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Abstract: This paper models operating speeds on residential streets with a 30 km/h speed 

limit by using: (i) regression methods including Single Equation Regression (SER) and 

Simultaneous Equation Approach (SEA), and (ii) Neural Networks (NN) modeling technique. 

Free-flow profile-speed data were recorded on 99 street sections with varying characteristics 

which were then used to develop and validate speed models for estimating maximum speeds 

obtaining within a section and speeds at the entrance to the next un-signalised intersection. 

The results suggest that the models developed by SEA performed better than those by the 

conventional regression (i.e., SER). Compared to regression models, NN models showed 

better performance especially regarding model fitness although the resultant models are quite 

complicated. Based on the developed models, various street features were found as 

determinants of driving speeds that provided helpful information for addressing speeding 

issues on neighborhood streets. 

Keywords: Operating Speed; Residential Street; 30 km/h Speed Limit; Regression; 

Simultaneous Equations; Neural Networks. 

1. INTRODUCTION

Urban residential streets with a 30 km/h speed limit are very popular in many countries such 

as Japan. The primary purpose of setting the speed limit is to ensure the safety of vulnerable 

street users (i.e., pedestrians, cyclists) on those streets and make residential neighborhoods as 

a safe living environment. The safety benefit of the 30 km/h speed limit was highlighted by 

the fact that 90% of pedestrians hit by a car travelling at 50 km/h survived, while only 20% of 

pedestrians hit by a car travelling at 50 km/h survived (OECD/ECMT, 2006). However, 

despite efforts to slow down vehicles by setting the speed limit, in Japan, excessive speeds on 

those streets were very common (Dinh and Kubota, 2013) making the streets dangerous to all 

users. To tackle the speeding issues on residential areas, it is necessary to find out speed 

influencing factors from roadway and roadside characteristics. 

While abundant research has been dedicated to figure out the influences of roadway and 

roadside factors on vehicular speeds on rural highways (Gong and Stamatiadis, 2008; Wang et 

al., 2006), a relatively limited number of studies have been completed for urban conditions. 

Amongst those studies focusing on urban streets, operating speeds were often studied at either 

curve locations or straight sections. As respect to speeds at curve locations, Fitzpatrick et al. 

(1997) showed that curve radius and approach density were variables of speeds at horizontal 

curves while the inferred design speed significantly affected speeds on vertical curves on 

suburban roadways. For four-lane suburban arterials, posted speed limit, deflection angle, and 

Proceedings of the Eastern Asia Society for Transportation Studies, Vol.9, 2013

http://www.editorialmanager.com/easts_isc/download.aspx?id=3429&guid=d59e6efc-4bb1-46fa-bc87-5390a4e53783&scheme=1


 

 

 

access density class were found as significant factors of speeds at horizontal curves while the 

presence of median and type of roadside developments became significant variables in a 

speed model without considering posted speed limit (Fitzpatrick et al., 2001). By using 

ordinary regression, Tarris et al. (1996) developed speed models for estimating speeds at 

horizontal curves on urban collector streets with only one significant variable that was the 

degree of curve. With the same dataset, Peo and Manson (2000) used a mixed-model 

approach to build speed models with several speed predictors including: degree of curvature, 

longitudinal grade, lane width, and roadside characteristics. Bonneson (1999) studied speeds 

at 55 horizontal curves on urban/rural roadways and turning roadways. Based on the collected 

data, the researcher constructed a relationship between curve speed and influencing factors 

including approach speed, radius, and super-elevation. Up to date, there have been still a few 

operating speeds models available for estimating speeds on urban tangent streets. Previous 

studies (Fizpatrick et al., 2003; Fizpatrick et al., 2001; Ali et al., 2007) identified posted 

speed limit as the only significant variable or the most significant predictor of operating 

speeds on the straight sections. Other street features such as roadside density, driveway 

density, availability of sidewalk, presence of on-street parking, number of lane, curb presence, 

and type of residential land uses were found as speed influencing factors on urban tangent 

streets (Wang et al., 2006). There was only one previous study (Dinh and Kubota, 2013) that 

developed speed models for residential streets with a 30 km/h speed limit. The authors found 

various roadway and roadside factors as determinants of speed choice on those streets. 

With regards to the methodologies used to develop operating speed models, most 

previous studies relied on a conventional regression approach namely a Single Equation 

Regression (SER). When using the SER, if data were available for modeling speeds at 

multiple locations along a street, speed models were separately developed for each point. An 

underlying assumption of the SER approach is that there is no endogenous relationship 

between dependent variables. However, when the locations under study are close, as is the 

case of residential streets with a 30 km/h speed limit, the conventional SER is not able to 

account for the potential endogenous relationship between speeds at the two locations that 

may lead to a bias on modeling results. Dinh and Kubota (2013) introduced for the first time a 

Simultaneous Equation Approach (SEA) to address the endogenous relationship issue on 

modeling operating speeds at multiple locations on a street section. Although, the developed 

model in that study had a reasonable fit and integrated a number of roadway and roadside 

factors, the same as most existing studies, the validation of the developed models based on an 

independent dataset have not been conducted to test its predictive ability. Up to date, there 

were no studies made a comparison regarding the performance between the SEA models and 

those developed by SER that makes it difficult to fully understand the robustness of the SEA 

method. 

Beside regression approaches, Neural Networks (NN) modeling technique is an 

alternative methodology for modeling operating speeds. Different with statistical methods, 

NN models are not subject to distributional or other constraints inherent to regression (Taylor 

et al., 2007). Specifically, the strength of the NN method lies on that no assumptions are 

needed regarding the model form; and that NN models are able to effectively deal with 

nonlinearity and multicollinearity that often ruin the linear regression models (Karlaftis and 

Vlahogianni, 2011). Transportation Research Board (2011) highlighted certain limitations of 

regression-based speed models and made a recommendation that the advance modeling 

methods such as NN should be used to overcome those limitations. So far, several NN-based 

operating speed models have been developed with promising results. Zaman et al. (2000) 

successfully developed NN models for predicting the 85
th

 percentile speeds for two-lane rural 

highways. In a study by McFadden et al. (2001), NN-based models were developed for 
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estimating speeds at horizontal curves. The results showed that the performance of the NN 

models was comparable to those by regression approach. Recently, Signgh et al. (2012) used 

NN method to model 85
th

 percentile speed for two-lane rural highways. The final models in 

that study showed a reasonable accuracy and integrated a number of input variables. 

