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Abstract: Because of travel time uncertainty in traffic networks, the shortest path determined 

with a priori information may consist of links for which there are long delays and the path 

may not be optimal. Adaptive routing would suggest more reliable guidance by providing 

alternative links for en-route switching in the case of traffic congestion and a risk-averse 

hyperpath particularly provides an alternative method of adaptive route guidance. To evaluate 

hyperpath routing in terms of behavioral reality, we propose a method based on the cosine 

similarity index that takes advantages of huge quantities of route choice data. As an empirical 

study, we use taxi GPS probe data collected for about four years in Tokyo and compare 

hyperpath routing with the popular shortest-path routing in terms of reality of driver behavior. 

The empirical results indicate that hyperpath routing is closer to the real route choice than 

shortest-path routing. 

Keywords: Routing, Shortest path, Hyperpath, GPS probe data, Cosine similarity index 

1. INTRODUCTION

The development of shortest-path (SP) algorithms, digital maps and positioning technologies 

has resulted in the widespread use of vehicle navigation systems. Furthermore, the vehicle 

navigation market is still expanding. Since the development of the well-known Dijkstra 

algorithm (Dijkstra, 1959), the SP problem has been well studied. Among algorithms, the 

A-star (A*) algorithm (Hart et al., 1968) and its variants have played the most pivotal role in 

car navigation and have been widely implemented in most in-vehicle Global Positioning 

System (GPS) navigation systems.  

The SP problem, however, tends to become non-trivial in networks characterized by 

travel time uncertainty or variability. There are some sophisticated routing algorithms dealing 

with travel time variability (Fu and Rilett, 1998; Miller-Hooks and Mahmassani, 2000; Nie 

and Wu, 2009) but these algorithms work only when travel time distributions are available. 

Kaparias and Bell (2009) took stochastic characteristic based reliability index into 

consideration, which results in a more efficient reliable routing algorithm. However, the 

routes recommended by these algorithms pre-determined and are still risky because of travel 

time uncertainty. Chen et al. (2010) proposed a risk-averse route guidance algorithm 

employing a constrained A* search. Other literature has suggested that multipath navigation 

could be more favorable for drivers (Chi-kang, 1994; Chen et al., 2007). Alternatively, instead 

of focusing on routes, a route choice can be considered as a result of sequential link choices 

(Fosgerau et al. 2009) and can consequently be similar to a multipath recommendation. These 

studies focused on recommending prior routes but neglected the adaptability of routing to 

revealed travel time. 

In traffic assignment, the well-known Dial algorithm (Dial, 1971) excludes links of zero 
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likelihood and finds reasonable SPs in the remaining link set. However, link delays are not 

considered in Dial’s algorithm when generating the sub-network comprising the remaining 

links. In frequency-based transit assignment, additional waiting times are involved and a 

hyperpath sub-network can be found by minimizing the expected total travel time (Nguyen 

and Pallotiino, 1988; Spiess and Florian, 1989). The resulting hyperpath is based on the 

concept of optimal strategy and leads to a link-to-link strategic route choice. Since the basic 

implementation of the original Spiess and Florian algorithm (Spiess and Florian, 1989), 

Cominetti and Correa (2001) proposed a hyperpath–Dijkstra algorithm, which resembles the 

structure of Dijkstra's algorithm but theoretically has less time complexity. Noting that the 

waiting time for a transit line is comparable to the delay for a specific road link, Bell (2009) 

and Bell et al. (2012) initiated research into risk-averse hyperpath-based vehicle navigation 

referring to the idea of the optimal strategy, and proposed the hyperstar algorithm as an 

acceleration inspired by the A* algorithm. Ma et al. (in press) further accelerated the hyperstar 

algorithm to the Dijkstra–hyperstar algorithm using optimistic heuristics pre-calculated with 

Dijkstra's algorithm and a node-directed search that is similar to the best-first search proposed 

by Dechter and Pearl (1985). Empirical performance tests of hyperstar, hyperpath–Dijkstra 

and Dijkstra–hyperstar algorithms were also carried out by Ma et al. (in press). 

The behavioral reality is undoubtedly important in vehicle routing but it is seldom 

considered in most routing algorithms mainly because of the rigorous performance 

requirement of algorithms. The most popular SP algorithm implicitly assumes that all 

travelers definitely take the SP and also has been adopted in all-or-nothing traffic assignment 

(1984). Morikawa et al. (2005) evaluated route choice decisions based on GPS data taken 

from 1500 taxis in Nagoya, Japan over 2 months and found a high percentage of non-shortest 

paths. Zhu and Levinson (2012) evaluated the SP assumption using GPS data in the Twin 

Cities Metropolitan Area. In the field of route choice modeling, it is popular to model route 

choices with behavioral models based on random utility maximization and how to construct 

drivers’ route choice set in the model is crucially important for demand forecasting. Bekhor et 

al. (2006) emphasized that many route choice models presented in the literature pay little 

attention to empirical estimation and validation procedures, and evaluated several route 

choice set generation algorithms with data collected in Boston by asking travelers for route 

descriptions. According to Zhu and Levinson. (2012), current route choice set generation 

cannot reveal the majority of observed paths.  

