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Abstract: The conventional logit-based models with cross-sectional data are not capable to 

capture the individual’s behavior that is correlated over time. It has been known that panel 

data provides the source of information to overcome this issue. However, collecting panel 

data, especially from revealed preference (RP) data, is generally expensive and difficult in 

practice. The present paper shows the use of repeated observations from Electronic Toll 

Collection (ETC) data with information of attributes derived from detector data to analyze and 

model route choice and route switching behavior on the selected study area of Tokyo 

Metropolitan Expressway. In general, the estimated results show that drivers response 

differently to different levels of congestion information. Moreover, when accounting for the 

panel data, the factors that capture panel effect are highly significant statistically and the 

improvement of the models’ goodness of fit can be observed from both behavioral models. 
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1. INTRODUCTION

Traffic congestion presents a major challenge of the society. The concentration of travel 

demand during peak period and the reduction of roadway capacity during incidents cause 

traffic congestion on road networks. Urban expressway is not an exception. Several ITS 

(Intelligent Transportation Systems) initiatives have been implemented to relieve the severity 

of traffic congestion. For example, traffic condition information is displayed on the variable 

message/graphic signboards especially before the major junctions, so that drivers can make 

decision en route to travel in the most effective way based on traffic information they receive. 

To maximize the potential of information technology, it is necessary to understand how 

drivers select the route for their trips and how traffic condition information affects route 

choice behavior (Bonsall, 1992). 

Route choice model is a common tool to analyze and model drivers’ route choice 

behavior. The conventional logit-based route choice models rely heavily on the 

cross-sectional data. With this data, generally, the standard model can capture the 

heterogeneity in drivers’ taste through the observed individual socioeconomic characteristics 

and the differences in responsiveness to alternative attributes. In addition to the observed 
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heterogeneity, there is a remaining component that represents random heterogeneity from 

some unobserved factors in drivers’ behavior. This unobserved taste heterogeneity is generally 

ignored in the standard route choice model. In addition, since the standard model provides the 

same coefficients of each variable for all drivers, this implies that drivers with the same 

individual characteristics and under similar choice situation will behave in the same way for 

making decision. However, in reality, under such condition, a group of the same class of 

drivers might have different tastes and result in different decisions. This indicated that the 

results from standard model with fixed coefficients might provide a high rate of error in route 

choice estimation if there are a large variety of different tastes in each driver group. 

To provide more realistic results, the model should be capable to accommodate both 

observed and unobserved heterogeneity mentioned earlier; particularly, the latter one that is 

likely to capture the differences in intrinsic route choice preferences. Instead of 

fixed-coefficient logit model, the taste variation across drivers can be accommodated by 

random-coefficient logit model. Random-coefficient or Mixed multinomial logit (MMNL) has 

been popular in various applications since the advances in simulation techniques and 

computational power (Revelt and Train, 1998; Bhat, 2000; Train, 2009; Hensher and Greene, 

2003). In reality, drivers who experience traveling between a particular OD with alternative 

routes more than once might select a route based on the past experience. In this case, the 

MMNL with cross-sectional data might not be enough to account for the correlation between 

repeated choices over time or over choice situation since the cross-sectional data provides 

only single decision information of each driver. To overcome this issue, it is necessary to 

obtain the information of how each driver makes a series of decisions over repeated route 

choice situations. These repeated observations in route choice behavior can be obtained from 

the panel data. 

Depending on the study cases, such information can be obtained from either/both 

revealed preference (RP) or/and stated preference (SP). RP data allows modeling route choice 

based on the observed choice decisions while SP data is based on hypothetical choices. 