Although NN method has been demonstrated as an effective tool for modeling operating 

speeds, several limitations inherent to the method should be noted. The inference mechanism 

of a NN model is hidden itself causing difficulties on understanding the influence of each 

input variable on the model output. In addition, researchers often arbitrarily selected input 

variables for NN models and, very frequently, the implicit assumptions made regarding the 

data were disregarded. This implementation may lead to redundant input variables entering on 

the NN models. The redundant variables often require a large dataset and probably results to 

an overfitting issue which make NN models unable to generalize to a new dataset. Other 

limitations of NN models were also listed on a work by Karlaftis and Vlahogianni (2011). 

Because as aforementioned, both the regression approach and the NN method possesses 

each own merits and limitations, it is necessary to carefully select the modeling technique 

suitable for each specific research question. Because there is no specific guideline on 

selecting the appropriate modeling approach (either a regression based or a NN based model), 

a comparison on the performance of these models on the same study context is needed to 

deeply understand about the strength and weakness inherent to each methodology. However, 

such knowledge up to date is still very limited and it deserves for more considerations 

(Karlaftis and Vlahogianni, 2011). 

The primary objectives of the present study, therefore, is to evaluate the performance of 

operating speed models developed by using (i) regression methods (i.e., SER and SEA), and 

(ii) NN modeling technique. Different with previous studies that often used point-speed data; 

the model parameters in this study were calibrated based on the free-flow profile-speed data 

recorded on a number of residential streets with a 30 km/h speed limit. Speed models were 

then validated/tested with different dataset to confirm their predictive ability. From the 

developed models, the speed-influencing factors from roadway and roadside characteristics 

were also explored to provide helpful information for speeding intervention. 

 

 

2. DATA COLLECTION 

 

A free-flow speed survey was conducted on 99 street sections located in the areas of the city 

of Saitama, Kawaguchi, and Warabi in the Saitama Prefecture, Japan. The survey was divided 

into two periods of time. The first period was taken place from August 20
th

, 2011 to 

November 10
th

, 2011 with 85 selected street sections. The second survey was conducted to 14 

street sections from November 15
th

, 2012 to December 10
th

, 2012. It was intended that, the 

data collected in the first period would be used to develop speed models which were then 

validated/tested with the data from the second survey period. In the present study, all selected 

street sections were located in residential areas. Only straight sections with a 30 km/h speed 

limit were selected. General street characteristics of the selected sections are summarised in 

Table 1. 

This study used STALKER ATS radar guns connected to a laptop to record free-flow 

profile-speeds of individual vehicles travelling on each street section. A study section or site 

was defined as a segment between two intersections with a specified direction. The entering 

intersection must be a 4-leg or 3-leg intersection with a stop line for the entering approach. 

The exiting intersection must be un-signalised with a stop line for the study direction. It 

should be noted that in these sections drivers do not have to stop before the “stop line” of the  
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Table 1. Summary of selected street section characteristics 

Characteristics 
Measured value 

The first survey period The second survey period 

Length of street section (m) 86.70 to 268.10; mean: 140.76 86.90 to 217.20; mean: 124.90 

Number of lanes 1 to 2; mean: 1.64 1 to 2; mean: 1.71 

Lane width (m)  2.35 to 5.70; mean: 3.51 2.45 to 5.30; mean: 3.28 

Carriageway width (m)  3.40 to 7.10; mean: 5.30  3.60 to 7.00; mean: 5.32  

Roadway width (m)  4.70 to 8.90; mean: 6.58  3.70 to 8.00; mean: 5.55  

Left safety strip width (m)
a 

0 to 1.70; mean: 0.42  0 to 1.10; mean: 0.44  

Right safety strip width (m)
b
 0 to 4.45; mean: 2.41 0.6 to 4.00; mean: 2.62 

Presence of sidewalk no sidewalk: 43 sites;  

sidewalk on one side: 24 sites; 

sidewalk on both sides: 18 sites 

no sidewalk: 7 sites;  

sidewalk on one side: 3 sites; 

sidewalk on both sides: 4 sites 

Sidewalk width (m) 0 to 5.10; mean: 1.32 0 to 2.50; mean: 1.07 

Roadside object density (per 100 m)
c
 0 to 7.06; mean: 2.08 0 to 8.58; mean: 2.97 

Driveway density (per 100 m) 0 to 3.44; mean: 0.90 0 to 1.91; mean: 0.65 

Street marking Centreline marking: 54 sites; 

edge marking only: 20 sites; no 

marking: 11 sites 

Centreline marking: 10 sites; 

edge marking only: 2 sites; no 

marking: 2 sites 

Land use development  Private houses are dominant: 35 

sites; apartment/tall buildings 

are dominant: 15 sites; mixing 

development: 20 sites; near 

schools/ parks: 15 sites 

Private houses are dominant: 8 

sites; apartment/tall buildings 

are dominant: 3 sites; mixing 

development: 1 site; near 

schools/ parks: 2 sites 

Type of entering intersection  Signalised intersection: 58 sites; 

4-leg non-signalised 

intersection: 18 sites; 3-leg 

non-signalised intersection: 9 

sites  

Signalised intersection: 12 

sites; 4-leg non-signalised 

intersection: 2 sites; 3-leg 

non-signalised intersection: 0 

site  

Type of exiting intersection  4-leg non-signalised 

intersection: 63 sites 

3-leg non-signalised 

intersection and similar: 22 sites  

4-leg non-signalised 

intersection: 13 sites 

3-leg non-signalised 

intersection and similar: 1 site  

Distance from the entrance (stop 

line) of exiting intersection to the 

nearest control point (m)
d
 

43.30 to 339.40; mean: 139.8 

 

82.50 to 265.00; mean: 163.47 

 

Distance from the entrance (stop 

line) to the centre point of exiting 

intersection (m) 