In recent years, with the development of technologies such as the GPS, it is possible to 

collect a large amount of route choice data with probe vehicles equipped with GPS devices. 

This leads to many possible uses of the huge quantity of GPS data. As a result, data-driven 

route choice modeling has become popular in recent years. In route choice modeling, the first 

step is to extract several routes from an entire network as a choice set. Conventional methods 

are based on the biases of modelers instead of actual data. For example, K-SP algorithms are 

usually used to generate such choice sets. It is unavoidable that such biased route choice set 

generation is an obstacle in route choice modeling. Fafieanie (2009) examined the possibility 

of calibrating the route choice set generation by map-matching GPS data. In contrast, 

Frejinger et al. (2009) proposed a method for sampling the route choice set directly from 

observations. Both studies aimed to build a route set that is more indicative of reality.  

To sum up the above-mentioned literature review about vehicle routing algorithms, 

multipath traffic/transit assignment, and choice set generation for route choice modeling, there 

are two aspects which ensure the behavioral reality of modeling methodologies: (1) are the 

modeled routes the same as those used in reality and (2) do the estimates of link/route 

importance (probability) reflect travelers link/route preferences? In the context of vehicle 

navigation, the algorithm performance is quite rigorous so that the probabilistic methods 
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widely used in route choice modeling are generally not used. Alternatively, we anticipate that 

hyperpath routing balances the performance and behavioral reality, which may be promising 

in behavior-consistent route guidance. This motivates us to study the real route choices and 

consider whether the hyperpath routing reflects the reality better than popular SP routing. The 

availability of huge quantities of GPS probe vehicle data makes it possible to compare the 

behavioral reality of the hyperpath and SP by posterior processing. The objective of the paper, 

therefore, is to evaluate hyperpath routing in terms of behavioral reality by employing the 

proposed method based on the cosine similarity index that takes advantages of huge quantities 

of route choice data. 

This paper first outlines risk-averse hyperpath routing. A general method for evaluating 

routing algorithms is then proposed and an empirical study for Tokyo is presented. Finally, the 

paper presents conclusions and a discussion on data limitation and future work. 

 

2. HYPERPATH ROUTING: MODEL AND ALGORITHM 

 

The following notation is used throughout the paper: 
𝑟 / 𝑠: origin/destination node 

𝐼 / 𝐴: set of nodes/links 

𝑖  /  𝑗: tail/head node of a link 

𝐴𝑖
+ / 𝐴𝑖

−: outgoing/incoming links of node 𝑖 
𝐻: hyperpath link set 

𝐻𝑖
− / 𝐻𝑖

+: 𝐻𝑖
− = 𝐻 ∩ 𝐴𝑖

−, 𝐻𝑖
+ = 𝐻 ∩ 𝐴𝑖

+ 

I𝑂 / I𝐶: set of open/closed nodes 

A𝑂 / A𝐶: set of open/closed links 

𝑝𝑖   : probability that node 𝑖 is used in 𝐻 

𝑝𝑎 / 𝑃𝑎: probability that link 𝑎 is used in 𝐻 / 𝐻𝑖
+ 

𝑐𝑎: uncongested travel time on link a 

𝑑𝑎: potential maximum delay on link 𝑎 

𝑢𝑖: 
shortest travel time from node 𝑖 to the destination node expected by pessimists minimizing 

the maximum exposure to delay 

ℎ𝑖: node potential of 𝑖 with respect to 𝑟 

𝑁: a large number that depends on the precision of the computation 

𝐾𝑖: the number of attractive links when facing the link choice decision at node 𝑖 

 

The shortest path can hardly been found when travel times become uncertain. In this 

case, travelers usually follow a strategy which turns out to be a set of potentially optimal path 

