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Abstract: Data aggregation interval is important for reliable travel time predictions in 

probe-based systems. Where sufficient probes exist, a short interval can be used to minimize 

the time delay. However, in the opposite case, a short interval can cause unreliable travel time 

predictions due to small probes. Thus, the optimal aggregation interval may vary according to 

traffic flow conditions. This study suggests a methodology for selecting the optimal 

aggregation interval which varies according to a characteristic of probe travel time. The 

superiority of the proposed methodology compared to a conventional fixed interval is verified 

using DSRC probe data collected on a multilane highway near Seoul, Korea. The Kalman 

filter is adopted for a travel time prediction technique. As a consequence, the prediction 

accuracy is enhanced by approximately 40% compared to a fixed aggregation interval under 

free flow conditions.  

Keywords: ITS, travel time prediction, variable aggregation interval, Kalman filter, probe, 

DSRC 

1. INTRODUCTION

To maximize the efficiency of already-constructed highway facilities, Advanced Traveler 

Information System (ATIS) has become popular in many areas (FHWA and SwRI, 1998; 

Houston TranStar, 2003). Recently, 5.8 GHz Dedicated Short-Range Communication (DSRC) 

traffic information system, which produces section travel times using probes equipped with an 

On-Board Unit (OBU), has gained interest in Korea (ITS Korea et al., 2008). As of June 2012, 

the market penetration of this OBU is around 25%. Originally, the DSRC OBUs were 

introduced for an Electronic Toll Collection System (ETCS). Figure 1 illustrates the schematic 

outline of the DSRC traffic information system. Compared to conventional detector-based 

systems, the DSRC system has an advantage in that data collection and information provision 

is simultaneously possible through the same OBU. 

However, a probe-based traffic information system inevitably produces delayed travel 

time (TT) information due to the widely recognized probe characteristic. Hence, TT 

prediction has been considered a paramount issue for probe-based systems. Chen and Chien 

(2001), and Chien et al. (2003) applied the Kalman filter to produce predicted TTs in a 

probe-based system, and these TTs were evaluated against the CORSIM simulation TTs as 

baseline values. Kuchipudi et al. and Chien (2003) also used the Kalman filter for reliable TT 

predictions with link- and path-based schemes for the New York State Thruway traffic 

information system. Detector data from a freeway in Rotterdam was used by Huisken et al. 

(2003) to predict TTs. They applied a neural network algorithm and verified the superiority of 

their methodology over existing techniques. Wei et al. (2007) developed a simple linear model 

to predict travel times gathered on Hanshin Expressway in Japan. The prediction performance, 
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even though its simplicity, were proven to be satisfactory even in congested situations. Myung 

et al. (2011) predicted TTs on the basis of the k nearest neighbor (k-NN) method and used 

data provided by the vehicle detector system and the automatic toll collection system of a 

freeway in Korea. 

 

 
Figure 1. Schematic of DSRC Traffic Information System  

 

Another important issue in probe-based systems is the optimal aggregation interval of 

probe data. That is, shorter aggregation intervals can diminish the time delay phenomenon, 

but the TT reliability can be deteriorated due to small sample size. On the contrary, longer 

aggregation intervals may induce the opposite effects. Therefore, the optimal aggregation 

interval for a specific traffic flow condition is of importance for reliable real-life traffic 

information. Some researches into the optimal aggregation interval for reliable TT 

information have been conducted. Gajewski et al. (2000) chose optimal aggregation widths to 

estimate speed data from loop detectors using a cross-validated mean square error (MSE) 

approach. Qiao et al. (2003, 2004) and Oh et al. (2005) applied various statistical methods for 

choosing optimal aggregation intervals, and Park et al. (2009) proposed a methodology based 

on MSE for identifying the optimal aggregation interval for estimating and forecasting TT. 

However, because these studies did not provide an algorithm for selecting optimal 

aggregation intervals on a real-time basis, their findings cannot be applied to a real-world TT 

prediction system that needs to dynamically select optimal aggregation intervals. 