3.20 to 15.10; mean: 9.10 2.50 to 12.40; mean: 6.20 

Distance from the entrance (stop 

line) to the nearest pedestrian 

crossing strip of exiting intersection 

(m) 

2.40 to 14.10; mean: 4.79 4.80 to 12.70; mean: 9.33 

Presence of pedestrian crossing strip 

at exiting intersection 

Both before and after centre 

point: 35 sites; only before 

centre point: 25 sites; only after 

centre point: 25 sites 

Both before and after centre 

point: 7 sites; only before 

centre point: 1 site; only after 

centre point: 6 sites 

Width of crossing street (m) 2.40 to 13.30; mean: 5.60 3.90 to 6.70; mean: 5.22 

Roadway width ratio between 

crossing street and study street 

0.36 to 1.40; mean: 0.75 0.59 to 1.27; mean: 0.82 

Notes: 
a 
Left safety strip width was measured from the edge of a study lane to the curb on the left.  

b
Right 

safety strip width was measured from the edge of a study lane to the curb on the right. 
c
Only rigid objects 

(such as utility poles) within 0.5 m from the edge of roadway were counted; and only objects on the left were 

counted if centreline marking is available; 
d 
The nearest control point is the nearest signalised intersection or 

the nearest location where drivers have to reduce speeds substantially. 
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exiting intersection except the case when they yield to pedestrians/cyclists crossing the 

roadway at the intersection. The radar gun was started to trigger when only one target vehicle 

entered a study section and at the same time there were no pedestrians or cyclists on the 

roadway. This was to ensure free-flow conditions for the selected vehicles as well as to reduce 

the interference from other moving objects that may have spoiled the recorded profile-speed 

data. The gun was kept operating until the vehicle reached an identified point. The point, 

which was predetermined and located after the entrance of the exiting intersections, was then 

used to match profile speeds with the street layout. 

A lot of effort was made to enhance the accuracy of the speed data such as carefully 

eliminating the presence of the survey devices and surveyors to drivers or setting up the radar 

gun in the same side as the study lane. For each street section, at least 70 profile speeds were 

recorded. Speed data were collected only in good weather during the daytime. Only passenger 

cars and light trucks that did not turn at the exiting intersections were included in the study. A 

more detail about the street selection and technical issues of the survey were shown in Dinh 

and Kubota (2013). 

 

 

3. DATA ANALYSIS 

 

3.1 Data Reduction 

 

Speed data were initially processed using the software program that accompanied the 

STALKER ATS radar guns to obtain a relationship between speed and distance for each 

vehicle. Vehicle speeds were matched exactly with street layouts by using the location of the 

identified points, i.e., the points where the radar guns were released as described in Section 2. 

Figure 1 provides typical profile-speed data for all vehicles in one street section. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Typical profile-speed data for one street section (Dinh and Kubota, 2013) 

 

By examining the speed data, it was found that after entering the sections, most drivers 

accelerated up to a maximum speed then decelerated, with the deceleration possibly because 

they were approaching the exiting intersection. Also, drivers likely reached their maximum 

speeds in the second half of the street sections because statistics indicated that more than 85% 

of the drivers in the first survey period and more than 93% drivers in the second period 

reached their maximum speeds after passing the midpoint of the street sections. Most drivers 

who had their highest speeds before reaching the midpoint location travelled at a very high 

speed when passing the entering intersection. As a result of a field observation in this study, 

these vehicles were highly affected by favourable driving conditions when entering the study 
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sections such as passing the intersection during the green signal time. These maximum speeds, 

arguably, do not fully reflect the influence of roadway and roadside characteristics on driving 

speeds on the study street sections. Therefore, this study assumed the maximum speeds 

obtaining within the second half of a street section as the maximum speed influenced by the 

characteristics of the street. This is referred to hereafter as the “maximum speed”, “speed of 

tangent” or “tangent speed”. 

In the next data analysis step, only speed profiles that covered the full second half of 

street sections were used. Speed profiles with abnormal driving patterns were excluded. 

Maximum speeds then were calculated for all individual vehicles. For each street section, 

individual speed profiles were excluded if their maximum speeds differed from the section 

mean by more than two standard deviations. The speed at the entrance to the exiting 

intersection (i.e., the stop line location), also hereafter called the “speed at intersection”, was 

determined for every vehicle in all sections. Speed profiles with speed at intersection less than 

10 km/h were excluded because they were likely associated with unfavourable driving 

conditions at the exiting intersections that might not have been observed during the survey. 

After data reduction, 5359 individual speed profiles for 85 street sections in the first 

survey period and 864 speed profiles for 14 sections in the second survey period remained for 

further analysis. The minimum number of individual speeds for one street section is 53, and 

the maximum number is 75. As noted by Dinh and Kubota (2013), the speeding problem is 

very serious because few people drove at the speed limit and nearly half of the drivers 

exceeded 40 km/h on streets with a 30 km/h speed limit. 

 

3.2 Dependent Variables 

 

The maximum speed obtained within a tangent section (speed of tangent) and the speed at the 

entrance to the next un-signalised intersection (speed at intersection) are both potentially 

related to traffic safety issues for urban streets with a 30 km/h speed limit, therefore both 

these speeds were examined in this research. To be consistent with previous studies, 85th 

percentile speeds were used to represent operating speeds. Mean speeds were also examined 

since they are likely to be considered as an indicator of speeding level on those street sections. 

Table 2 presents descriptive statistics of the dependent variables. 

 

Table 2. Descriptive statistics of dependent variables 
Variable 

description 

Variable 

code 

The first survey period   The second survey period 

N Min Max Mean SD  N Min Max Mean SD 

85
th
 percentile 

speed of tangent 

(km/h) 

Vmax,85 85 38.73 50.55 44.56 2.81  14 38.43 50.76 43.37 3.61 

Mean speed of 

tangent (km/h) 

Vmax,av 85 33.46 45.04 39.50 2.35  14 33.96 44.04 38.80 3.00 

85
th
 percentile 

speed at 

intersection (km/h) 

Vin,85 85 22.81 49.01 40.54 4.58  14 32.07 47.03 40.29 4.00 

Mean speed at 

intersection (km/h) 

Vin,av 85 21.68 41.84 35.35 4.16  14 28.96 40.76 35.73 3.42 

 

3.3 Modeling Approaches and Results 

 

This study used regression methods (i.e., SER and SEA), as well as NN modelling to build 

models for estimating operating speeds. The following is a brief description of the model form 

for each respective approach and the corresponding modelling results. 