(hyperpath). According to Bell (2009) and Ma et al. (in press), the risk-averse hyperpath 

problem, which minimizes expected total travel time by pessimistic travelers, is expressed as 

min ∑(𝑐𝑎 + 𝑑𝑎) ⋅ 𝑝𝑎 ,

𝑎∈𝐴

 (1)  

subject to 

∑ 𝑃𝑎

𝑎∈𝐴𝑖
−

= 1,   𝑖 ≠ 𝑟 

∑ 𝑃𝑎

𝑎∈𝐴𝑖
+

= 1,   𝑖 ≠ 𝑠 

𝑃𝑎

𝑃𝑏
=

𝑑𝑏

𝑑𝑎
, ∀𝑎, 𝑏 ∈ 𝐻𝑖

+ 

𝑝𝑎 = 𝑃𝑎 ⋅ 𝑝𝑖 ,    ∀𝑎 ∈ 𝐻𝑖
+ 

𝑝𝑖 = 1,   𝑖 ∈ {𝑟, 𝑠} 

𝑝𝑎 ≥ 0, 𝑃𝑎 ≥ 0, 𝑝𝑖 ≥ 0  
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We assume that travelers are risk averse and make probabilistic sequential link choices that 

are sensitive to link delays. The link choice probabilities are assumed to be inversely 

proportional to the potential delay: 
𝑃𝑎

𝑃𝑘
=

𝑑𝑘

𝑑𝑎
, 𝑎 ∈ 𝐻𝑖

+ and 𝑘 ∈ 𝐻𝑖
+. 

(2)  

Since 

∑ 𝑃𝑘

𝑘∈𝐻𝑖
+

= ∑ (
𝑑𝑎

𝑑𝑘
∙ 𝑃𝑎)

𝑘∈𝐻𝑖
+

= 1, (3)  

we have 

𝑃𝑎 =
1

∑ (
𝑑𝑎
𝑑𝑘

)
𝑘∈𝐻𝑖

+

=

1

𝑑𝑎

∑ (
1

𝑑𝑘
)

𝑘∈𝐻𝑖
+

. (4)  

 

Furthermore, we assume more attractive links help mitigate the exposure to the risk of delay 

and introduce the “delay exposure to attractive links” 𝑒𝑖 at a node 𝑖 as 

𝑒𝑖 =
∑ (𝑃𝑘𝑘∈𝐻𝑖

+ 𝑑𝑘)

𝐾𝑖
=

∑ (
1

𝑑𝑘
∙𝑑𝑘)

𝑘∈𝐻𝑖
+

𝐾𝑖∙∑ (
1

𝑑𝑘
)

𝑘∈𝐻𝑖
+

=
1

∑ (
1

𝑑𝑘
)

𝑘∈𝐻𝑖
+

. 
(5)  

The travel time expected by pessimists at node i is then denoted by 

𝑇𝑖 = ∑ (𝑃𝑘 ⋅ 𝑠𝑘)𝑘∈𝐻𝑖
+ + 𝑒𝑖 =

1+∑ (
𝑠𝑘
𝑑𝑘

)
𝑘∈𝐻𝑖

+

∑ (
1

𝑑𝑘
)

𝑘∈𝐻𝑖
+

, 
(6)  

where 𝑠𝑘 is the expected travel time (including potential delay exposures) of the remainder 

of the trip. Eq. [1] can be transformed to Eq. [7] by considering that 𝑒𝑖 = 𝑃𝑎 ⋅ 𝑑𝑎 and further 

introducing  𝜔𝑖 = (∑ 𝑝𝑎𝑎∈𝐻𝑖
+ ) ⋅ 𝑒𝑖 = 𝑝𝑖 ⋅ 𝑒𝑖 . If we set 𝑓𝑎 = 1/𝑑𝑎 , 𝑃𝑎  and 𝑒𝑖  respectively 

become 𝑓𝑎 / ∑ 𝑓𝑘𝑘∈𝐻𝑖
+  and [1 + ∑ (𝑓𝑘𝑠𝑘)𝑘∈𝐻𝑖

+ ]/ ∑ 𝑓𝑘𝑘∈𝐻𝑖
+ , which are of the same 

mathematical form as the relations in transit assignment. Eq. [7] is exactly the same as the 

optimal-strategy-based hyperpath problem in Spiess and Florian (1989), which was also used 

by Bell (2009): 

min ∑ 𝑐𝑎𝑝𝑎

𝑎∈𝐴

+ ∑ 𝜔𝑖

𝑖∈𝐼

, (7)  

subjected to 

∑ 𝑃𝑎

𝑎∈𝐴𝑖
+

− ∑ 𝑃𝑎

𝑎∈𝐴𝑖
−

= 𝑔𝑖 , 

𝑝𝑎 ⋅ 𝑑𝑎 ≤  𝜔𝑖 ,    𝑎 ∈ 𝐻𝑖
+, 

𝑝𝑎 ≥ 0, 

𝑔𝑖 = {
1 if  𝑖 = 𝑟

−1 if 𝑖 = 𝑠
0 otherwise

. 

