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Abstract: This study develop an optimization model for bus transit network based on road 
network and zonal OD. The model aims at achieving minimum transfers and maximum 
passenger flow per unit length with line length and non-linear rate as constraints. The 
coarse-grain parallel ant colony algorithm (CPACA) is used to solve the problem. To 
effectively search the global optimal solution, we use a heuristic pheromone distribution rule, 
by which ants’ path searching activities are adjusted according to the objective value. Parallel 
ACA is carried out for shortening the calculation time. The model is tested with survey data of 
Dalian city. The results show that an optimized bus network with less transfers and travel time 
can be obtained, and the application of CPACA effectively increases the calculation speed and 
quality.  
 
Keywords: Bus network optimization, Direct-through passenger flow density, and 

Coarse-grain parallel ant colony algorithm  
 
 
1. INTRODUCTION 
 
Passenger transport in large- and medium-sized cities mainly relies on transit system. The 
rationality of the transit network planning, therefore, directly influences the travel time and 
transfer rate of the passengers, and the overall running cost of the transport systems. An ideal 
transit network, which is featured by large service area, high direct-through trips, small 
non-linear rate, short travel time, and high accessibility, should be able to meet the needs of 
the majority. However, as urban layout and population distribution change, the service level of 
the transit network may be gradually reduced, which has adverse impact on the development 
of public transportation and the benefits of transit enterprises. To solve this problem, the 
existing transit network must be adjusted. One of the most adoptable techniques is to 
artificially change partial routes regardless of the transit network as a whole. In addition, such 
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manual adjustment is largely dependent on the practical experience of the designer(s). 
 
Transit network optimization has been receiving constant concern. Some representative 
researchers, Dubois et al (1979), have subdivided the transit network optimization problem 
into three sub-topics, 1) identifying the road sections in need of layout, 2) laying out the 
routes, and 3) optimizing the departure frequency of each line. Ceder and Wilson (1986) first 
introduced a three-stage model, i.e. trip distribution, route design and frequency setting, into 
transit network design. Hasselstrőm (1981) proposed a two-stage model which simultaneously 
optimizes the line and the frequency. Baaj and Mahmassani (1995) argued that the transit 
network can be generated by optimizing the line and the departure frequency at the same time, 
after which the network analysis could be undertaken. J. F. Guan (2004) proposed the 
utilization of integer programming to optimize both line layout and trip distribution in the 
Minimum Spanning Tree network. Sonntag (1979) approached the line plan problem in 
railways by a heuristic elimination method without appropriate simultaneous consideration of 
passenger line assignment. Simonis (1981) took a different approach from Sonntag (1979) by 
starting with an empty line configuration. Lines with the most direct-through travelers on their 
shortest paths will be successively added. Wang (2001) has proposed a model that calls for 
gradual lay out and optimized networking, which is similar to that of Simonis. In other words, 
Wang’s model aims at achieving the maximum direct-through passenger flow volume in a 
vacant network 

 
Basically there are two types of models for urban transit network design. One is by combining 
the transit route design and the departure frequency. The other is solely concentrating on the 
transit network optimization, based on which the departure frequency of each transit line is 
studied. Both network design and frequency planning are vital to the transit operating cost and 
passenger travel convenience. However, in comparison with the departure frequency, the route 
network is much more stable and less liable to external influences, and does not easily get 
changed once it is established. It is in this sense that the transport network design calls for the 
utmost circumspection. The departure frequency, on the other hand, is highly sensitive to 
factors such as passenger flow, weather and road conditions, and therefore needs to be 
adjusted in accordance with the different situations. Therefore, the quality of the network 
design may be adversely influenced if transit network and departure frequency are 
simultaneously optimized, when the network design determines the efficiency of the entire 
transit system. The apparent ignorance of the departure frequency here does not equal to 
neglecting the benefits of the transit enterprises. The utmost goal of transit network design is 
to facilitate passenger trips and to reduce the operating costs by some constraints; in addition, 
the unstableness of the departure frequency can lead to some uncertain factors in the 
optimization process. Therefore, transit network deign is prioritized in our research. 