Proceedings of the Eastern Asia Society for Transportation Studies, Vol.9, 2013



 

 

 

3.3.1 Single equation regression (SER) 

 

By this conventional approach, tangent speeds and speeds at intersection were separately 

modelled by using a multiple linear regression method. The model forms are as below: 

 

lnV1 = 1 + 1X1 + 1          (1) 

lnV2 = 2 + 2X2 + 2          (2) 

 

where, 

V1 : tangent speed (either Vmax,85 or Vmax,av), 

V2 : speed at intersection (either Vin,85 or Vin,av), 

X1, X2 : vectors of independent variables representing street characteristics  

1, 2 : estimable parameters, and 

1, 2 : disturbance terms. 

 

To obtain the best model for predicting each target speed, a standard procedure for 

developing a multiple linear regression model was used. First, possible relationships between 

independent variables and each dependent variable were identified by using scatter plots and a 

simple regression method. The possible combinations of selected independent variables were 

then used to develop regression models. For each candidate model, a test of multicollinearity 

was performed by using the variance inflation factor (VIF) and extreme data were eliminated 

through casewise diagnostics. Other assumptions of linear regression such as 

homoscedasticity, normally distributed errors, and error independence were also tested. The 

finally selected models were those with a high adjusted coefficient of determination R
2

adj and 

passing all tested assumptions. All variables included in the final models have a significant 

level of 95%. 

The data from 85 street sections in the first survey period were used to develop speed 

models. These models were then validated based on the data from 14 street sections in the 

second survey period. A number of indicators were used to evaluate the performance of the 

developed models. Table 3 provides the final selected models, while the performance of these 

models is shown in Table 4. 

 

3.3.2 Simultaneous equation approach (SEA) 

 

An important assumption of the SER is that there must be no relationship between dependent 

variables. However, the assumption seems to be violated because the data for this study 

showed a high correlation between tangent speeds and speeds at intersection with correlation 

coefficients (calculated based on the data from the first survey period) of 0.734 and 0.782 for 

the 85
th

 percentile speeds and the mean speeds, respectively. That suggested that the SER may 

be inappropriate and it was necessary to consider the potential endogenous relationship while 

modelling speeds of tangent and speeds at intersection. 

An effective way to address the afore-mentioned issues is using a SEA as discussed 

earlier. By this method, both tangent speeds and speeds at intersection were simultaneously 

modelled in each respective equation system. To account for the possible influences of speeds 

at intersections on tangent speeds and vice versa, the model specification in a general form 

based on SEA technique (see Green (2003) for a detailed description of the SEA technique) is 

expressed as: 

 

lnV1 = 1 + 1X1 + 1lnV2 + 1         (3) 
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lnV2 = 2 + 2X2 + 2lnV1 + 2         (4) 

 

where, 

V1 : tangent speed (either Vmax,85 or Vmax,av), 

V2 : speed at intersection (either Vin,85 or Vin,av), 

X1, X2 : vectors of exogenous variables representing street characteristics, 

1, 2 : estimable parameters, 

1, 2 : estimable scalars, and 

1, 2 : disturbance terms. 

 

Table 3. Operating speed models developed by SER 

Variable 
Estimated 

coefficient 
S.E. t-ratio p-value   X  

Dependent variable: logarithm of 85
th

 percentile speed of tangent (LnVmax,85) (km/h) 

Constant 3.534 0.043 82.678 0.000  

Number of lanes 0.034 0.014 2.381 0.020 1.635 

Length of street section (m) 0.00050 0.00014 3.640 0.000 140.758 

Sidewalk indicator (1 if sidewalks are 

available on both sides; 0 otherwise) 

0.025 0.012 2.065 0.042 0.212 

Roadside object density (per 100 m) -0.0079 0.0026 -3.041 0.003 2.833 

Carriageway width (m) 0.028 0.010 2.961 0.004 5.305 

R
2
 = 0.560; Adjusted R

2
 = 0.532 

Dependent variable: logarithm of 85
th

 percentile speed at intersection (LnVin,85) (km/h) 

Constant 3.331 0.097 34.295 0.000  

Right safety strip width (m) 0.030 0.010 3.024 0.000 2.412 

Sidewalk indicator (1 if sidewalks are 

available on both sides; 0 otherwise) 

0. 079 0.026 3.055 0.003 0.212 

Type indicator of exiting intersection (1 if 

3-leg intersection or similar; 0 otherwise) 

0.085 0.024 3.591 0.001 0.259 

Carriageway width (m) 0.048 0.021 2.280 0.025 5.306 

R
2
 = 0.471; Adjusted R

2
 = 0.445 

Dependent variable: logarithm of mean speed of tangent (LnVmax,av) (km/h) 

Constant 3.447 0.042 81.373 0.000  

Length of street section (m) 0.00039 0.00013 3.096 0.003 140.758 

Right safety strip width (m) 0.012 0.004 2.648 0.010 2.412 

Roadside object density  (per 100 m) -0.0091 0.0023 -4.041 0.000 2.833 

Carriageway width (m) 0.032 0.009 3.680 0.000 5.306 

R
2
 = 0.577; Adjusted R

2
 = 0.556 

Dependent variable: logarithm of mean speed at intersection (LnVin,av) (km/h) 

Constant 3.162 0.095 33.341 0.0000  

Right safety strip width (m) 0.031 0.010 3.040 0.0000 2.412 

Roadside object density  (per 100 m) -0.0017 0.0053 -3.228 0.0010 2.833 

Distance from the entrance of exiting 

intersection to the nearest control point (m) 

0.00034 0.00015 2.195 0.0134 139.782 

Carriageway width (m) 0.058 0.020 2.890 0.0134 5.305 

Type indicator of exiting intersection (1 if 

3-leg intersection or similar; 0 otherwise) 

0.059 0.024 2.434 0.0439 0.259 

R
2
 = 0.540; Adjusted R

2
 = 0.511 

 

It should be noted that, The lnV2 and lnV1 on the right-hand-sides in Equation 3 and 

Equation 4 are endogenous variables that account for the endogenous relationship between the 

two speeds, as V2 affects V1 and vice versa. Different with the SER, the SEA is able to 

account for a correlation between the two error terms 1 and 2 in Equation 3 and Equation 4 
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respectively. The model parameters were estimated by using a 3-stage-least-square (3SLS) 

estimator. A detail description of the model development procedure was showed in Dinh and 

Kubota (2013). A further technical discussion of the technique used could be seen in Greene 

(2003). 