In this paper, the author proposes an algorithm to select the optimal aggregation interval 

on a real-time basis in a DSRC TT information system that applies the Kalman filter as a TT 

prediction technique. The optimal aggregation intervals are determined by the variance 

characteristic of the probe TTs. The predicted TTs and those based on conventional static 

aggregation intervals are compared with the actual TTs from vehicles that traveled the target 

link immediately after receiving the predicted TTs. 
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2. REVIEW OF METHODOLOGIES 

 

2.1 The Kalman filter  

 

The Kalman filter constantly updates its parameters to predict the required state variables (e.g., 

TT) as new state variables are obtained (Grewal and Andrews, 1993); therefore, it is applied 

to predict TT in this research. The Kalman filter operates in the following manner: let x(t) 

denote the TT to be predicted at time interval t. Let the parameter ф(t) denote the transition 

parameter at time interval t, which is calculated from current and historical TTs, and let w(t) 

represent a noise term that is normally distributed with a mean of zero and variance of Q(t). 

The state equation (or system model) can be written as follows: 

 

( ) ( 1) ( 1) ( 1)x t t x t w t                                (1) 

 

Let z(t) denote the observed TT and v(t) denote the measurement error at time interval t; 

v(t) is normally distributed with a mean of zero and variance of R(t). As no parameter except 

TT is considered, the observation equation related to the state variable x(t) can be written as 

follows: 

 

( ) ( ) ( )z t x t v t                                 (2) 

 

In this study, z(t), the average TT between two successive Road Side Units (RSEs) at 

time interval t, is collected from the probes by the DSRC OBU. The data in the previous time 

interval is used to calculate the transition parameter ф(t); this parameter indicates the 

relationship between the state variables (TT in this study) over successive time intervals. Let 

us suppose that for every i and j, E[w(i)v(j)] = 0, and let P(t) represent the covariance of 

estimation errors at time step t; consequently, the Kalman filter can be applied using the 

procedure given below. Generally, in a linear system, the value of I is set to 1 (Kuchipudi and 

Chien, 2003); we follow this convention here. The Kalman filtering algorithm is applied as 

follows: 

 

Step 1 Initialization 

Let 0t   and let ˆ[ (0)] (0)E x x and 2ˆ[ (0) (0) ] (0)E x x P                                   

Here, ˆ(0)x  is the predicted TT at 0t   

 

Step 2 Extrapolation 

Extrapolate state estimate: ˆ ˆ( ) ( 1) ( 1)x t t x t     

Extrapolate error covariance: ( ) ( 1) ( 1) ( 1) ( 1)P t t P t t Q t          

 

Step 3 Calculation of Kalman gain: 
1( ) ( ) [ ( ) ( )]K t P t P t R t 

                                                                 

 

Step 4 Parameter update 

Update state estimate: ˆ ˆ ˆ( ) ( ) ( )[ ( ) ( ) ]x t x t K t z t x t      

Update error covariance: ( ) [ ( )] ( )P t I K t P t    

 

Step 5 Next iteration 

Let 1t t  . The next iteration begins from step 2 
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Analogous to other prediction methods, such as neural network algorithms and time 

series analyses, the TT prediction performance of the Kalman filter largely depends on the 

consistency between historical and current TT patterns. In addition, the variance of TT in the 

present aggregation interval plays a crucial role in prediction performance. Figure 2 shows the 

influence of variance on TT predictions, comparing the Kalman filter performance with TT 

variances of 5 and 500. As shown in Figure 2(a), a lower TT variance allows the Kalman filter 

to predict the baseline TTs (future observations the prediction targeted) extremely well, but 

with the larger variance in Figure 2(b), there is no notable difference between the predicted 

TTs and non-predicted TTs (current interval observations). 