 
It is noteworthy that albeit there are already many established models on transit network 
design, and most of them are complicated in structure and are not resolvable without 
simplification. It becomes even more complicated when it comes to resolving the 
optimization models taking transfers into consideration. Researchers have been delicately 
seeking solutions to solve the complicated models. For example, Steenbrink (1974) proposed 
the traditional mathematical programming method; Baaj and Mahmassani (1995) proposed a 
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hybrid arithmetic which combines the path-searching heuristic algorithm in artificial 
intelligence and the transit system analysis method in operational research. Dubois et al (1979) 
identified the routes layout by a heuristic arithmetic; Chakroborty et al (1995) solved the 
scheduling problem by adopting inherit genetic algorithm. All these methods have employed 
implicit enumeration methods, which has become the only solution to solving this kind of 
problems. To sum up, the solutions to the transit network optimization can be divided into five 
categories: analytic method, heuristic arithmetic, hybrid algorithm, experience-based 
arithmetic (Dashora et al 1998; Fernandez 1993), and simulation model (Senevirante 1990). 

 
Despite the prolific optimization models and solutions in previous researches, one problem 
lies in that most of them are theory-oriented and not practically implemented. Bearing this 
context in mind, we focus on the integrated transit network and are based on passenger 
demands. Here the objective is to facilitate passengers’ trips as well as to foster the transit 
enterprises’ profits. An optimization model is developed, which aims to maximize the direct- 
through passenger density. A vacant network is first established, followed by adding routes to 
the network according to the principle of maximizing the direct-through passenger density, 
until all passengers are distributed to the network or some given constraints are overrun. This 
method differs from previous researches (Simonis, 1981), Michael et al. (1997), Wang (2001) 
in that most of the previous researches firstly identified the shortest path between the origin 
station and the terminal, and then sought the route bearing the largest through passenger 
density among these shortest routes, while this study is not limited to the shortest paths 
between the origin station and the terminal, but seeks the through passenger density 
maximization path in all possible routes. This can be explained by two reasons. First, the 
passenger flow is not always the largest on the shortest path (In fact, it cannot possibly be.), 
which means it is not reasonable to lay all routes along the shortest path. Although this can 
simplify the models and reduce the calculations, it unfortunately damages the quality of the 
design. On the other hand, when the objective is set to be maximizing through passenger flow, 
due to the increase of the passenger flow in accordance with the increase of the length of the 
transit line, a certain route may be abandoned because it is comparatively shorter, even if this 
short route abounds in passenger flow. This can result in a deviation of the route from the 
needs of the passenger flow. In addition, the overall length of the entire network increases 
where longer line is laid, which consequently increases the operating costs without full 
utilization of the network or fleet. Therefore, this paper employs direct-through passenger 
flow density maximization as the optimization objective, so as to enhance the network 
utilization rate as high as possible. The densest routes are laid first to facilitate passenger trips 
and to benefit the transport enterprises. 

 
Network design is an NP-hard problem difficult to get solved via traditional approaches. In 
recent years, a large number of researches have showed that Heuristic Algorithm is suitable to 
large scale optimization problems. Based on the previous researches, this study also adopts a 
heuristic algorithm: Ant Colony Algorithm. ACA is a new optimization algorithm proposed by 
Italian researchers Dorgo M. et al. It is a colony based optimization approaches inspired by 
food-seeking actions of ant colonies. The algorithm is not tied to the mathematical 
descriptions of specific problems, but enjoys the overall optimization capacity and the parallel 
capacity in essence. In the meantime, it benefits from stronger robustness, shorter needed time, 
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and easier computerization than earlier evolution algorithm such as genetic algorithm and 
simulated annealing algorithm. ACA has been successfully applied to solving some classic 
compounding optimization problems, e.g. TSP, QAP and Job-shop. In order to achieve the 
optimum solution more effectively this study adopts a new objective-function-based heuristic 
pheromone assignment approach, and adjusts the path-seeking activities of the ants in light of 
the target functions. To expedite the calculations, multi-computerized ant colony algorithm is 
applied under the cluster situation. 

 
 

2. OPTIMIZATION MODELING 
 

2.1 Urban Transit Network Design 
Urban transit network planning and design (UTNPN) must be based on passenger O-D, and 
should aim at facilitating trips as well as fostering the transit enterprises’ profits. The network 
design ought to meet certain criteria other than solely leans on experience. Experience can 
then be referred to help adjust and optimize the outcomes of the design. Urban transit network 
is based on the road network, each transit line is a continuous path that connects the adjacent 
sections; the aggregate of these transit lines make up on the transit network. To meet the 
passengers’ needs, an effective transit network carries the following characteristics: 
1) Reach ability, i.e. making most of the capacity to meet the demand of the entire network; 
2) Low transfer rate, i.e. providing the passengers with as much direct service as possible; 
3) Short travel time, i.e. laying out the transit lines according to distances to reduce the overall 

passenger travel time of the whole service area; 
4) High network efficiency, i.e. prioritizing the layout of those transit lines with the densest 

passenger flow to utilize the network and the vehicle capacity.  
 