Because of the difficulties of collecting actual route choice decisions in RP studies, SP studies 

become more popular. However, results from the decisions under experiments might be 

questionable if the analyst cannot set up the experiments for capturing the actual behavior 

(Ortúzar and Willumsen, 2001). The use of advanced technologies can overcome the 

difficulties of collecting RP data, specifically, for multi-day or multi-period observations. For 

example, Li et al. (2004) used the multi-day travel information from GPS equipped in 

vehicles to capture variability in commuting behavior. Tiratanapakhom et al. (2012b) 

examined the intra- and inter-personal variability using the panel ETC (Electronic Toll 

Collection) data on expressway in Tokyo. The GPS data, however, is based on the information 

from participants who agree to carry or to install GPS receiver in their vehicles. Sometimes 

the missing of data can be occurred especially when participants forget to operate or recharge 

the device. ETC system, in comparison, collects toll automatically when a vehicle passes the 

toll gate. At the same time, the system records vehicle ID (Identification Number), vehicle 

type, locations of entrance and exit, entering and exit times. In addition, the same vehicle ID 

will be recognized when the same vehicle re-enters the system. This feature allows us to 

observe the multi-day or multi-period travel behavior for the same vehicle on expressways 

where ETC system is implemented.  

On Metropolitan Expressway (MEX) in Tokyo, the ETC system is widely implemented 

throughout the network. Moreover, since 2010, almost 90% of expressway users have paid 

their toll using this system (ORSE, 2011). If the route choice information can be observed 

from this system, it will allow the rich source of RP route choice data in the analyses. This 

study takes advantage of recognizing the same vehicle’s ID in ETC system to observe 
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repeated route choice behavior. Moreover, there are several factors that can influence drivers’ 

route choice behavior. In addition to ETC data, the information of some factors was derived; 

specifically, traffic condition information such as predicted travel time and length of 

congestion from detector data. This information is commonly showed on graphic/message 

signboard.  

This paper analyzes route choice behavior on selected study area of MEX using the 

MMNL model with repeated route choice observations to accommodate both observed and 

unobserved taste heterogeneity across individuals. In addition to route choice behavior 

analysis, the paper also examines how drivers diverse from their defined main route (i.e. 

switching behavior) under the impact of traffic condition information and other factors 

derived from both ETC and detector data. 

The rest of this paper is organized as follows. Section 2 presents a brief review of 

modeling with repeated choices. Section 3 presents the descriptions of attributes extracted 

from ETC and detector data. Section 4 presents the model specification and discusses 

estimation results. Section 5 presents the conclusion. 

 

 

2. MODELLING WITH REPEATED CHOICES 

 

The logit-based route choice model can be formulated following the principles of discrete 

choice theory which is based on the utility-maximizing behavior by the decision maker. 

Random utility model is perhaps the common approach to estimate a behavioral model that 

satisfies utility maximization. The utility that a driver n associates with route i in choice 

situation t is formulated in equation (1) as: 

 

𝑈𝑛𝑖𝑡 = 𝛽𝑛
′ 𝑥𝑛𝑖𝑡 + 𝜀𝑛𝑖𝑡          (1) 

 

where xnit is a vector of explanatory variables that has been observed. An alternative specific 

constant is included in this component. n is a vector of taste coefficients associated with each 

variable, and nit is an unobserved random component that includes all unobserved variables 

affecting the utility. nit is assumed to be independent and identically distributed (iid) extreme 

value. If the values of n are fixed and nit is independent over n, i and t, the model then 

becomes the standard multinomial logit model (MNL). 

In MMNL (see Revelt and Train, 1998; Bhat, 2000; Train, 2009; Hensher and Greene, 

2003), the n is considered to be distributed over individuals with density f(n|) where  is a 

set of parameters of the distribution (e.g. mean and covariance). The logit probability 

conditional on n that driver n chooses route i; where there are J = {1, 2,…, j} alternative 

routes available at choice situation t is presented in equation (2). 

 

𝑃𝑛(𝑖|𝛽𝑛) =
𝑒𝛽𝑛

′ 𝑥𝑛𝑖𝑡

∑ 𝑒
𝛽𝑛

′ 𝑥𝑛𝑗𝑡
𝐽

          (2) 

 

Under the repeated choice observations during the choice situation T = {1, 2,…, t}, the 

probability conditional on n that individual n makes a sequence of route choice decisions is 

the product of equation (2) over choice situations. 