An accelerating algorithm named SF
di

 for fast hyperpath generation was given by Ma et 

al. (in press) with optimistic node potentials and best-first search. For completeness, the 

algorithm is illustrated as follows. 
Step 0: Initialization 

𝑢𝑖 ← ∞, ∀𝑖 ∈ 𝐼 − {𝑠}, 𝑢𝑠 ← 0; 𝑓𝑎 ← 1/𝑑𝑎 𝐢𝐟 𝑑𝑎 > 0, 𝐞𝐥𝐬𝐞 𝑓𝑎 ← 𝑀; 𝑓𝑖 ← 0, ∀𝑖 ∈ 𝐼; 
𝑝𝑖 ← 0, 𝑖 ∈ I − {𝑟}; 𝑝𝑟 ← 1, 𝐻 ← ∅; 𝜔 ← 𝑠; 𝐴𝑂 ← ∅, 𝐴𝐶 ← ∅. 

Conduct Dijkstra’s algorithm: ℎ𝑖
𝑂 ← least optimistic travel time from 𝑟 to 𝑖, ∀𝑖 ∈ 𝐼 

Step 1: Selecting link a 

1.1 for each link 𝑘 ∈ 𝐴𝜔
−  
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         𝐢𝐟 𝑘 ∉ 𝐴𝑂 and 𝑘 ∉ 𝐴𝐶 𝐭𝐡𝐞𝐧 𝐴𝑂 ← 𝐴𝑂 + {𝑘} 

1.2 select link 𝑎 in 𝐴𝑂 with the minimum 𝑢𝑗 + 𝑐𝑎 + ℎ𝑖
𝑂, 𝐴𝑂 ← 𝐴𝑂 − {𝑎}, 𝐴𝐶 ← 𝐴𝐶 + {𝑎} 

Step 2: Updating node label 

if  𝑢𝑖 ≥ 𝑢𝑗 + 𝑐𝑎  𝐭𝐡𝐞𝐧  

    if 𝑢𝑖 = ∞  𝑎𝑛𝑑 𝑓𝑖 = 0 𝐭𝐡𝐞𝐧 𝑢𝑖 ←
1+𝑓𝑎(𝑢𝑗+𝑐𝑎)

𝑓𝑖+𝑓𝑎
  

 

    𝐞𝐥𝐬𝐞  𝑢𝑖 ←
𝑓𝑖𝑢𝑖+𝑓𝑎(𝑢𝑗+𝑐𝑎)

𝑓𝑖+𝑓𝑎
, 𝑓𝑖 ← 𝑓𝑖 + 𝑓𝑎 , 𝐻 ← 𝐻 + {𝑎}, 𝜔 ← 𝑖 

 

if 𝑢𝑗 + 𝑐𝑎 + ℎ𝑖
𝑂 > 𝑢𝑟 or 𝐴𝑂 is empty, then go to step 3 else loop steps 1 and 2  

Step 3: Loading step  

for each link 𝑎 ∈ 𝐴 in decreasing order of 𝑢𝑗 + 𝑐𝑎 + ℎ𝑖
𝑂, 

    if 𝑎 ∈ 𝐻 then 𝑝𝑎 ← (𝑓𝑎/𝑓𝑖) ⋅ 𝑝𝑖 and 𝑝𝑗 ← 𝑝𝑗 + 𝑝𝑎 else 𝑝𝑎 = 0. 

Heuristic search is involved in the SF
di

 so the actual complexity is dependent on the 

searching scenario. Empirical comparisons among existing hyperpath algorithms in 

computational speed are provided in Ma et al. (in press). Although heuristic node potentials 

are used, SF
di

 still gives an exact hyperpath since the node potentials are admissible. 

Hyperpath can be represented by a set of links and each link is associated with a link choice 

possibility according to behavioral assumptions (e.g. Eq. (2)). Figure 1 illustrates hyperpaths 

increasing with potential congestion on the network. 

 

    
(a) No delay (b) Low delay (c) Medium delay (d) High delay 

Figure 1 Hyperpath increase with network delay levels 

(Link colors change from green to blue as choice possibilities increase) 

One may concern the computational speed problem which is the main reason that many 

sophisticated algorithms cannot be used in practice. The original hyperpath is at a complexity 

of O(𝑚 ⋅ log𝑚) (m denotes the number of links) which is comparable to that of the shortest 

path algorithm (O(𝑛 ⋅ log𝑛), n denotes the number of nodes) if both algorithms utilizes 

priority queue based data structures. Consequently, the A-star-like SF
di

 algorithm is applicable 

in practical route guidance systems. Running time experiments are included in Ma et al. (in 

press). 