2.2 Transit Network Optimization Model 
Albeit there are many techniques on transit network optimization, most of them are confined 
to theoretical research and are practically infeasible, whereas “Designing line by line, and 
optimizing the lines into network” (Wang, 2001) is practical and convenient. In his previous 
research, however, direct-through passenger flow was mostly regarded as the optimization 
objective, line distance was as the constraint, or, as in some cases, the shortest distance 
between the origin and terminal was applied to lay out the transit line. The single objective of 
achieving direct-through passenger flow maximization may cause the transit lines in the 
network excessively long, while the insufficiency in setting the layout constraints may restrict 
the alternative options and affect the ultimate optimization quality. The trend of the line and 
the direction of the majority passenger flow are therefore inconsistent. In order to overcome 
these disadvantages, this paper adopts maximum through passenger flow density as the 
optimization objective, i.e. minimum transfer rate and maximum passenger flow per unit 
length. Moreover, a series of constraints are adopted. 

 
The ultimate goal of the transit network is to facilitate passenger trips. Then the network 
design must be grounded on trip demand. To identify a transit line, i.e. to identify the stops 
and road sections it covers, there could be some transit lines between two adjacent zones, 
shown as Fig.1. Because inter-zone passenger flow is considered, the passenger flow is 
invariable, i.e. SPij, whichever path is selected. Therefore, ideally, the shortest path, hereby α 
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should be selected to shorten the passenger travel distance and to increase the efficiency of the 
line. In this way the inter-zone path selection problem can be simplified to an inter-zone 
shortest path problem, while the passenger flow remains unchanged. The inter-zone passenger 
flow is correlated only with the zones. As a result, once the sequence of the zones is fixed, the 
transit line is accordingly established, which means that the transit line optimization problem 
can be simplified to a zone-sequence identification problem. Unlike laying the transit line 
with the shortest od path, the partially shortest path between adjacent zones is adopted. Fig. 1 
illustrates the difference between these two methods. Assume that o,d is the original-terminal 
zones of the line to be searched, and l. okld is the shortest path between od, oijd represents 
another path. It can be seen that od  is obviously longer than odQ . According to the shortest 
path method, okd should be selected. However, this may result in deviation. This paper is 
based on the objective to achieve maximum direct-through passenger flow density, wherefore 
both the length of the line and the corresponding through passenger flow are taken into 
account. Consequently, the selected path may well be oikjd other than okd. Compared with the 
shortest path method, the method adopted here is more consistent with the direction of the 
maximum passenger flow. 

oikjdQ okd

 
 

  
 
 
 
 

 
Fig.1 Path selection between two adjacent zones  Fig.2 Path selection between O&D zones 

 
According to the network design principles in the previous section and in light of the model 
for transit network design by Wang (2001), we establish a transit network optimization model. 
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where = direct-through passenger flow density;  odD

o = the origin zone;  d = the destination zone;  
SPi j  = the direct-through passenger flow between zone i to zone j within the network; 
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ijijijod xlL  = the length of the transit line;  

Proceedings of the Eastern Asia Society for Transportation Studies, Vol. 5, pp. 374 - 389, 2005

378



 

minL /  = the minimum/maximum length of the transit line;  maxL

ijl  = the length of the road between i and j;  

⎩
⎨
⎧ ∈
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ij
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x
odq /  = the non-linear rate / the maximum non-linear rate; x

maxq

kl
odQ  = the passenger flow of section k, l; 

kl
maxQ  = the maximum allowable passenger flow of section k, l; 

sum
odQ  = the total passenger flow of the line; 

minQ  = the threshold passenger flow of the transit line;  

n
odb / 

n
maxb  = section non-equilibrium factor of passenger flow / the maximum 

non-equilibrium factor; 
NTR = non-transfer ratio the average transfer times of the entire network.  