As similar to the SER approach in Section 3.3.1, the data from the first survey period 

were used to develop speed models while those from the second survey period were used for 

validation. Table 5 provides the final selected models, while the performance of these models 

is shown in Table 6. 

 

Table 4. Performance of operating speed models developed by SER 

Indicator Vin,av Vin,85 Vmax,av Vmax,85 

With dataset for model development         

Mean squared error (MSE), (km/h)
2
 8.35 10.98 2.39 3.61 

Root mean square error (RMSE), km/h 2.89 3.31 1.55 1.90 

Mean absolute error (MAE), km/h 2.21 2.45 1.23 1.53 

% sites with absolute error (AE)  2.5 69.41 67.06 88.24 81.18 

% sites with 2.5 < AE  5 23.53 20.00 11.76 18.82 

% sites with 5 < AE  10 7.06 11.76 0.00 0.00 

% sites with 10 < AE  12 0.00 1.18 0.00 0.00 

With dataset for model validation 

    
Mean squared error (MSE), (km/h)

2
 3.08 9.82 2.40 4.62 

Root mean square error (RMSE), km/h 1.76 3.13 1.55 2.15 

Mean absolute error (MAE), km/h 1.40 2.58 1.37 1.98 

% sites with absolute error (AE)  2.5 71.43 57.14 92.86 85.71 

% sites with 2.5 < AE  5 28.57 28.57 7.14 14.29 

% sites with 5 < AE  10 0.00 14.29 0.00 0.00 

% sites with 10 < AE  12 0.00 0.00 0.00 0.00 

 

3.3.3 Neural networks (NN) modeling 

 

NN is a modelling technique that was used to perform mapping of an input vector in to an 

output vector. A simple neural networks used in this study was a feed-forward neural 

networks consisting of three layers, namely input layer, hidden layers, and output layer as 

shown in Figure 2. The input layer included a number of input nodes that were selected 

variables representing street characteristics. The number of hidden layers and the number of 

nodes in each hidden layer were chosen in order that the best performance of the models was 

archived. The output layer consisted of one node representing the model outcome that was 

either Vmax,85, Vmax,av, Vin,85, or Vin,av. The relationship between the input variables and the 

output of the NN models was expressed by Equation 5. This study used a hyperbolic tangent 

or ‘tangsig’ function as an transfer function for the hidden layer (Equation 6), while the output 

layer used a pure linear function (called ‘purelin’) as an activation function (Equation 7). 

Training the network is a necessary step to estimate the model parameters (i.e., weights 

factors and bias factors). 
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Table 5. Operating speed models developed by SEA (adapted from Dinh and Kubota, 2013) 

Variable 
Estimated 

coefficient 
S.E. t-ratio p-value   X  

Dependent variable: logarithm of 85
th

 percentile speed of tangent (LnVmax,85) (km/h) 

Constant 3.5383 0.0392 90.248 0.0000  

Number of lanes 0.0323 0.0127 2.547 0.0109 1.635 

Length of street section (m) 0.00050 0.00013 3.757 0.0002 140.758 

Sidewalk indicator (1 if sidewalks are 

available on both sides; 0 otherwise) 

0.0269 0.0111 2.415 0.0157 0.212 

Roadside object density (per 100 m) -0.0082 0.0023 -3.566 0.0004 2.833 

Carriageway width (m) 0.0285 0.0085 3.345 0.0008 5.305 

R
2
 = 0.559; Adjusted R

2
 = 0.532 

Dependent variable: logarithm of 85
th

 percentile speed at intersection (LnVin,85) (km/h) 

Constant -3.4625 0.7480 -4.629 0.0000  

Logarithm of 85
th

 percentile speed of 

tangent (km/h) 

1.941 0.2001 9.700 0.0000 3.795 

Length of street section (m) -0.00123 0.00027 -4.528 0.0000 140.758 

Distance from the entrance of exiting 

intersection to the nearest control point (m) 

0.00024 0.00012 1.960 0.0500 139.782 

Roadway width ratio between crossing 

street and study street 

0.0902 0.0276 -3.274 0.0011 0.746 

R
2
 = 0.569; Adjusted R

2
 = 0.547. The variable in italic is endogenous. 

Dependent variable: logarithm of mean speed of tangent (LnVmax,av) (km/h) 

Constant 3.4484 0.0396 87.109 0.0000  

Length of street section (m) 0.00039 0.00012 3.220 0.0022 140.758 

Right safety strip width (m) 0.0125 0.0041 3.058 0.0013 2.412 

Roadside object density  (per 100 m) -0.0089 0.0021 -4.279 0.0000 2.833 

Carriageway width (m) 0.0313 0.0080 3.902 0.0001 5.306 

R
2
 = 0.577; Adjusted R

2
 = 0.556 

Dependent variable: logarithm of mean speed at intersection (LnVin,av) (km/h) 

Constant -3.9230 0.6688 -5.866 0.0000  

Logarithm of mean speed of tangent (km/h) 2.0953 0.1842 11.373 0.0000 3.674 

Length of street section (m) -0.00139 0.00023 -5.921 0.0000 140.758 

Width of crossing street (m) -0.0152 0.0046 -3.299 0.0010 5.601 

Type indicator of exiting intersection (1 if 

3-leg intersection or similar; 0 otherwise) 

0.0442 0.0179 2.473 0.0134 0.259 

Distance from the entrance to the centre 

point of exiting intersection (m) 

0.0056 0.0027 2.015 0.0439 9.106 

R
2
 = 0.697; Adjusted R

2
 = 0.677. The variable in italic is endogenous. 

