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Abstract: A dynamic feedback system is developed for estimating the headway distance and 
velocity in a longitudinal three-vehicle platoon. The estimation system is modeled using a 
particle filter (PF) and an unscented Kalman filter (UKF) that estimate them by measuring the 
acceleration rate and/or velocity of probe vehicle(s) in the platoon. State equations are defined 
as a discrete conservation equation of headway distance and velocity, whereas the 
measurement equation is based on a conventional car-following model. The UKF and PF have 
the advantage of avoiding first-order approximation when implementing a filtering process to 
increase the estimation accuracy. Numerical analyses using artificial simulated data as well as 
real car-following data showed that the PF and UKF reduce the estimation errors in most 
cases compared to conventional approaches such as an extended Kalman filter (EKF) or 
neural Kalman filter (NKF). This was significant especially in the headway estimation, where 
the accuracy of the EKF estimates was low.  
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1. INTRODUCTION

A vehicle platoon is a system that consists of multiple car-following vehicles moving 
longitudinally on an arterial road or freeway corridor. Dynamic estimates of the headway 
distance and velocity in the platoon enable us to evaluate the risk of collisions and to mitigate 
this risk by control strategies such as informing or warning the drivers or by vehicle control. 

To make the vehicle platoon safer, the accuracy in evaluating the risk of rear-end 
collisions is a key issue. Numerous theoretical and numerical studies have been carried out to 
assess the probability of rear-end collisions between two consecutive vehicles, namely a 
leader and a follower (Hiraoka et. al., 2012; Kitajima et al., 2009). With the development of 
such risk evaluation methods, vehicles equipped with driving support systems based on 
state-of-the-art sensing technologies are expected to be capable of avoiding such rear-end 
collisions. However, it is not always easy to achieve a high level of safety, because 
implementing collision avoidance for a single vehicle will not always guarantee the safety of 
multiple vehicles. 

Some studies have been performed to analyze the safety of a vehicle platoon based on 
traffic simulations coupled with car-following observation data. Galler and Asher (1995) 
found that vehicle platoon safety is sufficiently maintained if vehicle sensing data such as 
acceleration, velocity, and headway distance obtained by the leader are transmitted to 6 to 7 
other vehicles in the platoon. Biswas et al. (2006) proposed vehicle-to-vehicle communication 
protocols for traffic safety enhancement. Simulation analysis showed that the proposed 
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algorithm using these protocols mitigates the risk of rear-end collision of a three-vehicle 
platoon system. Contet et al. (2007; 2012) tackled linear platoon control both by simulation 
and experimental analysis using test vehicles and a multiagent system. Yi and Chong (2005) 
proposed and evaluated a vehicle control algorithm to make a five-vehicle platoon safer and 
mitigate the risk of rear-end collision. Suzuki et al. (2011) revealed that the probability of 
rear-end collisions on a real arterial corridor propagates backwards as an amplified wave 
when the platoon consists mainly of passenger cars. 

In a realistic situation, however, sensing data are not obtained in real time by all platoon 
vehicles, because vehicles are not all equipped with a data-collection systems that can 
measure velocity and headway distance. Although Farrely and Wellstead (1996) attempted to 
estimate lateral velocity of a vehicle by measuring the longitudinal velocity, their method is 
limited to single vehicles not platoons. Also, the control strategy proposed by Yi and Chong 
(2005) requires that the inter-vehicle spacing and the velocity of each vehicle be measured in 
real time. Since more time is required for vehicle-to-vehicle communication systems to  
spread to almost all vehicles on the road, an alternate approach is required to estimate such 
data indirectly from other vehicles that do have sensing systems. 

The authors have been attempting to tackle this dynamic estimation problem using an 
extended Kalman filter (EKF) and a neural Kalman filter (NKF) in which the state and 
measurement equations are defined by artificial neural networks (ANNs), and to evaluate the 
efficiency and applicability of this approach through numerical analyses (Suzuki and 
Nakatsuji, 2011; Suzuki, 2012). However, the EKF and NKF have some difficulties to be 
overcome. The accuracy of estimates by the EKF deteriorates when calculating the derivatives 
of state and measurement equations. The NKF yields quite unstable and sensitive estimates 
with respect to the parameters of ANNs. Alternate approaches to the EKF and NKF have been 
required to make the estimation system more reliable and accurate. 