 
This is a non-linear integer programming problem, with constraints as follows: 
Length constraint: appropriate length of the line is 30-40min per single-trip, with a minimum 
of 20min and a maximum of 45min (for small and medium cities) or 60min (for large cities). 
If the average trip speed is 15km/h, the minimum line length (Lmin) is 5km, and the maximum 
line length (Lmax) is 11.25km (for small and medium cities) or 15km (for large cities). 
Generally, a transit line cannot be approved if its length does not fulfill the constraint of the 
minimum and maximum lengths, i.e. 5km ≤ Lod ≤ 15km. 

 
Minimum line-setting passenger flow constraint: in order to ensure higher efficiency and 
higher economic benefits to the transit enterprises, a transit line should not be opened between 
zones of very low passenger flow. 

 
Non-linear constraint: the smaller the non-linear rate, the better the line. The appropriate rate 
of a generic city is 1.15~1.20, and should be less than 1.5 for a single transit line. 

 
Section non-equilibrium factor of passenger flow constraint: the section non-equilibrium 
factor of passenger flow is the proportion of the maximum section passenger flow to that of 
the average section passenger flow. Generally, the factor should not exceed 1.5. 

 
Section passenger flow constraint: the section passenger flow of a line must be less than the 
section capacity. Otherwise only part of the passenger flow can be serviced, while the over 
ceiling passenger flow remains surplus. 

 
Station spacing constraint: according to the suggested value in the Code for Transport 
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Planning on Urban Road, the average station spacing shoube be lij=0.5~0.6km. 
 
Trend constraint: a transit line should not contain a loop; namely, the same line should not 
pass the same station twice or more than twice. 

 
Network passenger non-transfer ratio constraint: once the transit network is formed, actual 
non-transfer ratio can be identified. The equation is as: 

 
area planned  theof D-Opassenger  Total

flowpassenger  through Total  ratiotransfer -Non =                     (2) 

If there is a comparatively big discrepancy between the calculated non-transfer ratio and the 
adopted non-transfer ratio, the network should be re-designed by using the calculated ratio, 
until the adopted non-transfer ratio approximates to the calculated ratio.  

 
 

3. PARALLEL ANT COLONY ALGORITHM 
 

The model is a large-scale combination optimization problem, and then this paper adopts 
ACA to solve it. The ACA is a heuristic search algorithm applied to combinatorial 
optimization. Dorigo et al (1996) applied the ACA to solve the TSP, and extended the 
technique to solving non-equilibrium TSP, QAP, and Job-shop. To overcome the possible 
stagnation in Ant-Q, Stützle et al (1999)proposed the MX-MIN AS, i.e. MMAS, which 
improved the fundamental ant algorithm from three aspects: 1) The initial pheromone value is 
set to its maximum value, τmax, to foster more adequate optimization search; 2) Only those 
ants who modify their shortest path after a cycle can alter or add the pheromone; 3) to avoid 
prematurely converging the overall optimal solution, the pheromone density of each path is 
constrained within [τmin,τmax]. Gambardella et al (2000) put forward a hybrid ant system 
(HAS), in which the ants establish their own solutions in every cycle and use these solutions 
as the start points to search local optimal solutions by some local search algorithm as the 
corresponding ants’ solutions. This can enhance the quality of the solutions in a short time. 
Botee et al (1999) further studied the selection of parameters m, α, β, and ρ by genetic 
algorithms.  

 
3.1 Principles of the ant colony algorithm 
ACA is essentially a system inspired by studies of the behavior of real ant colonies. The 
principles of the algorithm can be illustrated by examining the food searching process of an 
ant colony. Along their way from the food source to the nest, ants communicate with one 
another with pheromone (a chemical substance). The pheromone gradually evaporates over 
time. As the ants move, a certain amount of pheromone is deposited on the ground along the 
path they follow, marking the path with a trail of substance. The ants, then, determine their 
movements by judging the density of the chemical substance on a path. This process can be 
described as a loop of positive information feedback, in which the more ants follow a given 
trail the more pheromone is left on that trail, and the larger probability that this trail will be 
followed by other ants. This selection process is the ant’s self-catalyzing activities, by means 
of which at last the ants find the optimal path to the destinations. 

 
3.2 Ant colony algorithm analysis 
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By simulating the ants’ real behavior, artificial ants are made by supposing 1) an artificial ant 
has a certain degree of memory capability enabling it to memorize the paths it passes; 2) a 
artificial ant is abandoned once it finds a path leading its nest to the food source; 3) an 
artificial ant is not blindfold in searching for the next path but is doing so consciously with a 
specific purpose; 4) the environment in which the artificial ant stays with is discrete. ACA 
usually consists of four elements: initialization, transition rule, update rule, and terminate 
condition. The ants herein below, unless indicated in particular, refer to artificial ants. 