 

 
Figure 2. Architecture diagram of a NN model 
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Table 6. Performance of operating speed models developed by SEA 

Performance indicator Vin,av Vin,85 Vmax,av Vmax,85 

With dataset for model development         

Mean squared error (MSE), (km/h)
2
 7.95 10.33 2.39 3.58 

Root mean square error (RMSE), km/h 2.82 3.21 1.55 1.89 

Mean absolute error (MAE), km/h 2.06 2.38 1.23 1.54 

% sites with absolute error (AE)  2.5 70.59 58.82 88.24 82.35 

% sites with 2.5 < AE  5 20.00 30.59 11.76 17.65 

% sites with 5 < AE  10 9.41 9.41 0.00 0.00 

% sites with 10 < AE  12 0.00 1.18 0.00 0.00 

With dataset for model validation 

    
Mean squared error (MSE), (km/h)

2
 4.49 5.43 2.43 4.80 

Root mean square error (RMSE), km/h 2.12 2.33 1.56 2.19 

Mean absolute error (MAE), km/h 1.76 1.94 1.38 2.03 

% sites with absolute error (AE)  2.5 71.43 71.43 85.71 71.43 

% sites with 2.5 < AE  5 28.57 28.57 14.29 28.57 

% sites with 5 < AE  10 0.00 0.00 0.00 0.00 

% sites with 10 < AE  12 0.00 0.00 0.00 0.00 
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where, 

Y : output value (i.e., either Vmax,85, Vmax,av, Vin,85, or Vin,av), 

Pi : input variable i
th

, 

i : subscript for input layer, 

j : subscript for hidden layer, 

m : number of input parameters, 

n : number of nodes in hidden layer, 

fh : transfer function for hidden layer, 

f0 : transfer function for hidden layer, 

W
1h

ij : weight factors for hidden layer, 

W
0
j : weight factors for output layer, 

b
1h

j : bias factors for hidden layer, 

b0 : bias factor for output layer. 

 

To facilitate the training process, the dataset should be divided into two groups - one for 

training the network and the other for testing the network. In this study, the data from 85 street 

sections collected on the first survey period were used as a training dataset. Meanwhile, the 

data from 14 street sections on the second survey period were used only for testing. It should 

be noted that almost all investigated variables have the range of values in the training data 

seen in the testing dataset. The network was trained using the Bayesian regularization in 
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combination with Levenberg-Marquardt training algorithm. Because to make the training 

algorithm generally works best, the network inputs and outputs should be scaled to fall 

approximately in the range [-1,1] (Beale et al., 2012). In this study, the scaling, therefore, was 

performed for each variable to make its value ranged from -1 to +1. The model performance 

was determined by mean square error (MSE) calculated for both training dataset and testing 

dataset. The MATLAB software was used as a computational tool for developing the NN 

models. 

The selection of input variables entered in the NN models should be carefully 

considered. A larger number of input variables leads to a more complex model and requires a 

bigger size of the training dataset to prevent model overfitting. Therefore, it is necessary to set 

criteria to judge whether a variable should be entered in the NN models. In the present study, 

the eligible variables were purposely determined as those that were included in at least one of 

the final models developed by the regression approaches (see Table 3 and Table 5), and those 

that were significant variables in the simple regression models with one of the output 

variables. Consequently, only 11 variables representing street characteristics each included in 

one or more models in Table 3 and Table 5 were satisfied these criteria. These variables, 

therefore, were selected as input variables with the orders when entering in the NN models as 

shown in Table 7. 

 

Table 7. List of input variables for NN models 
No Variable Code 

1 Carriageway width (m) P1 

2 Right safety strip width (m) P2 

3 Length of street section (m) P3 
4 Distance from the entrance of exiting intersection to the nearest control point (m) P4 
5 Roadside object density  (per 100 m) P5 
6 Roadway width ratio between crossing street and study street P6 
7 Number of lanes P7 
8 Sidewalk indicator (1 if sidewalks are available on both sides; 0 otherwise) P8 
9 Width of crossing street (m) P9 
10 Distance from the entrance to the centre point of exiting intersection (m) P10 
11 Type indicator of exiting intersection (1 if 3-leg intersection or similar; 0 otherwise) P11 

 

The network architecture indicated by the number of hidden layers and the number of 

nodes in each hidden layer affects to the model accuracy and the model complexity. Because 

it is difficult to appropriately select the number of hidden layers and nodes in advance, this 

study conducted numerous trials to find the architecture that has the best model performance. 

For each model specification, network was repeatedly trained a number of times with 

different initial weights to enhance the probability of archiving the global minima. The results 

showed that the models for predicting Vmax,av and Vmax,85 works best with the architecture with 

one hidden layer and three nodes in the layer, while those for predicting Vin,av and Vin,85 has 

the best architecture with one hidden layer and two nodes in the layer. The parameters of the 

final NN models are shown below. 

 

Model 1: Output Vin,av 

 

 
  (8) 
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 -0.0871 0.5449
T

jb 
 (9) 

  

 -0.4062 0.7732iW   (10) 

 

0 0.0950b   (11)         

 

Model 2: Output Vin,85 

 

 (12) 

 

 0.0886 -0.5847
T

jb   (13) 

 

 0.4307 -0.7204iW   (14) 

 

0 0.1592b   (15) 

 

Model 3: Output Vmax,av 

 

 
(16) 

 0.4593 -0.1549 0.3500
T

jb 
 (17)

  

 

 0.9582 -0.6514 0.7955iW   (18) 

 

0 -0.1789b   (19) 

 

Model 4: Output Vmax,85 

 

 
(20) 

 0.1060 0.3388 -0.5270
T

jb 
 (21)

  

 

 0.6419 0.5914 -1.0108iW   (22) 

 

0  -0.2298b   (23) 
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The same indicators used to evaluate the performance of operating speed models 

developed by regression approaches were used for NN models. These indicators are provided 

in Table 8. 