 

3. A ROUTING EVALUATION METHOD BY USING COSINE SIMILARITY INDEX 

 

3.1 Cosine similarity index 

 

In route choice modeling, the problem of path overlap has not been considered in 

conventional logit model since it is based on the interdependent and identically distributed 

(iid) assumption of error terms. To deal with path overlap, models such as the C-logit model 

(Casscetta, 1996), link-nested logit model (Vovsha and Bekhor, 1998) and path size logit 

model (Ben-Akiva and Bierlaire, 1999) have been widely used. Additionally, the overlap 

problem has been considered in finding dissimilar routes (Akgün et al., 2000; Lim and Kim, 

2005; Zijpp and Catalano, 2005). 

The above-mentioned studies are based solely on the overlapping length. Although 
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these studies have various specific representations of path overlap, they employ the common 

idea that two routes are more similar if they share a greater length. This is a natural and clear 

approach but difficult to apply when comparing link sets for two reasons: (1) the similarity of 

“link exclusion” should also be considered in addition to that of link inclusion (i.e. overlapped 

links) and (2) link choice frequencies or probabilities should also be considered.  

To measure the extent that the hyperpath reflects reality, we propose to use the cosine 

similarity index (CSI) in vector space model (Tan et al., 2006). Let 𝐗 = [𝑥1, 𝑥2,∙∙∙, 𝑥𝑛] and 

𝐘 = [𝑦1, 𝑦2,∙∙∙, 𝑦𝑛] be link set vectors for a theoretical link set and real link set respectively, 

where 𝑥𝑛 and  𝑦𝑛 represent link counts and link choice possibilities respectively. With the 

nature of the cosine function, the CSI for the two link sets takes a value of 1 if the two link 

sets are identical and a value of zero if they are completely disjoint:  

CSI =
𝐗 ∙ 𝐘

‖𝐗‖ ⋅ ‖𝐘‖
 

(8)  

 

3.2 A simple example of the evaluating process 

 

Figure 2 (a) shows a simple road network containing six nodes, eight links and one origin–

destination (OD) pair. Figure 2 (b), (c) and (d) shows the situation for each hypothetical result 

(the hyperpath, SP and real route choice respectively). In this example, the vectors for 

hyperpath and SP in Figure 2 (b) and (c) are given by link choice probabilities in accordance 

with the link ID in Figure 2 (a). The link choice probabilities for hyperpath are calculated 

from the aforementioned algorithm. In contrast, travelers who follow SP definitely choose the 

links on SP, which means the probabilities of SP links are ones. The vector for real route 

choice set in Figure 2 (d) is obtained from route observations as shown in Table 1. Assuming 

the map-matched route choices obtained by analyzing the GPS probe data are those given in 

Table 1, the vector of real route choices and the CSI of the SP and hyperpath can be calculated. 

Route 1-3-6 is the SP without considering delays while it may suffer large delay in revealed 

traffic conditions. Route 1-2-6 could be longer than route 1-3-6 for undelayed travel but may 

be less exposed to possible large delays. The resulting hyperpath emphasizes travelers’ 

behaviors in making risk-averse decisions (links on route 1-2-6 are more preferred). Neither 

link 3-5 nor link 5-6 is chosen in the hyperpath or SP routing because they may be 

unattractive in terms of either the undelayed travel time or potential delay. Nevertheless, 

because of the data accuracy and complexity of decision making, such links are still observed. 
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Figure 2. A simple network example (numbers on links are link IDs in 

(a), link choice probabilities in (b) and (c), and link counts in (d) 

respectively, and dashed links in (b) and (c) are unattractive links 

determined by the assumptions of each model) 

Table 1. Example path set vector calculation 

Observed Path Count Link 1 2 3 4 5 6 7 8 

137 1382 

Count 

1382 0 1382 0 0 0 1382 0 

14 5891 5891 0 0 5891 0 0 0 0 

25 1029 0 1029 0 0 1029 0 0 0 

268 113 0 113 0 0 0 113 0 113 

Real route choice vector Sum 7273 1142 1382 5891 1029 113 1382 113 

 

In this example, the CSI for the hyperpath and real data is calculated as 0.994 while the 

CSI for the SP and real route choice is calculated as only 0.159. We thus say that hyperpath 

routing outperforms SP routing because it better reflects reality in this example. Note that the 

CSI is a relative index and a very large vector dimension will result in the CSI approaching 

one so that the differences among link sets are very small. Nevertheless, the vector dimension 

will not affect the relative relations among link sets. For example, in a network with a million 

links, a hyperpath for a OD pair consists of 50 links and the observed set consists of 150 links 

(30 links are captured by the hyperpath), and if all links are indexed, the CSI calculated for 

the two vectors (in dimensions of millions) closely approaches 1. However, this does not 

mean the two link sets are almost the same. In this case, the CSI might be close to one 

because most items in the vectors are zero. To avoid this, only the links involved in link sets 

for comparison are indexed in practice. 