 
(1) Transition rule 
An ant’s movement is not blind but is in accordance with certain transition rule. When the 
ants move, there are some nodes which do not satisfy the constraints and will not be visited. 
For instance, in the UTNPN problem, the nodes which have already been visited are the 
unfeasible nodes. The transition rule refers to the probability for an ant choosing a feasible 
node. For the kth ant at the ith node, the probability to choose the next node, j, is as follows: 

     
otherwise                                      0
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where τij = the pheromone density of edge (i, j); 
   ηij = the visibility of edge (i, j);  
   α, β = the information heuristic factor, the visibility heuristic factor; 
   tabuk = the aggregate of the unfeasible nodes for the kth ant. 
The pheromone provides an indirect means of communication among the ants. In other words, 
the ants can communicate with one another by sensing the pheromone density. The 
pheromone density on edge (i, j) reflects the previous experience of the ant colony on the 
edge. It reflects the overall information accumulated in the ants’ moving process, i.e. the 
residual information ηij. On the other hand, the value in terms of visibility is derived from a 
greedy method which is relevant to the original problem. This method only takes the local 
information on edge (i, j) into account, and therefore reflects the heuristic information 
(visibility ηij) in ants’ movements, e.g. the length. These two aspects are interdependent and 
closely correlated regarding their influences upon the performance of the ant colony algorithm. 
In sum, the task of the transition rule is to find a balance between the random and the 
certainty (Botee et al, 1999).  

 
(2) Update rule 

∈∆+×=+ ijijij ((
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The ants travel along different nodes in accordance with the transition rule, until a solution to 
the original problem is established. For example, in the UTNPN problem, one solution for the 
ants is to search a path leading the start point to the end point. A cycle of the ACA is defined 
as when all ants have established their own solutions. The pheromone density on each trail 
will be updated after each cycle is completed.  

                                                            
 (4) 

 
k

where = the amount of the added information in the cycle; ijτ∆
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ρ = the residual pheromone coefficient; 
k
ijτ∆  = the amount of added pheromone of the kth ant on edge (i, j) in the current cycle. 

In a real ant colony system, the pheromone density tends to be higher on a shorter path. 
Similarly, in the ACA, the path that most approximates the optimal scenario carries more 
pheromone, which makes it more attractive in the next cycle.  

 

⎪
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⎨

⎧ fQ k
ij

                                                                                   

There are three pheromone updating models: a) Ant-density; (b) Ant-quantity; (c) Ant-cycle. 
Based on them, we adopt a new update models: Ant-Weight. This update rule ensures that the 
pheromone distribution of the searched paths is direct proportion to the solution optimization. 
The more favorable the path, the more pheromone allocated to it, and more accurate directive 
information is provided for later search. But because each link obviously contributes a 
different proportion to the objective function, more pheromone increment should be allocated 
to favorable links, while less pheromone increment should be allocated to the less favorable. 
In this way, the valid information obtained from the previous search can be retained for 
further and more careful search in a more favorable area, which helps speed up the 
convergence of the algorithm. At the same time, the effectiveness of a large-scale search can 
be ensured to facilitate the algorithm to find the overall optimal path. 
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(5) 

 
where Q remains a constant. 

 = the target function value of the kk
ijf th ant on edge (i, j). 

 f k= the target function of the kth ant in the entire path.  
In order to prevent the non-optimal path in the network from being visited by mass ants 
within a short time, aggregating pheromone to excess, and taking a dominant position in the 
network, and to prevent the optimal path from being unvisited and its probability to be chosen 
being lowered as the pheromone on it evaporates, upper and lower limits [τmin,τmax] are 
introduced to the pheromone on each edge (Stützle et al, 1999) to avoid local optimization 
and to enlarge the probability of gaining a higher-quality solution. These mechanisms provide 
the ACA with a strong capability in terms of finding better solutions. In this paper we adopt 
the heuristic pheromone update rule for the objective function value to improve the ants’ 
searching quality. In addition, a parallel ACA is adopted to decrease the search time. 