The present research attempts to introduce additional feedback estimators such as a 
particle filter (PF) and unscented Kalman filter (UKF) and to evaluate whether the new 
estimators yield more accurate estimates than the conventional approaches, the EKF and NKF. 
Also, the evaluation is implemented not only by the artificial data but also by the real 
car-following data collected through a test track field test.  

2. Theoretical Background of Feedback Estimators 

In this section, the theoretical background of four estimators, the EKF, NKF, PF, and UKF, is 
briefly described based on Koabayashi (2012), Nishiyama (2011), Haykin (2001), Ikoma 
(2012), and Arulampalam et al. (2002). 

2.1 State-Space Model 

The following state and measurement equations are defined as the state-space model, which is 
required for feedback estimation: 

 1 1k k k  x f x v , (1) 

 k k k y g x w , (2) 

where 

kx : state variables at time k , 

ky : measurement variables, 

kv : system error, 
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kw : measurement error, 
f , g : possible non-linear functions. 

Let 1:ky and 1:kx  denote as a set of all available measurement and state variables up to 

time k  given by: 

 1: 1 2, , ,k ky y y y , (3) 

and 

 1: 1 2, , ,k kx x x x . (4) 

The estimation problem is to calculate the posterior probability ( )1,k kp x y when giving 

a set of all measurement 1:ky . If measurement ky  is available, the posterior is updated 

through the Baye’s rule: 

( ) ( ) ( )
( )
1, 1

1,
1, 1

k k k k
k k

k k

p p
p

p

x y y x
x y

y y

-

-

⋅
= .  (5) 

Here, ( )k kp y x is a likelihood function which describes the likelihood of kx  when 

giving the measurement ky . ( )1, 1k kp x y - is a prior probability of kx
 
given by: 

( ) ( ) ( )1, 1 1 1 1, 1 1k k k k k k kp p p dx y x x x y x- - - - -= ⋅ò . (6) 

Also, ( )1,k kp y y is defined as: 

( ) ( ) ( )1, 1 1, 1k k k k k k kp p p dy y y x x y x- -= ⋅ò .  (7) 

( )1k kp x x - in (6) and ( )k kp y x  in (7) can be given by the state and measurement 

equations (1) and (2).  
There is a strong restriction that the posterior and prior probability density functions 

(PDF) ( )1,k kp x y  and ( )1, 1k kp x y - should be Gaussian in a conventional Kalman filter, 

whereas the Particle Filter (PF) does not require any assumptions or analytical functions for 
the PDFs. 

2.2 Extended Kalman filter (EKF) 

Although the functions f  and g  should be linear when applying a Kalman filter (KF), 
many estimation problems in the real world require non-linear functions in the state and 
measurement equations (1) and (2). To overcome this problem, the two equations are 
linearized and approximated as the following equations based on the first-order Taylor 
expansion: 

1 1 1 1k k k k k     x A x p v , (8) 

k k k k k  y C x q w , (9) 

where 

kp , kq  : constant vectors, 

1k A , kC : Jacobian matrices defined by 

1 ,k k
 

 
 

f g
A C

x x
. (10) 

Denote kx , ˆ kx , and ky  as the one-step prediction of state variable, optimal estimate, 
and real measurement, the feedback estimation is then implemented through the process 
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below: 

 1 1ˆk k k  x f x v , (11) 

 k k k y g x w  , (12) 
 ˆ k k k k k  x x K y y  . (13) 

Here, K k is the Kalman gain defined by the following equations: 

1 1 1 1
xx T
k k k k k    M A P A V , (14) 
xy xx T

k kk M M C , (15) 
yy xx T

k k k kk  M C M C W , (16) 

  1xy yy
k k k


K M M , 

(17)
 

xx xx
k k k k k P M K C M , (18) 

where 

kV , kW : covariance of system and measurement errors, 
xx
kM , kP : covariance of estimation errors kx and ˆ kx , respectively. 

2.3 Neural Kalman filter (NKF) 

Although the EKF is well known as a semi-optimum estimator for nonlinear systems, the 
approximation in Equation (10) increases the estimation errors when applied to highly 
nonlinear system (Nishiyama; 2011). To avoid the Jacobian matrix calculation, an ANN is 
introduced to redefine Equations (1) and (2) without using any analytical equations. 