 

4. CASE STUDY WITH TAXI GPS PROBE DATA IN TOKYO 
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To evaluate hyperpath against the shortest path (in terms of travel time) in the aspect of 

behavioral reality, taxi GPS probe data collected in Tokyo are utilized. Sophisticated 

algorithms such as ELB which calculates least expected time (LET) paths (Miller-Hooks and 

Mahamassmi, 2000) are not evaluated for several reasons: Firstly, LET path requires 

assumptions or estimations about travel time distributions which is impractical for large scale 

networks because of data availability; Secondly, the computation of LET is too high to be 

conducted for the Tokyo network we studied. For example, ELB algorithm gives LET path at 

a complexity of 𝑂(𝐼2𝑛3𝑃) where I and P are the number of discretized time intervals and the 

maximum number of possible values of discrete arc travel time random variable of a time 

interval respectively; Thirdly, although LET path do gives a set of path, behavioral 

assumptions (about choice possibilities) have not been made. Instead of comparing with LET 

path, comparisons with network loading algorithms (e.g. Dial's algorithm or route choice 

models such as Path Size Logit model in Ben-akiva and Bierlaire, 1999) are possible but the 

motivation of comparison is still not clear since such algorithms are not designed for route 

guidance. At the current stage, we only focus on the comparison with the shortest path, which 

is the most widely used algorithm in practical applications. 

 

4.1 Data description 

 

The taxi GPS probe data used in this study was collected from October 2004 to July 2008 by 

the Ministry of Land, Infrastructure and Transport of Japan. GPS devices were installed in 

about 80 taxis in the Tokyo metropolitan area. The recorded area covers 15 cells. Each cell 

has dimensions of 11.35 km × 9.35 km, and one with high road density is selected as the 

study area (Figure 3). The “all roads” layer of the study area consists of 38,111 nodes and 

108,363 directed links, of which 27,035 directed links are major roads. 

A taxi position was recorded in real time at a sampling interval of 1 second and the 

tracking files were map-matched to the Tokyo base map with the SIS-based (CadCorp: 

http://www.cadcorp.com) software PROLIMAS by the Institute of Behavioral Sciences. The 

threshold for stopping was predetermined as the taxi being at rest for 120 seconds; i.e., when 

a taxi has a velocity of 0 km/h for more than 120 seconds, the “stopkey” attribute in a route 

table is recorded as true. Since no passenger boarding information has been recorded, it is 

difficult to choose a reasonable time interval to split a one-day route into trip-based routes. On 

the one hand, if the threshold is too long, trips may be combined into a single trip if a 

passenger alights from the taxi quickly, and on the other hand, a single trip may be split 

because of stops at intersections if the threshold is too short. With the “stopkey” records, stops 

longer than 120 seconds at non-intersection locations are considered as trip start/end points 

when splitting daily recorded routes into trip routes. 
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Figure 3. Selected study area (southwest Tokyo) 

4.2 Calculation of link travel time  
 

Bell (2009) assumed that travelers minimize their exposure to "maximum" delay. However, 

maximum delays may only occur in extreme cases related to unusual weather events or traffic 

incidents. Extremely risk-averse travelers will never use a link if there have been extremely 

long time delays on that link previously. Therefore, we implement the expected delay, which 

can be calculated from the historical probe vehicle data, as the maximum delay used in the 

hyperpath assumption. This setting would be reasonable to some extent because the original 

assumptions of hyperpath-based routing focus on uncertainty in travel times and care little 

about the possibility of delay.  

To calculate the hyperpath, the undelayed link travel times and expected delays should 

be prepared for all links. The undelayed travel time is obtained from the length and legal 

speed limit of each link, and the delayed travel time (i.e., average travel time) can be directly 

calculated from the probe vehicle data. For each link for which we know the undelayed travel 

time and (with-delay) average travel time, the expected delay is calculated as the difference 

between the two. 

In terms of variation in the link travel time, we only focus on the morning peak-traffic 

time from 7:00 a.m. to 9:00 a.m.. To avoid losing results for other time periods, the trip routes 

are related to a timetable. The prefix of the time ID indicates the weekday and the suffix 

indicates the time segment when the data were recorded, which auto-increases every 5 

minutes. For example, the ID 1_2 represents the case of 00:05:00–00:10:00 on Monday. As a 

result, the time ID table starts from 1_1 and ends at 7_288. In this study, we only consider the 

peak-traffic data for weekdays in estimating the average link travel time.  

There are many outliers in GPS data that need to be removed. The outliers are very long 

time intervals and may arise because taxis sometimes stop on a link but quickly restart within 

120 seconds for various reasons. In practice, however, the sample size of 30 tends to be used 

as a cut-off point. We analyzed the number of travel time records on two different levels of 

GIS map layers (the main-roads layer and all-roads layer) and found that only 57.3% of links 
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have enough GPS records in the all-roads layer (Figure 4 (a)). In the main-roads layer, 82.9% 

of links have a sample size meeting the cut-off point (Figure 4 (b)). Although we tend to 

simulate the travel times of unrecorded links, low data coverage would introduce problems in 

simulation. Therefore, we used the main-roads layer with a higher data coverage ratio and 

excluded outliers employing a statistical method of outlier detection (Ben-Cal, 2005). 