 
3.3 Coarse-grain parallel ant colony algorithm 
A huge amount of calculation is generated from implementing the ACA in practice, thus 
parallel implementation of ACA exerts an important role. There are three kinds of parallel 
ACA: independent parallel ant colony algorithm, Master-Slave parallel ant colony algorithm, 
and coarse-grain parallel ant colony algorithm. The CPACA is quite similar to the impendent 
ant colony parallel algorithm mentioned above. The difference is that it can bring information 
exchange among the sub-colonies once it has come through a fixed evolution process. The 
initialized ant colonies are divided into several sub-colonies according to the number of the 
processors. The sub-colonies are then distributed to corresponding processors to evolve 
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independently. Later, as the rule works, the sub- colonies will transfer the “outstanding ants” 
to other sub-colonies. The transition can employ multi-topological structures. Here we 
employ the ring topology. By exchanging the “outstanding ants” between sub-colonies to 
introduce their best pheromone information, the path selection of the ants is diversified to 
effectively prevent the premature convergence. 

 
In the implementation of parallel ACA, if an algorithm involves substantive communication 
between the processors, the parallel effect will be greatly sacrificed. All of the algorithms 
discussed above take place in a distributed environment other than share the same memory 
system. This is because the distributed structure is more widely seen and used. By comparing 
the communication cost and solution precision of each model, we can see that the 
coarse-grain parallel algorithm is comparatively applicable in that it requires little 
communication and can speed up the convergence while ensure the quality of the solution. 
Therefore, it is more suitable to adopt in the distributed environment. 

 
 

4 THE ALGORITHM PROPOSED IN THIS PAPER 
 

The essence of the transit network design is the optimal setting between the origin station and 
the terminal. Different settings can form different transit lines with different direct-through 
passenger flow densities (Dod). This is very similar to ACA described as above. If we take the 
origin station as the nest and the terminal station as the food, the UTNPN problem can be 
simplified as a process by which the ant colony searches for food starting from the nest by 
means of the pheromone deposited, namely, searching for an optimal transit line from the 
origin station to the terminal judging by the passenger flow density. Because the Enumeration 
Method is the only effective solution to this problem and it involves a huge amount of 
calculation when it comes to large-scale practical problems, we are adopting the parallel ACA 
in this paper. In addition, as the algorithm will be exerted under the cluster environment, the 
CPACA is adopted to complete the communication between the sub-ant colonies by MPI. The 
algorithm first generates m initial sub-ant colonies, each consisting of p ants. All of the 
sub-ant colonies maintain their own pheromone matrix independently, and independently 
search for the optimal transit line between the origin station and the terminal according to the 
“pheromone”, i.e. the passenger flow density, along the given network. When all of the p ants 
in each sub-colony have completed the search task, the line with the largest passenger density 
among all alternative viable lines is chosen as the line to be laid in this cycle. The search 
process repeats until all lines are completely laid out. The specific steps of the algorithm are 
as follows: 

 
Step1 Initialization 
The ant colony should be initialized after completing the transit network initialization by 
generating m sub-ant colonies and identifying their topological structures, transition intervals, 
and transition scales, followed by initializing the communication environment between the 
sub-ant colonies. 

 
First an appropriate initial weight needs to be allocated to all edges (Stützle et al, 1999). Since 
the passenger density is regarded as the “pheromone” deposited by the ants on the path, we 
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use the average passenger flow density to initialize the pheromone matrix, specifically written 
as: 

∑∑= ijij lSP /τ                                             (6) 

where τ  refers to the average passenger flow density of the entire transit network. At last, 
the forager ants can be distributed to the graph. Because each path carries the same amount of 
pheromone, the ants can be randomly distributed to the nodes nearby the nest. 

 
Step2 Transition rule 
The transition rule refers to the probability of each path to be chosen by the ants during their 
path-searching process. It is determined by the pheromone density τij and the visibility value 
ηij of the corresponding edges. In the algorithm in this paper, τij is derived by updating the 
pheromone on each edge upon completion of a cycle, based on the transition rule discussed 
below; while ηij is derived by a greedy method which encourages the ants to visit the locally 
optimal path. As the target function value is derived by maximizing the passenger flow 
density of each line, let ηij = dij, where dij is the passenger flow density of link ij: .            ijijij lSPd /=
We define the probability for an ant to transfer from zone i to zone j as formulation 3. 