 

Table 8. Performance of NN models 

Performance indicator Vin,av Vin,85 Vmax,av Vmax,85 

With dataset for model development         

Mean squared error (MSE), (km/h)
2
 5.46 7.70 1.23 2.21 

Root mean square error (RMSE), km/h 2.34 2.78 1.11 1.49 

Mean absolute error (MAE), km/h 1.78 2.11 0.90 1.18 

% sites with absolute error (AE)  2.5 74.12 74.12 97.65 90.59 

% sites with 2.5 < AE  5 21.18 17.65 2.35 9.41 

% sites with 5 < AE  10 4.71 8.24 0.00 0.00 

% sites with 10 < AE  12 0.00 0.00 0.00 0.00 

With testing dataset 

    
Mean squared error (MSE), (km/h)

2
 3.17 6.07 2.23 4.71 

Root mean square error (RMSE), km/h 1.78 2.46 1.49 2.17 

Mean absolute error (MAE), km/h 1.53 2.00 1.24 1.80 

% sites with absolute error (AE)  2.5 92.86 64.29 85.71 78.57 

% sites with 2.5 < AE  5 7.14 35.71 14.29 21.43 

% sites with 5 < AE  10 0.00 0.00 0.00 0.00 

% sites with 10 < AE  12 0.00 0.00 0.00 0.00 

  

The validity of the NN models also was evaluated through conducting a parametric 

analysis to obtain the relationship between the output variables and each of the selected input 

variables. To examine the influence of a given input variable on a specific output variable, the 

input variable was varied while the other input variables were kept to constant values. For 

continuous variables, these constant values were determined as their average values of the 

respective variables calculated separately for groups of streets with one-lane carriageway and 

those with two-lane carriageway. The groups of one-lane streets and the two-lane streets were 

investigated separately because these two groups are significantly different in some aspects 

such as the range of carriageway width. For the dummy variables P8 and P11, the constant 

values were both set at 0 (i.e., streets with no sidewalk or with sidewalk on only one side and 

the existing intersection is a 4-leg intersection). The results of the parametric analysis are 

shown in Figure 3 and Figure 4. 

 

 

4. DISCUSSION 

 

The operating speed models developed by regression approaches had a coefficient of 

determination (R
2
) ranged from 0.47 to 0.58 for SER models and from 0.56 to 0.70 for SEA 

models. This research is one of the rare studies that developed speed models by one dataset 

then validated them by another one. The developed models demonstrated a good performance 

on the validation dataset. For example, as shown in Table 6, the mean absolute error of the 

models developed by SEA ranged from 1.38 km/h to 2.03 km/h for the validation dataset and 

all of validated sites had an absolute error of less than 5.0 km/h in which from more than 70% 

to 85% of those sites had an absolute error of less than 2.5 km/h. In addition, the signs of all 
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estimated coefficients of the developed models could be expected as a brief interpretation 

shown in Table 9. Collectively, the regression models owned a reasonable fit and it is reliable 

to use these models for estimating operating speeds on residential streets with a 30 km/h 

speed limit. It can be seen from these models, various roadway and roadside features were 

found as determinants of driving speeds. From the road design perspective, the results suggest 

that attention should be paid on the selection of street section length, the allocation of 

cross-section elements, and the characteristics of intersections to obtain desired driving speeds. 

The developed models also can be used to assess the speeding issues in existing streets, and/or 

to evaluate street designs regarding the intended operating speed goals.  

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Variation of maximum speeds with selected street characteristics based on      

NN models 
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Figure 4. Variation of speeds at intersection with selected street characteristics based on   

NN models 
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Comparing the two regression approaches in this study, it was found that both 

methodologies yielded comparable results regarding models for estimating maximum speeds 

obtaining within a street section. The dependent variables in these models developed by SER 

are exactly the same as those in respective models developed by SEA. In addition, similar 

values of coefficients of determination could be found in the respective models by the two 

methods (see Table 3 and Table 5). Other model performance indicators in Table 4 and Table 6 

also have comparable figures. One possible explanation for these comparable results is that, 

maximum speeds obtaining within a street section may not depend on speeds at other 

locations on the street. The argument is reinforced by the fact that speeds at intersection were 

not significant variables in the SEA models for predicting maximum speeds within a section. 

With regards to models for estimating speeds at intersection, as could be seen in Table 3 

and Table 5, more street characteristics were included in the models by SEA compared to 

those by SER. This fact demonstrates that the SEA is a better way to detect the speed 

influencing factors from street features. Regarding model performance, the coefficients of 

determination (R
2
) of the models developed by SEA are significantly higher than those by 

SER. All performance indicators of the SEA models calculated based on the dataset for model 

development (see Table 4 and Table 6) are more favorable than those of the respective models 

by SER method. The performance on the validation dataset of the model developed by SEA 

for predicting 85
th

 percentile speed at intersection is significantly better than that built by SER. 

As an illustration, the mean squared error of the model by SEA is 5.43 well lower than that of 

9.82 for the model by SER. While the SEA model produced no site with absolute error larger 

than 5.0, the figures of 14.29% of sites could be seen in the model by SER. Although the 

model by SER for estimating mean speed at intersection performed on validation dataset 

slightly better than that by SEA, the performance indicators of the latter model still indicated 

a good predictive ability because the mean absolute error is only 1.76 km/h and no site has the 

absolute error over 5.0 km/h, while the absolute errors of 71.4% of sites are under 2.5 km/h. 

Furthermore, it should be noted that the high correlations between maximum speeds and 

speeds at intersection found in this study means that ignoring the endogenous relationship 

between the two speeds may consequently lead to bias model parameters and do not truly 

represent the mechanism regarding the influences of street features on driving speeds. In 

summary, it could be concluded that, in general SEA produces better modeling results than the 

conventional regression. This result suggests that SEA should be used instead of conventional 

regression for modeling speeds at several locations on short-length street sections similar as 

those in the current study. 

This study also developed operating speed models by using NN approach. The NN 

models showed a very good predictive ability as demonstrating by the model performance 

indicators in Table 8. For example, on the testing dataset, the NN models had a mean absolute 

error ranged from 1.24 (km/h) to 2.00 (km/h) and there is no site with absolute error 

exceeding 5.0 (km/h). Compared to models by regression approaches, only the model for 

estimating 85
th

 percentile speed at intersection by the SEA showed a slightly better 

performance on the testing dataset than that by NN method. The performance of other NN 

models on both model-development dataset and model-testing dataset outreaches that of 

regression models. In general, it could be concluded that with regards to predictive ability, the 

NN models have a trend to perform better than those by regression methods. This result is 

consistent with most previous studies on transportation field as noted by Karlaftis and 

Vlahogianni (2011). 