Assuming that the ANN consists of three layers, the input, middle, and output layers, 

each entry of  and Ck  is computed by 

   
0

2
1 1r

r r qr q q pq
qp

z
z z W z z W

z 
 

        
 , 

(19)
 

where 

pqW : connection weight from input to middle layers, 

qrW : connection weight from middle to output layers, 

 pz : input to the ANN, 

qz , rz : outputs from middle and output layers, 

 0 : slope of sigmoid function that defines the output from each neuron. 
Prior training of the ANN using a back propagation method enables us to compute 

 and Ck without calculating partial derivatives in Equation (10). The feedback 

estimation of NKF is implemented by following the same procedure as the EKF through 
Equations (11) to (18). 

2.4 Particle Filter (PF) 

The key idea of particle filter (PF) is to represent the required posterior PDF by a set of 
random samples with associated weights and to compute the estimates based on these samples 
and weights (Arulampalam et.al.; 2002).  
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Let ( ){ }( ) ( )
1: 1 1: 1

1
,

M
i i
k k

i
x w- -

=
denote as a set of particles and its associated weights. It is 

assumed that ( ){ }( ) ( )
1: 1 1: 1

1
,

M
i i
k k

i
x w- -

=
 is given from the posterior PDF at time 1k  . When giving 

the measurement ky at time step k , the PF is to compute and update the particles and 

weights from ( ){ }( ) ( )
1: 1 1: 1

1
,

M
i i
k k

i
x w- -

=
 to ( ){ }( ) ( )

1: 1:
1

,
M

i i
k k

i
x w

=
.  

The weight is updated through the appropriate process called Sequential Importance 

Sampling (SIS). The SIS generates the particles based on the proposal distribution ( )q x  

which is different from the objective distribution ( )p x  and then gives each particle the 

appropriate weight so as to make the particles to be close to the objective PDF.  
The update process of weight is given by: 

( ) ( )
( )

( )
( ) ( ) ( )

1( ) ( )

( ) ( )
1,1: 1

1,2,...,
,

i i i
kk k ki i

k k i i
kk k

p p
w w i M

q

x x y x

x x y

-

-

= =





. (20) 

The PF is the feedback estimator that theoretically places the random particles in the 
probability field to yield the accurate posterior PDF based on the Baye’s theory (Ikoma; 2012). 
It is guaranteed that the estimates through the filtering process are suboptimal (Ikoma; 2012). 
The estimation process of PF is as follows: 

 

1) Initial sampling: Generate the initial particles  ( )
0ˆ 1,2,...,i i Mx

 at 0k   from 

the initial probability density function  0ˆp x . 

2) Importance sampling: Generate one-step prediction of samples ( )i
kx and 

( )i
ky  based 

on the state and measurement equations: 

 ( ) ( ) ( )
1 1ˆi i i

k k k  x f x v , 
(21)

 

 ( ) ( )i i
i kk  y g x w  . (22) 

3) Importance weight: Calculate the importance weight ( )i
kw  for each sample by the 

following equation: 

( ) ( )
( )

( )
( ) ( ) ( )

1( ) ( )

( ) ( )
1,1

1,2,...,
,

i i i
kk k ki i

k k i i
kk k

p p
w w i M

q

x x y x

x x y

-

-

= =
 




. 
(23)

 

Larger weight is given to particles for which the prediction ( )i
ky

 is closer to the actual 

measurement ky . 

4) Resampling: The particle ( )i
kx is updated into ( )

0ˆ ix  in proportion to the importance 

weight ( )ˆ i
kw . 

5) Normalize weight: Normalize the importance weight to ( )ˆ i
kw by 

( )
( )

( )
1

ˆ
i

i k
k M j

kj

w
w

w






.
 

(24)
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6) Estimation: From the updated particles ( )
0ˆ ix , compute the estimate by 

( ) ( ) ( )

1 1

1
ˆ ˆ ˆ

M M
i i i

k k k k
i i

w
M

x x x
= =

æ ö÷ç ÷» =ç ÷ç ÷çè ø
å å  . 

(25) 

2.5 Unscented Kalman Filter (UKF) 

The UKF is another of the family of derivative-free Kalman filters, which require no 
calculation of partial derivative of state and measurement equations (Haykin; 2001). The EKF 
provides the first-order approximation to the optimal estimates, whereas the UKF captures the 
posterior mean and covariance accurately to their second-order Taylor expansions using a 
minimal set of carefully chosen sample points called sigma points (Haykin; 2001). 