 
Step3 Path search 
Before the path search, the viable origin o and terminal d should be chosen. For instance, an 
OD pair is regarded as non-viable if it lies on a line that has already been laid out or does not 
satisfy the constraints. After choosing the origin and destination terminals, each sub-ant 
colony starts searching paths between the OD pair independently. To carry out the path search, 
the zones whose distances to the current zone k are less than the pre-scheduled station spacing 
(0.5-0.8) are first chosen to form an aggregation of alternative zones, whereafter the next zone 
l is chosen according to the ant transition rule. Each line is valuated in turn after the 
calculation.  

 
Step4 Pheromone update rule 
The network needs to be updated after a line is identified. Namely, the pheromone in the 
network needs to be updated. 

 
1)Pheromone distribution rule 
The network optimization is completely dependent on the direction of pheromone τij and 
visibility ηij. The visibility ηij is comparatively stable, so the pheromone τij becomes 
particularly important in terms of searching for new lines and better solutions. When updating 
the pheromone, a basic ACA distributes the incremented pheromone with equilibrium for all 
paths the ants have visited. Due to the increment of the pheromone, some unfavorable paths 
are subject to large probabilities to be chosen in the next search cycle, while if the optimal 
path is not visited, the pheromone on it will evaporate gradually, which leads to a lowered 
probability for it to be chosen in the next search. This may result in false directive information 
and a large amount of invalid searches. Therefore, we have adopted a pheromone distribution 
rule based on the target value: Ant-Weight. Specifically, the pheromone update rule is as 
formulation 4 and formulation 5. 

 
2) Migration strategy 
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In order to diversify the selection scope of paths, new paths are continuously exploited to get 
better solutions. In addition, an “ant transition” is introduced, in which some outstanding ants 
are transferred to other sub-ant colonies after some time of search, stimulating the ants to find 
more favorable paths.  

 
It is very important to identify the transition epoch and the transition scale (nm). If the either 
epoch is too long or the scale is too small, the transition will not be reacting on the sub-ant 
colonies to exploit new paths, and the immigrant ants’ survival tends to be few. On the other 
hand, if either the epoch is too short or the scale is too large, the diversity of the sub-ant 
colonies will be ruined, which causes a premature convergence. Hence, the transition epoch 
and scale are determined according to specific situations. By simulation, a transition rule with 
an epoch of 5 and a scale of 1 is found to be able to ensure the solution quality as well as the 
fastest convergence speed. In addition, the topology of connection between the sub-ant 
colonies needs to be identified before the transition is implemented. Matsumura (1998) has 
found that unidirectional ring topology not only facilitates the excellent genes to diffuse in the 
colony, but separates the sub-colonies effectively so that the diversity of the colonies is 
protected. This paper also adopts the unidirectional ring topology to connect the sub-ant 
colonies. Thus, the search task of an individual ant is completed. Step 4 is retrieved to 
continue the search cycle, until all ants of the sub-colonies have completed the search tasks. 

 
Step5 Laying lines 
After all ants of the sub-ant colonies have completed a search cycle, the line with the largest 
passenger flow density between OD is chosen to be an alternative line. The stops it covers are 
sequentially added into aggregate SOD. Thus, the search task for lines between OD is 
completed, and we return to Step 3 for the next OD path search. This process repeats till all 
valid lines between OD are searched out. In this wise, no more than one alternative line is 
generated between each valid OD. The collection of these alternative lines is written as S. The 
collection of S is derived after the search tasks for all valid lines between OD are completed, 
whereafter the lines are laid. The key to the transit line layout lies in identifying the 
direct-through passenger flow density (DOD) after matching the origin and destination 
terminals. DOD is related to the stops the line covers and the line length. The line with the 
largest passenger flow density in the entire S is then chosen to be added into the network, after 
which relevant data are updated.  

 
Step6 Revising the network 
After line layout, the passenger flow carried by a line needs to be subtracted from the original 
passenger flow matrix. The passenger flow matrix revision is carried out according to the 
method as follows. Firstly, the total passenger flow of each line section (including the existent 
passenger flow Vkl) and the carrying capacity are calculated. If the carrying capacity of every 
section of a line outweighs its passenger flow, all passengers on the line would be carried by 
that same line, and the inter-station passenger flows should be subtracted from the passenger 
flow matrix. If the section passenger flow is less than the total section passenger flow, the line 
can only carry part of the passengers, and the residual passenger capacity needs to be 
calculated followed by subtracting the carried passenger flow from the original passenger 
flow matrix. Lastly, the OD pairs of the lines laid are deleted from the terminal matrix. So far, 
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the line with the largest passenger flow density in this cycle is laid to the network. The cycle 
completes after revising the network. The next step is to determine whether or not the cycle 
terminates. The outcomes are exported if it is to be terminated; otherwise, Step 2 is retrieved 
to continue the layout. The search process is not terminated until there are no lines complying 
with the set constraints in the network, or the cycled times have reached the pre-scheduled 
level. 