 

 
(a) Travel time variance of 5 

 

 
(b) Travel time variance of 500 

Figure 2. Travel time prediction simulations using the Kalman filter 
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2.2 MSE-based aggregation interval size identification 
 

Park et al. (2009) suggested a novel methodology for determining the optimal aggregation 

interval for TT estimation. They used mean square error (MSE), shown in Equation (3), as a 

performance measure in determining the optimal aggregation interval. 
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where ( )ix h  = Observed link TT of i-th vehicle at time period h 

( )X h
  = Expected sample mean link TT on a link at time period h 

   ( )v h  = Observed number of vehicles at time period h 

( )X h  = Sample mean link TT on a link at time period h 

 

In Equation (3), the cross term is assumed to be zero because the two terms are 

independent and their expectations become zeros. In other words, the first term represents the 

difference between an individual probe TT during time period h and the observed mean speed 

in the same time period. The second term represents the difference between the observed 

mean TT during time period h and the expected mean TT in the same time period. The mean 

square error (MSE) is composed of two components. Park et al. referred to the first 

component as the estimated mean square error of prediction (MSEE) and the second 

component as the variance of the predictor. The optimal aggregation interval is given by the 

point at which the MSE is minimized. 

It was argued that this minimum MSE results from the trade-off between MSEE and the 

variance of the predictor. That is, in congested traffic conditions, a smaller aggregation 

interval induces a smaller MSEE but a larger variance of predictor, and vice-versa for a larger 

aggregation interval. However, in their research, aggregation intervals above 5 min were 

found to have a relatively constant variance of the predictor. This implies that the variance of 

probe TTs for an aggregation interval has a great effect on TT estimation for the aggregation 

intervals above 5 min. In reality, in a probe-based traffic information system, an aggregation 

interval less than 5 min is not recommended because of the small probe sample size.  

Based on the findings of the Kalman filter feature and literature review, this research 

assumes that the optimal aggregation interval can be determined at which the probe TT 

variance is minimized when adopting the Kalman filter as a prediction method. To verify this 

assumption, we collect and analyze probe data. Details are given in the following sections. 
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3. DATA COLLECTION AND EVALUATION INDEX 

 

Data for this research were obtained on a multilane highway near Seoul, Korea. The roadway 

section (3.1 km long) with four directional lanes lies between two access points, namely 

Jayuro service area and Moonbal IC (see Figure 3). Due to unavailability of detector data, the 

traffic volume on the day this study performed could not be identified exactly. However, the 

annual traffic volume statistics tells that 15,000 average daily traffic (ADT) traveled on the 

road, implying around 50 vehicles traveled at five minutes interval on average. There is no 

intermediate access point between the two points, implying that no sophisticated outlier 

filtering algorithm is needed. The data were obtained from two RSEs installed at the access 

points for 12 h (including congested and non-congested periods). Severe congestion occurred 

between 16:00 and 20:00 due to a surge in traffic during this period. 

 

 
Figure 3. Data collection area and DSRC antenna 

 

In a probe-based traffic information system, outliers might occur due to abnormal 

maneuvers (i.e., excessively fast/slow vehicles). If such outliers are included in the aggregated 

data, the mean TT can be biased. To address this issue, the core 90% of probe TTs at an 

aggregation interval was averaged to obtain an estimate of the section TT. The 90% was 

arbitrarily selected according to rule-of-thumb knowledge of the roadway section, and this 

proved to be an effective method. However, for more complicated roadway sections 

containing multiple access points, a more sophisticated outlier filtering method is 

recommended or, if necessary, need to be developed. 

The reference TTs, against which the short-term TT prediction scheme suggested in this 

research was evaluated, were also gathered from the RSEs. The difference is that the reference 

(or baseline) TTs were those experienced by vehicles that passed the start point (Jayuro 

service area) during a given time period. That is, given that the predicted TTs were derived 

from probes that arrived at the end point (Moonbal IC) during an aggregation interval, the 

corresponding baseline was the average TT experienced by probes that passed the start point 

in the same aggregation interval. This is regarded to be reasonable because the predicted TTs 

are intended for disseminating to drivers in the vehicles passing the start point in that time 

interval. The mean absolute percent error (MAPE), which is used as the official evaluation 

index for traffic detectors in Korea, was selected as the evaluation index for the predicted TT 

in this research. MAPE is calculated as: 

 

100
(%)

ref pre refTT TT TT
MAPE

n

  



                     (4) 

where TTref is reference travel time and TTpre is predicted travel time. 
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4. TRAVEL TIME PREDICTION AND ANALYSIS 

 

4.1 Travel time prediction with fixed aggregation interval scheme 

 

TT predictions were obtained using the Kalman filter combined with fixed aggregation 

intervals (5, 10, 15, 20, 25, and 30 min), and the predicted TTs were compared to the 

aforementioned baseline TT. Due to unavailability of historical TTs, analogous to the TTs this 

research is based on, current TT was exploited as a substitute for the historical TTs. As stated 

earlier, the objective of this research is to seek the more appropriate prediction scheme 

between static and variable aggregation intervals using the Kalman filter, this may not be a 

critical concern.  