The first step to apply the UKF is to generate the sigma point as 

  ,i P k
i

N   Ps , (26) 

00, 1
ˆ ˆk  x , (27) 

 ,, 1 1
ˆ ˆ 1, ,i Pi k k i N    x s , (28) 

 ,, 1 1
ˆ ˆ 1, ,2i N Pi k k i N N     x s , (29) 

 1
ˆ

k k fF F , (30) 

where 

 is : i-th column vector of the lower triangle matrix when applying the Cholesky 

decomposition to kP , 

N : number of state variables, 
 : scaling parameter. 

One-step prediction of state variables and the error covariance are then given by 
2

,
0

N

ik i k
i

h


 x  , (31) 

2

, , 1
0

N T
xx

ik i k k i k k k
i

h 


   
        M x x V   , (32) 

where ih
 
is the weight defined by 

 
1

2ih
N 




. (33) 

The same procedure is applied to compute ky , yy
kM , and xy

kM  by defining the sigma 

vectors k
Y

 
and kΩ  as follows: 

  ,i M k
i

N   Ms , (34) 

00, 1k  x  , (35) 

 ,, 1, ,i Mi k k i N   x  s , (36) 

 ,, 1, ,2i Mi k k i N N    x  s , (37) 

 k k g Ω Y , (38) 
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        M y y W  
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(40) 

2

, ,
0

N T
xy

ik i k k i k k
i

h


  
       M x y   . (41) 

Again, the Kalman gain is computed by Equation (17) from the error covariance yy
kM  

and xy
kM . Also, the optimal estimate is updated through Equation (13). Finally, kP  is 

computed by 
xx xx T

k k k k k P M K M K . (42) 

3. State-Space Model for Vehicle Platoon 

Assuming that three vehicles form a longitudinal platoon system, as depicted in Figure 1, the 
dynamics of headway distance and velocity of each platooned vehicle are defined as 

1
1 1 1

i i i i
k k k kv v t

  
 
      , (43) 

and 

1 1
i i i
k k kv v a t    ,

 
(44)

 
where 

i
k : headway distance of vehicle i  at time k , 
i
kv : velocity, 
i
ka : acceleration rate. 

1v
2v3v 

2
33a

 

Figure 1. Three-vehicle platoon 

The acceleration rate in Equation (44) is given by a conventional car-following model, 
which is well known as the Gazis-Herman-Rothery (GHR) model (Rothery; 1998): 

 
 

1

ni
ki i i

k T k kmi
k

a v v
v

 
    


,
 

(45)
 

where 
, ,m n : model parameters, 

T : vehicle reaction time. 
For simplicity, the reaction time is assumed to be zero, i.e. 0T  , under the assumption 

that errors due neglecting T  will be minimized by the feedback process of the estimator. For 
the same reason, it is assumed that 1m n    . 

Substituting Equation (45) into (44) redefines the velocity as 
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(46)
 

Equations (43) and (46) are regarded as the state equations, whereas Equation (45) can 
be used as the measurement equation for the state-space model of a vehicle platoon. If 
velocity is also chosen as a measurement variable, the additional measurement equation is 

i i
k kv v .

 
(47)

 
When assuming that the third vehicle is the only probe car, i.e. the only car equipped 

with a sensing system, the estimation problem is reduced to precisely estimating the state 
variables such as headway distance and velocity of the second and third vehicles by observing 
the measurement variables of acceleration and/or velocity of the third vehicle. When 
observing acceleration only, the state and measurement variables are: 

     2 2 2 2 3,
TT

k kk k
v v y a x   ,

 
(48)

 
otherwise, 

     2 2 2 2 3 3,
TT

k kk k
v v y a v x   . (49) 

It is preferable that the velocity of the 1st vehicle is also added to the measurement variables. 

However, 1
kv  is not included in the measurement variables in this analysis, but explicitly given to 

the platoon system since the transition of 1
kv  is not described and modeled in the state equation. 

4. Numerical Analysis Using Artificial Data 

4.1 Preparing Artificial Data Sets and Scenarios 

Artificial data is created and applied to evaluate the performance of the four feedback 
estimators: the EKF, NKF, PF, and UKF. 