 
 

5. NUMERICAL TEST 
 

To examine the model and the efficiency of the algorithm, Data in Dalian city is used for 
numerical test. The population in Dalian is 2 million, and the build-up area is 180 km2. 
Dalian’s road network consists of 3200 links and 2300 nodes. At present, there are 89 bus 
lines and 1500 bus stops. Fig.3 illustrates the situation of the bus network. We partition Dalian 
city into 800 zones and get bus OD matrix through on-board survey of all of the 89 lines. 
Then by taking the zonal centers as bus stops, we design the bus network with the developed 
model and algorithm. The parameters in the ACA are estimated through simulation (Table 1). 
There are 8 ant colonies, within each colony there are 30 ants. Then we carry out our model 
and algorithm with Microsoft Visual C++.Net 2003 on the cluster environment formed by 8 
computers. Fig.4 illustrates the results of the CPACA. Total 61 bus lines are designed, which 
extend 692km. The designed bus network can basically satisfy the trip demand. By comparing 
the optimized with current bus networks, we get following results. 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.4 The optimized bus network Fig.3 Current bus network  

Table 1 Parameters in CPACA 

m p α β Q epoch nm

6 30 2 1 1000 10 1 
 
1) Fig.5 illustrates the direct-through passenger densities of optimized and current bus 

network. We can see that direct-through passenger density of current bus network is about 
28.8, much lower than the optimized 42.7. This is mainly because that current bus lines 
overlap each seriously to disperse the trip flow, thus lowers the efficiency of the network.  
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 Fig.5 The direct-through passenger densities of optimized and current bus network  
2) In optimized case, direct-through passengers shares 51%, while in current network it is 

about 41%. 
3) As Fig.6 shows all of the optimized bus lines are shorter than current ones. 
4) As Fig. 6 shows no-linear rates of many current lines are high, some of them are even over 

3.4, the averaged non-linear rate of current bus lines is about 1.75, while the averaged one 
of the optimized lines is about 1.52. 

 

Fig.7 The comparison of CPACA with ACA 

Fig.6 Line length and non-linear coefficient of optimized and current bus network 

 
 
 
 
 
 
 
 
 
 
 

 
At last, efficiencies of CPACA and ACA are compared. We test 10 times for the two 
algorithms with the same road network. From Fig.7, we found that the optimized result of 
CPACA is better than that of ACA. 
It can be said that since too many 
zones exist and the constrains are 
very complicated, thus although 
we set upper and lower limits for 
the phenomena, searching work 
still tends to be trapped in local 
optimal solution. However, 
introduction of Migration 
operation in CPACA diversified 
the ant colony and widened the 
searching space, problem of being 
trapped in local optimal solution 
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is improved somewhat. Moreover, since searching time is much more than commuting time 
between two ant colonies, we think CPACA can improve the optimization quality with same 
numbers of the ant colonies.  
 
 
6 CONCLUSIONS 

 
Model for optimizing urban transit network has been developed, which takes maximum 
direct-through passenger density as goal and considers benefits of both passengers and transit 
companies. It means that minimizing the average trip time, namely to make as many as 
passengers to travel between original and destination without transfer. On other hand, the 
model maximizes the profit of bus companies, namely to raise operation efficiency and 
shorten the total bus lines. Based on ACA we developed an algorithm for the model. In order 
to improve the optimization and quick the calculation, CPACA is adopted. We found that 
coarse-grain model with less communication is more suitable in cluster environment. Finally, 
with data of Dalian city we test our model and algorithm and compare some indices between 
the optimized and current bus networks. And merits of CPACA are also illustrated.  

  
Improvement of the searching efficiency is our further study. Since searching the route is 
time-consuming, then the algorithm runs a long time. We can make the improvement from 
two aspects: 1) simplifying the road network, 2) improving efficiency of ACA. Moreover, 
generation of only one line in each an iteration humped the line design afterwards, and then 
the final result may not be the global optimized one, some areas with less passenger density 
may become un-served area of transit network.  
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