urban transportation system. A ramsey price equilibrium model is
useful this pricing. However the simplified system was treated in tlis paper, the solution
method can be applied to real scale one except the cities which have complex transit
network such as plural transit path flow vector could be defined with respect to an

equilibrium link flows vector.

At end of this paper sensitivity analysis of subsidy rate is examined. If the upper level of
prices are given in a sigrificant way, the Ramsey equilibrium approach shows the minimum
level of the government subsidy of achieve welfare maximization.
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