The NN models in this study were also validated by conducting an input sensitivity 

analysis to investigate the influence of variables in the models on the model outputs. The 

results in Figure 3 and Figure 4 clearly showed the similar trends regarding to the effects  of 
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Table 9. Speed-influencing variables from regression models 

No Variable 
SER 

model 

SEA 

model 
Interpretation and/or possible explanation 

1 Carriageway width (m) Vmax,85 

Vin,85 

Vmax,av 

Vmax,85 

Vmax,av 

An increase carriageway width led to an increase 

of speed because more room is provided for 

manoeuvring. 

2 Right safety strip width 

(m) 

Vmax,av Vmax,av A wider right safety strip width resulted in a 

higher speed as expected. 

3 Length of street section 

(m) 

Vmax,85 

Vmax,av 

Vmax,85 

Vmax,av 

A longer length resulted in higher speeds because 

a longer length provides more space for 

acceleration before reaching the maximum speed. 

4 Length of street section 

(m) 

 Vin,85 

Vin,av 

 

A longer length resulted in lower speeds at 

intersection possibly because a longer length 

leads to a longer deceleration distance after 

reaching the maximum speed that consequently 

leads to a lower speed at intersection. 

5 Distance from the 

entrance of exiting 

intersection to the nearest 

control point (m) 

Vin,av Vin,85 

 

Drivers selected a higher speed with a higher 

value of the distance possibly because more 

information about the road ahead is provided.   

6 Roadside object density  

(per 100 m) 

Vmax,85 

Vmax,av 

Vin,av 

Vmax,85 

Vmax,av 

 

A higher density of roadside object associated 

with a lower driving speed because the presence 

of such objects decreases the effective 

carriageway width and creates potential hazards 

to drivers. 

7 Roadway width ratio 

between crossing street 

and study street 

 Vin,85 A smaller of the ratio resulted in higher speeds 

because it suggests that the crossing street is 

more minor compared to the study street. 

8 Number of lanes Vmax,85 

 

Vmax,85 

 

Streets with two lanes had higher speeds than 

one-lane streets because more room is provided 

for manoeuvring. 

9 Sidewalk indicator (1 if 

sidewalks are available 

on both sides; 0 

otherwise) 

Vmax,85 

Vin,85 

Vmax,85 Sidewalk available on both sides resulted to 

higher speeds because pedestrians/cyclists 

activities are excluded from the roadway.  

10 Width of crossing street 

(m) 

 Vin,av A wider width of crossing street associated with a 

lower speed at intersection as expected. 

11 Distance from the 

entrance to the centre 

point of exiting 

intersection (m) 

 Vin,av A longer of the distance resulted in a higher 

speed because people are likely to drive slower 

when approaching the centre area of an 

intersection. 

12 Type indicator of exiting 

intersection (1 if 3-leg 

intersection or similar; 0 

otherwise) 

Vin,85 

Vin,av 

Vin,av As expected drivers selected a higher speed at a 

3-leg intersection compared to a 4-leg 

intersection. 

13 85
th

 percentile speed of 

tangent 

 Vin,85 As expected a higher maximum speed resulted in 

a higher speed at intersection 

14 Mean speed of tangent  Vin,av As expected a higher maximum speed resulted in 

a higher speed at intersection 

 

street characteristics on driving speeds as compared to those from regression models 

illustrated in Table 9. This fact proves a good generalization of the NN models and leads to a 

conclusion that it is reliable to use these models for predicting operating speeds on residential 

streets with a 30 km/h speed limit. However, it should be noted that the number of variables in 

the NN models outnumbers those in the regression models that means that the NN models are 
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more complicated and requires more efforts to collect input data for prediction. 

The good results of the NN models could be partly explained by the procedure for 

selecting input variables. Different with previous studies that often arbitrarily select input 

variables for NN models, this research used only variables those significantly affected driving 

speeds as detected by regression models. This approach is likely an effective way to reduce 

the redundant input variables while still remain the core information from the used dataset. It 

should be noted that a larger number of input variables required a larger size of the dataset 

and it may lead to an overfitting issue. The good performance of the NN models in the present 

study, therefore, suggests that it should be used regression methods complimentarily in order 

to select input variables for achieving desirable results for NN models especially when the 

sample size is rather small.   

 

5. CONCLUSIONS 

 

An attempt has been made in this paper to compare the performance of regression methods 

and Neural Networks (NN) approach to model operating speeds on residential streets with a 

30 km/h speed limit. The regression models were developed and then validated/tested with a 

different dataset to confirm their predictive ability. The current research has proved that the 

Simultaneous Equation Approach (SEA) produced a better result compared to the 

conventional regression on modeling simultaneously maximum speeds obtaining within a 

street section and speeds at the entrance to the next un-signalised intersection. The issue of 

endogenous relationships between the two speeds found in this study could not be solved by 

the SER and it may invalid the resultant models. However, the issue could be well addressed 

by using the SEA. This finding suggests that compared to the conventional regression method, 

SEA is a more effective way and should be used for modeling speeds at different locations 

especially on short-length streets similar as those in this study.  

Meanwhile, the NN models developed in this study showed a very good ability for 

prediction and outreached those developed by regression methods although the NN models 

are more complicated and require more input data. The good results on the performance of the 

NN models probably because in this study the selection of input variables for NN models was 

implemented by using a combination between regression methods and a NN technique in 

which input variables were selected based on significant variables found in regression 

equations. The implication, therefore, is that it is possible to achieve better results on 

modeling operating speeds by using complementarily an appropriate regression technique and 

a NN technique following a procedure as described in this paper. 

Finally, while the speed data in the current study indicated that speed regulation is 

seriously violated on residential streets, the developed models can be applied as a useful tool 

for tacking this speeding problem. These applications may include assessing the extent of 

speeding violation in existing streets, re-designing streets to make them calmer, and planning 

and designing new urban streets to meet the intended operating speed goals. 
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