Given the velocity of the first vehicle of the platoon system, Equations (43) and (46) 

simulate the headway distance and velocity of the second and third vehicles to create 

“theoretical” data to be estimated. Then, the state-space model that adds the system and 

measurement errors in Equations (1) and (2) also simulates i
k , i

kv , and i
ka . The simulated 

i
ka

 and/or i
kv

 that include the errors are assumed as the “observation” of measurement 

variables. 
A three-vehicle platoon traveling at a steady speed of around 18 m/s is made to 

decelerate and come to a complete stop. This process is repeated nine times with random 
initial headway distance and velocity to create nine scenarios, AS1 to AS9. The initial 
headway distance and velocity for each scenario is given in Table 1. t  is set to 0.1 s. 

Table 1. Initial headway and velocity for nine artificial scenarios 

AS1 25.6 15.0 13.4 13.6 16.8 AS6 25.6 15.0 13.4 13.6 17.5
AS2 28.2 16.1 22.0 15.9 17.5 AS7 21.6 16.2 30.8 16.1 17.5
AS3 21.6 16.2 30.8 16.1 16.8 AS8 25.6 15.0 13.4 13.6 16.8
AS4 28.2 16.1 22.0 15.9 16.8 AS9 28.2 16.1 22.0 15.9 16.8
AS5 21.6 16.2 30.8 16.1 16.8

 2 m  3 m 2v m s  3v m s  0v m s  2 m  3 m 2v m s  3v m s  0v m s
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4.2 Conditions for Numerical Analysis 

The number of neurons in the ANN model for the state equation is 4-4-4 for input, middle, 
and output layers, and 4-4-1 for the measurement equation, as depicted in Figure 2. The 
number of particles generated in the PF is gradually increased from 100 to 1000 in steps of 
100 and is set to the number at which the best estimate is generated. The scaling parameter  
in the UKF is set to 10 for all estimations. 
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Figure 2. ANN models for state and measurement equations 

4.3 Estimation Results by Measuring Acceleration Only 

Figures 3 and 4 compare the estimates of headway distance and velocity in scenario AS2 
between four feedback estimators, the EKF, NKF, PF, and UKF. Only one case out of nine 
scenarios is illustrated as an example. The statements “theoretical” in the legend means the 
theoretical value to be compared. The PF and UKF yield closer estimates to the target than the 
other estimators. In particular, in the headway and velocity estimation of the third vehicle, the 
PF and UKF significantly reduced the overestimation and underestimation that was seen in 
the EKF and NKF. 
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Figure 3. Estimates of headway distance in scenario AS2(measuring acceleration only) 
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Figure 4. Estimates of velocity in scenario AS2 (measuring acceleration only) 
 

Figures 5 and 6 depict the mean and standard deviation of root mean square error 
(RMSE) of the state variables for the total nine scenarios. The t-test shows that the mean 
RMSEs by the PF and UKF are statistically smaller than those by the other estimators for all 
state variables at more than 1 % confidence level. The UKF yields the best estimate and 
shows a higher accuracy even than PF at more than a 1% confidence level. This is more 
significant in the headway estimation of the third vehicle, where the conventional EKF did 
not show good performance. 
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Figure 5. RMSE of headway distance estimations (measuring acceleration only) 
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Figure 6. RMSE of velocity estimations (measuring acceleration only) 

The estimate by the NKF is the worst for all state variables among the four estimators 
because the NKF is still sensitive to the parameters of the ANN. As shown in Table 2, 
however, the NKF outputs better estimates than the EKF in some scenarios for headway 
estimations. Although the NKF does not always yield inaccurate estimates, the NKF is more 
difficult to handle than the PF and UKF due to sensitivity to the parameters of the ANN. 

Table 2. RMSE of all state variables for artificial nine scenarios (AS1~AS9). 