The results show that 5 min aggregation interval posed the lowest overall error (Table 1 

and Figure 4). However, under non-congested conditions, the lowest prediction error was 

obtained with 15 min aggregation interval, implying that the optimal aggregation interval may 

vary according to traffic flow status. To distinguish traffic flow conditions (congestion or 

non-congestion), we used the measure of effectiveness (MOE) from the Korean Highway 

Capacity Manual. That is, if observed TTs were lower than the threshold speed corresponding 

to a level of service F, it was assumed to be congested. 

 

Table 1. TT prediction errors by fixed aggregation intervals 

Traffic flow conditions 
Prediction errors (%) by aggregation intervals 

5 min 10 min 15 min 20 min 25 min 30 min 

Overall 6.2  7.7  9.6  12.7  15.1  18.6  

Under congestion 8.6  15.5  22.7  32.3  37.5  46.4  

Under non-congestion 5.0  3.8  3.3  3.4  3.9  5.6  

 

 
Figure 4. TT prediction errors for each aggregation interval 
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4.2 Analysis of prediction error by aggregation interval 

 

To verify the assumption of a correlation between TT prediction error and TT variance, a 

correlation analysis on the two parameters was performed. The consequence, as shown in 

Table 2, is that the two parameters are highly correlated, with correlation coefficients of 0.98, 

0.99, and 0.85 for the overall, congested, and non-congested traffic conditions, respectively. 

This result presumably indicates that TT prediction errors tend to diminish as TT variance 

decreases; hence, TT predictions based on aggregated TTs with the lowest variance are the 

best strategy for accurate real-life TT information. Generally, a lower aggregation interval 

ensures a lower time delay, resulting in lower TT estimation or prediction errors. However, in 

a probe-based TT information system, too short aggregation interval might induce 

unexpectedly high TT variance due to the small number of probes. As observed in our review 

on the Kalman filter characteristic, as well as in the previously mentioned literature and others 

(Sen et al., 1997; Chen and Chien, 2001), a higher TT variance may increase the TT 

prediction error. 

 

Table 2. Correlation analysis of the relationship between TT prediction error and variance 

Agg.  

Int. 
(min) 

Overall Under congestion Under non-congestion 

TT Prediction 

error (MAPE) 

TT variance 

(s) 

TT Prediction 

error (MAPE) 

TT variance 

(s) 

TT Prediction 

error (MAPE) 

TT variance 

(s) 

5 6.2  417  8.6  1361 5.0  183  

10 7.7  478  15.5  1631 3.8  159  

15 9.6  586  22.7  2278 3.3  165  

20 12.7  667  32.3  2838 3.4  161  

25 15.1  780  37.5  3161 3.9  190  

30 18.6  825  46.4  3604 5.6  260  

r 0.98 0.99 0.85 

 

4.3 Travel time prediction with variable aggregation interval scheme 

 

To utilize the high degree of correlation between prediction error and variance for accurate, 

real-life TT prediction, we developed an algorithm (see Figure 5) to select the optimal 

aggregation intervals for TT prediction where the Kalman filter is used for the TT prediction 

method. The algorithm uses the aggregated (or block) data with the lowest TT variance. From 

Table 1, the aggregation intervals with the minimum TT variances were 5 and 15 min for 

congested and non-congested conditions, respectively. Thus, the algorithm only considers the 

5 to 15 min aggregation intervals in 5 min increments. However, the maximum and minimum 

aggregation intervals, as well as the increment, can be adjusted for a specific TT information 

system. 