  
(a) all-roads layer (b) main-roads layer 

Figure 4. GPS probe data coverage in the map layers 

Assuming the travel time of link 𝑎 follows a normal distribution 𝑁(𝜇𝑎,  𝜎𝑎
2), where 

𝜇𝑎 and 𝜎𝑎
2 are the mean and variance of the travel time on link 𝑎 respectively, the average 

travel time for each link is calculated after excluding the outliers outside the confidence 

interval [𝜇𝑎 − 𝑧1−𝛼/2 ⋅ 𝜎𝑎,   𝜇𝑎 + 𝑧1−𝛼/2 ⋅ 𝜎𝑎] , where 𝑧1−𝛼/2 is the z-score at a confidence 

level of 𝛼. We take 𝛼 = 0.05; thus, the corresponding confidence interval is [𝜇𝑎 − 1.96𝜎𝑎,
𝜇𝑎  + 1.96𝜎𝑎]. Because the deletion of outliers also affects 𝜇𝑎 and 𝜎𝑎 , we loop the outlier 

exclusion iterations until newly calculated 𝜇𝑎
∗  and 𝜎𝑎

∗ become stable (∣ 𝜇𝑎
∗  − 𝜇𝑎 ∣< 𝜖1 and 

∣ 𝜎𝑎
∗  − 𝜎𝑎 ∣< 𝜖1, 𝜖1 = 𝜖2 = 0.01 in our case). For the links with sample size smaller than 30, 

we take the interval of [0.5𝑇𝑎, 5𝑇𝑎] (where 𝑇𝑎 is the travel time calculated from the design 

speed and length of link 𝑎) for outlier detection. Because of the huge data quantity but 

limited physical memory, an online variance algorithm introduced by Terriberry (2007) is 

used to calculate the mean and variance. 

 

4.3 Data Generation for Links with no Travel Time Data 

 

Since not all links were covered by probe taxis, there are links with no or only a few records 

of travel times. These links are referred to as failed links. The travel times on these links 

cannot be calculated directly, or the directly calculated travel times are not reliable, because of 

the sample size. Alternatively, we implemented a simple geometry-based simulation to 

generate the average travel time for the failed links. We simply assumed that the speed of a 

link should be consistent with that of its adjacent links and the speed of the failed link can be 

calculated by averaging the speeds of connected links oriented at small angles to the failed 

link (we adopted 15° as the cut-off point). An example is illustrated in Figure 5, where links 

1, 2 and 3 have been covered by GPS probe data while link 4 has not ( α ≤ 15°, β ≤ 15° 

and γ > 15°). The simulated speed of link 4 is thus obtained as  

V4 =
V1+V2

2
=

l1/t1
d+l2/t2

d

2
, 

(9)  

where 𝑙 and 𝑡𝑑 represent the link distance and the with-delay travel time respectively. After 
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the travel time simulation with speed correlations, the travel times of 97.2% links are 

available. The travel times of the remaining 2.8% links are calculated by assuming that their 

speeds are the same as the average speeds calculated for all links in the same road hierarchy. 

 
Figure 5. Travel time data calculation for links having low GPS data coverage (Links 1 and 4 

are line strings on the GIS map) 

 

4.4 Empirical Results Obtained from Tokyo Taxi GPS Probe Data 

 

Although there is a large quantity of GPS probe data, an exact dot-based OD pair may lack 

sufficient support data. To obtain more route observations, we created buffers with the radius 

of 100 meters to aggregate the routes under the assumption that 100 meters is the expected 

acceptable walking distance to take a taxi in general. 

 

To find the OD pairs with buffers for which there are many route observations, we put the 

mesh in a 12 km × 12 km box and then split the box into small cells (200 m × 200 m). 

These square cells are approximations of the circular buffers for exact origins or destinations. 

Ten exact OD pairs are then randomly selected ( 

Table 2 and Figure 6) from OD pairs having more than 300 route observations and distances 

between 3000 and 5000 m, which is considered as the typical interval for taxi trips. It is found 

that the OD pairs beyond this distance interval have few route observations and they therefore 

cannot be used in the evaluation. The average distance of these OD pairs is 4114 m and the 

average number of observed routes is 799. The hyperpath of these selected OD pairs is 

calculated with the main-roads layer because of the higher data coverage. 
 