EKF NKF PF UKF EKF NKF PF UKF
AS1 3.3 1.3 0.6 0.6 AS1 1.4 0.5 0.4 0.1
AS2 3.1 2.6 2.0 0.6 AS2 1.0 1.1 0.4 0.1
AS3 1.2 2.7 1.3 1.3 AS3 0.7 0.7 0.5 0.3
AS4 2.5 7.1 1.4 1.5 AS4 1.0 1.9 0.2 0.3
AS5 1.1 4.2 1.0 0.7 AS5 0.8 1.5 0.2 0.1
AS6 1.7 17.2 1.6 0.7 AS6 0.9 1.4 0.4 0.1
AS7 0.6 19.9 1.0 0.5 AS7 0.9 2.3 0.4 0.1
AS8 2.9 6.8 1.4 0.9 AS8 0.6 1.5 0.5 0.2
AS9 1.5 3.2 1.4 0.8 AS9 0.9 1.5 0.4 0.2
mean 2.0 7.2 1.3 0.8 mean 0.9 1.4 0.4 0.2
S.D 1.0 6.7 0.4 0.3 S.D 0.2 0.6 0.1 0.1

EKF NKF PF UKF EKF NKF PF UKF
AS1 4.8 0.8 0.7 0.3 AS1 0.8 0.6 0.8 0.1
AS2 2.9 1.8 0.7 0.2 AS2 1.0 1.1 0.4 0.1
AS3 1.5 1.5 1.1 0.3 AS3 1.0 0.8 0.6 0.3
AS4 2.5 1.3 1.3 1.1 AS4 1.3 1.8 0.3 0.4
AS5 4.1 4.6 0.9 0.2 AS5 1.8 1.7 0.2 0.2
AS6 4.9 1.7 0.5 0.2 AS6 0.8 1.1 0.4 0.1
AS7 3.8 7.6 1.4 0.3 AS7 1.4 1.9 0.5 0.1
AS8 5.9 2.5 0.9 0.3 AS8 1.1 1.4 0.7 0.2
AS9 3.6 19.2 0.7 0.2 AS9 1.2 1.6 0.5 0.2
mean 3.8 4.6 0.9 0.3 mean 1.2 1.3 0.5 0.2
S.D 1.3 5.9 0.3 0.3 S.D 0.3 0.5 0.2 0.1

RMSE of headway (m) (2nd vehicle) RMSE of velocity (m/s) (2nd vehicle)

RMSE of headway (m) (3rd vehicle) RMSE of velocity (m/s) (3rd vehicle)
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4.4 Estimation Results by Measuring both Acceleration and Velocity 

The previous analysis showed that the PF and UKF provide the best performance among the 
four estimators, so that only the PF and UKF are accepted in the estimation where the velocity 
of a probe car is also chosen as a measurement variable in addition to the acceleration rate. 
The data sets and scenarios are the same as the analysis described in Section 4.1. 

As an example out of nine scenarios, the performance of the PF and UKF in scenario 
AS9 is illustrated in Figures 7 and 8 in comparison with the case where no filter is applied. 
The superior performance of the PF and UKF are visible. Inaccurate estimate is observed in 
the no-filter case especially when estimating the headway distance of both the second and 
third vehicles. In contrast, The PF and UKF succeeded in minimizing the errors through the 
filtering process using the multiple particles and sigma points generated for those estimators. 
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Figure 7. Estimates of the headway distance in scenario AS9 (measuring acceleration and velocity) 
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Figure 8. Estimates of the velocity in scenario AS9 (measuring acceleration and velocity) 
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The error statistics of headway and velocity estimations are depicted in Figures 9 and 10. 
The PF and UKF statistically show higher precision than the no-filter case at more than 1 % 
confidence level. Also, their variance of the errors are much smaller than the no-filter case. 
That is, both the PF and UKF had consistency lower errors with no statistical difference 
observed between them despite the UKF showing statistically higher accuracy than the PF in 
the case of measuring acceleration only. The better performance of the PF and UKF is still 
clear when using both acceleration rate and velocity as measurement variables. Note that one 
scenario of the UKF is excluded from the statistics due to an unexpected computation error in 
scenario AS5. It has not been confirmed, but it seems that the UKF may yield a slightly larger 
error when treating a state variable as also a measurement variable (i.e. the velocity of the 
third vehicle is a state variable to be estimated as well as a measurement variable). 
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Figure 9. RMSE of headway distance estimations (measuring acceleration and velocity) 
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Figure 10. RMSE of velocity estimation (measuring acceleration and velocity) 
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5. Numerical Analysis Using Real Car-Following Data 

5.1 Preparing Real Car-Following Data Set 

Real car-following data including headway distance, velocity and acceleration rate of three 
vehicles were collected in a field test using a test truck of the Japan Automobile Research 
Institute (JARI). In the test, a three-vehicle platoon travelling at a steady speed of around 60 
km/h was made to decelerate and come to a complete stop, and this process was repeated. The 
deceleration rate was random from 1 to 5 m/s2. Thirteen real-data scenarios (RS1 to RS13) 
which are suitable for the analysis were selected and used for the evaluation. 