The predicted TTs with the variable aggregation interval scheme were evaluated using 

the aforementioned baseline TTs. The results were compared to those of the 5 min 

aggregation interval. It was observed that the prediction error decreased considerably under 

non-congested conditions (by around 40%, see Table 3 and Figure 6(a)), though there was no 

notable difference under congested conditions. This improvement was shown to be significant 

(p value of 0.01) using a t-test at 5% significance level. To investigate the probable cause of 

error with the fixed interval, we plotted the prediction errors and the number of probes in each 

5 min aggregation interval against the time of day. As illustrated in Figure 6(b), the prediction 

errors of the fixed 5 min aggregation interval surge after 23:00. Interestingly, the probe 
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sample size in this time period was considerably smaller (fewer than 5 probes) than those in 

other time periods. The lower sample size caused a high TT variance, resulting in the higher 

prediction error. The improvement in TT prediction accuracy using the variable aggregation 

interval is highly regarded because it means that accurate real-life TT information can be 

secured regardless of traffic conditions. Generally, real-life TT information during 

non-congested (e.g., nighttime) conditions might be regarded as unimportant; however, in the 

event of an incident, which could occur in a non-peak period and cause traffic congestion, the 

accuracy and drivers’ reliability of real-life TT information should be emphasized. Figure 7 

shows a graphical comparison of TT predicted by the variable aggregation interval scheme to 

the baseline TT. 

 

 
Figure 5. Algorithm for selection of optimal aggregation interval for TT prediction using the 

Kalman filter 
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Table 3. Analysis of TT prediction errors by variable and fixed (5 min) aggregation interval 

Traffic flow 

condition 

Absolute Percent Error (APE) by aggregation 
interval Number of 

sample 

t-test (α = 0.05) 

Fixed (5 min) Variable 
t-static p-value 

Mean Variance Mean Variance 

Overall 6.2 46 5.8 46 141 0.40 0.69 

Congested 8.6 79 8.7 80 45 -0.03 0.98 

Non-congested 5.0 27 3.1 10 96 2.67 0.01 

 

 
(a) Aggregated errors by traffic flow condition 

 

 
(b) Detailed errors by time of day (TOD) combined with number of samples 

Figure 6. TT prediction errors by aggregation scheme 

 

Proceedings of the Eastern Asia Society for Transportation Studies, Vol.9, 2013



 

 

 

 
Figure 7. Baseline TT vs. TT predicted using the variable aggregation interval scheme 

 

 

5. CONCLUSIONS AND FUTURE RESEARCH 

 

This study proposed a variable aggregation interval scheme for predicting short-term TT with 

the Kalman filter. Such a technique could be utilized with the DSRC traffic information 

system that is being actively deployed in Korea as a result of the increasing market 

penetration of OBUs, which were originally introduced for ETCS. In the proposed scheme, 

the optimal aggregation interval was determined according to the minimum probe TT variance. 

Predicted TTs were evaluated using the baseline TTs of vehicles that passed the start point of 

the road section during the period that the predicted TT was posted on information provision 

media such as variable message signs, the Internet, and smartphones. We used MAPE, which 

is used for official detector evaluation in Korea, as an evaluation index. 

Under congested conditions, little difference between fixed and variable aggregation 

intervals was observed. However, under non-congested conditions, predicted TT error 

decreased by approximately 40% in the variable aggregation interval scheme compared to the 

error of the 5 min aggregation interval; the significance of this improvement was verified with 

a t-test. As stated above, because accurate real-life TT information can be even emphasized 

during non-peak periods, the improvement could be highly regarded. Consequently, TT 

estimation/prediction error tends to increase with TT variance for aggregation intervals above 

5 min, showing similar results to the Kalman filter characteristic and a previous research 

(Park et al., 2009). 

We expect the algorithm developed in this research to be practically applied to 

probe-based traffic information, particularly where there is limited probe data, for the 

dissemination of reliable TT information. However, this research verified the effectiveness of 

the suggested algorithm using only one set of data from one location, though sufficient 

samples (over 12 h) were secured for statistical analysis. Therefore, the spatial transferability 

of the algorithm may need to be further verified with more data from other sites. 
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