Table 2. Ten selected OD pairs and CSI results 

ID Origin ID Destination ID Distance (m) Records CSI_HP CSI_SP 

1 579 831 3165 376 0.2682 0.2371 

2 21786 3577 4523 431 0.5581 0.3521 

3 13520 2132 4611 577 0.5129 0.2577 

4 256 1348 3362 326 0.607 0.4125 

5 1335 21130 4102 521 0.5255 0.1654 

6 17791 2588 3876 1217 0.5133 0.2786 

7 2190 173 4816 763 0.5122 0.4317 

8 1579 11369 4458 1213 0.6117 0.3512 

9 1765 5337 4614 1749 0.4656 0.2217 

10 328 12511 3617 819 0.5349 0.216 
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Figure 6. Locations of 10 selected OD pairs 

The CSI results are presented in  

Table 2. The average CSI for the hyperpath and real data (CSI_HP) for 10 OD pairs is 

0.5110 while that for the SP and real data (CSI_SP) is 0.2924. This result is reasonable 

because the SP assumes very simple driver behavior (i.e., all drivers use the same route) and 

the assumption is far from what is observed in real cases. The results for CSI_HP, however, 

are unsatisfactory to argue that the observed routes chosen by taxi drivers are “quite” similar. 

This may be due to the limitation of the data we used, and more empirical studies with 

different data sources need to be carried out. In fact, it may be difficult to find a model which 

can fully explain the real behavior and we recommend using CSI as a comparative index. As 

an instance, Figure 7 (a) and (b) show the results of one of the OD pairs (from Shibuya to 

Roppongi, ID = 1) with low CSI_HP. It is seen that the real route choices are much more 

complex than the theoretically generated hyperpath. Cycles can sometimes be found for some 

revealed routes. One possible reason is that taxi drivers sometimes stopped for less than 120 

seconds, which was the threshold we used to determine trip end points, and the route is 

actually a combination of multiple trips. 
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(a) Route observations 

 
(b) Calculated hyperpath (blue) 

 
(c) shortest path (undelayed travel time) 

 
(d) abnormal observation example 1 

 
(e) abnormal observation example 2 

Figure 7. Observed routes and calculated hyperpath from Sibuya to Roppongi 

The boarding or alighting information is unavailable in our data source; hence, some 

abnormal routes (Figure 7 (d), (e)) have been recorded for unknown reasons (the shortest path 

is shown in Figure 7 (c) for comparison). Some trip routes may actually consist of multiple 

trips. Additionally, the driving behavior of taxi drivers is supposed to be quite different when 

carrying passengers compared with when seeking passengers. Some route preferences may 

result from driver behavior when seeking passengers in areas with possibly high taxi demand. 

The customer-seeking behavior may partially explain some of the abnormal routes. 

Because of the limitations of the data source, we found that many trip route data were 

missing and some abnormal routes had been taken into calculation. It would be more 

preferable to use collective routes for each individual driver instead of aggregated routes 

across different drivers. 

 

5 CONCLUSION 

 

This paper introduced a method of evaluating the behavioral reality of hyperpath routing and 

carried out an empirical study using taxi probe data for Tokyo. The proposed method, which 

uses a CSI, is an easy way to compare a theoretical link set based on routing algorithms with a 

revealed link set, especially when a large quantity of GPS data is available. The empirical 

results indicate that hyperpath routing is closer to the real route choice than shortest-path 

routing. Although no benchmark has been proposed for the similarity index so far, generally a 

routing algorithm with the larger CSI, as a comparative index of behavioral reality, would be 

recommended.  

The proposed evaluation method is general since it is not limited to hyperpath routing. 

In our empirical study, only the SP routing is compared with hyperpath because SP is the most 

popular one. Other multi-path routing algorithms may also be compared if we are able to 

appropriately give weights for each link based on route choice models. Outside the context of 

vehicle routing, it is also applicable to evaluating the behavioral reality of route choice 
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models.  

There are limitations to the data that we used. First, Tokyo is a city with highly 

developed railway systems, which many commuters tend to use especially in rush hours, 

resulting in less route observations than expected. Second, taxis are owned by companies and 

shared among a group of taxi drivers, which makes it difficult to study the route choice 

behavior of individual drivers. Furthermore, the lack of passenger boarding or alighting 

information made it difficult to obtain trip-based routes. Additionally, the data we used might 

be biased in terms of the behavior of “taxi” drivers. In an active sense, they are generally 

more familiar with the roads and network status and are supposed to be aware of recurrent 

delays, and thus their choices are advisable to common drivers. In a passive sense, a taxi 

driver may tend to seek customers when the taxi is empty and thus tend to wander around 

areas with higher taxi demand. More empirical studies with richer data would be highly 

recommended to examine whether hyperpath routing would be ready for the market. 
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