5.2 Estimation Results by Measuring Acceleration Only 

As an example out of thirteen scenarios, Figures 11 and 12 compare the headway and velocity 
estimates of scenario RS4 among two estimators, PF,UKF and no-filter case. The statement 
“observed” in the legend means the real observed headway distance or velocity to be 
compared. PF and UKF yield more accurate estimates than no-filter case for all state variables. 
Especially in the headway estimation of 2nd and 3rd vehicles, PF and NKF reduced the 
unexpected under estimation that was seen in no-filter case.  
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Figure 11. Estimates of headway distance in scenario RS4 (measuring acceleration only) 
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Figure 12. Estimates of velocity in scenario RS4 (measuring acceleration only) 

Figures 13 and 14 depict the mean and standard deviation of root mean square errors 
(RMSE) of four state variables among thirteen scenarios. The t-test showed that mean errors 
of both headway estimates are statistically smaller than the no-filter case at 1% confidence 
level. The absolute error around 1 m, which is equivalent to the error by laser radar, is also 
acceptable as the satisfactorily level. 

In the velocity estimations, however, no statistical difference is observed except the PF 
in the velocity estimates of 2nd vehicle although PF and UKF seem to decrease the mean 
errors. But, the absolute mean error around 0.8 to 1.2 m/s can be considered as the acceptable 
level for the collision risk evaluation. 
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Figure 13. RMSE of headway distance estimations (measuring acceleration only) 
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Figure 14. RMSE of velocity estimations (measuring acceleration only) 

5.3 Estimation Results by Measuring both Acceleration and Velocity 

An example of the Estimates by PF and UKF when measuring both acceleration and velocity 
are depicted in Figures 15 and 16 for the same scenario RS4. Although the PF and UKF still 
yield the outputs that are very close to the target, the precision is slightly worse compared to 
the case when observing acceleration only. In total, however, there is no difference in the 
mean estimation errors between the cases with and without the velocity observation, as 
depicted in Figures 17 and 18.  
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Figure 15. Estimates of headway distance in scenario RS4 (measuring acceleration and velocity) 
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Figure 16. Estimates of velocity in scenario RS4 (measuring acceleration and velocity) 

As illustrated in Figures 17 and 18, however, the mean errors by PF and UKF still 
remain small at the satisfactorily levels for both headway and velocity estimations. Although 
there has been a variation in estimation accuracy depending on the car-following data or the 
measurement variables, acceleration and/or velocity at the 3rd vehicle are enough to estimate 
the headway which is difficult to be directly measured. 
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Figure 17. RMSE of headway distance estimations (measuring acceleration and velocity) 
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Figure 18. RMSE of velocity estimations (measuring acceleration and velocity) 

Concluding Remarks 

This research applied both the PF and the UKF to the state estimation of vehicle platooning, 
instead of conventional approaches such as the EKF or the NKF. Headway distance and the 
velocity of a three-vehicle platoon were estimated by observing the acceleration rate and/or 
velocity of the third vehicle as a probe car. The particles or sigma points generated through 
the PF and UKF are expected to capture the posterior mean and covariance of the true state 
variables to yield a more accurate estimate than the EKF and NKF. 

Numerical analyses using artificial car-following data demonstrated that the PF and 
NKF provided significantly and statistically higher accuracy of the estimates compared to the 
other estimators in both the case where only acceleration is observed and that where velocity 
is also measured. Not only is the error small, but also the error variance is small, so that the 
PF and UKF yield stable and accurate estimates in all the examined car-following cases. Even 
in the evaluation using real car-following data collected through a test track field test, the 
estimation accuracy is as low as a satisfactorily level although the estimation error is slightly 
larger than the case using the artificial data. 

Even without equipping vehicles with costly sensors or cameras to measure the 
headway distance, the proposed algorithm is expected to approximate headway distance in 
real time. However, the significant performance of PF and UKF demonstrated here is solely 
limited only for the three-vehicle platoon and short time car-following. Further work should 
be carried out to apply the estimation to a larger platoon system and the much longer period of 
car-following including various acceleration and deceleration situations. 
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