 

𝑃𝑛𝑇(𝑖|𝛽𝑛) = ∏
𝑒𝛽𝑛

′ 𝑥𝑛𝑖𝑡

∑ 𝑒
𝛽𝑛

′ 𝑥𝑛𝑗𝑡
𝐽

𝑇
𝑡=1           (3) 

Proceedings of the Eastern Asia Society for Transportation Studies, Vol.9, 2013Proceedings of the Eastern Asia Society for Transportation Studies, Vol.9, 2013



 

 

 

For cross-sectional data, where the decision is independent over choice situations, the 

unconditional probability that individual n chooses route i is the integral of equation (2) with 

respect to all possible values of n as expressed in equation (4). 

 

𝑃𝑛(𝑖) = ∫ 𝑃𝑛(𝑖|𝛽𝑛)𝑓(𝛽𝑛|θ) 𝑑𝛽𝑛         (4) 

 

For repeated choice observations (from panel data), the logit probability portion in 

equation (4) is replaced by equation (3). Consequently, the unconditional probability that 

individual n chooses route i with respect to all possible values of n is formulated as equation 

(5). 

 

𝑃𝑛𝑇(𝑖) = ∫ 𝑃𝑛𝑇(𝑖|𝛽𝑛)𝑓(𝛽𝑛|θ) 𝑑𝛽𝑛         (5) 

 

The integral in equation (4) or (5) can be calculated approximately using simulation 

technique described in Train (2009). This simulation process draws R = {1, 2,…, r} values of 

n and puts each value into the logit formula (equation (2) or (3)). The average value of all 

(logit) probabilities results in a simulated probability SPn(i) in equation (6) which is an 

unbiased estimator of unconditional probability of equation (4) or (5). 

 

𝑆𝑃𝑛(𝑖) =
1

𝑅
∑ 𝑃𝑛(𝑇)(𝛽𝑛

𝑟)𝑅
𝑟=1           (6) 

 

After the simulated probabilities are obtained, the parameters  can be estimated by 

maximizing the simulated log likelihood in equation (7). 

 

𝑆𝐿𝐿 = ∑ ∑ 𝛿𝑛𝑗 ln 𝑆𝑃𝑛𝑗
𝐽
𝑗=1

𝑁
𝑛=1          (7) 

 

where nj = 1 if individual n choose route j and zero otherwise. 

The integral portion might be multi-dimensional integral depending on the number of 

variables in n. Moreover, the simulation process is computationally burdensome. To assist 

the calculation process, this paper used the open source software package BIOGEME for 

model estimations (Bierlaire, 2003). 

 

 

3. EMPIRICAL DATA AND INFORMATION EXTRACTION 

 

This paper reports the route choice and route switching behavior analyses on expressway in 

Tokyo using the individual travel information from ETC data and traffic condition 

information from detector data. ETC data can provide the information of each vehicle at the 

toll gate location only. In general, it does not give individual route choice information directly. 

However, as presented in Tiratanapakhom et al. (2012a), it is possible to derive route choice 

information from ETC and other data such as detector data. Identifying route choice with this 

method might include some errors from fault identification. Since the present paper intends to 

show the use of ETC data for examining route choice behavior, the study area was selected in 

such a way that the actual route choice can be observed directly. For example, from a 

particular OD pair where there are two alternative routes and there is a pair of off-ramp 

locations (i.e. two off-ramps ETC toll gates are located on the opposite sides of the road).  
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Figure 1. Selected study area 

 

The present paper used the ETC data and the corresponding detector data between 

Higashi-Kanto expressway transition gate (i.e. toll gate connecting between MEX and 

Higashi-Kanto expressway) and Kasumigaseki toll gates inbound direction (Figure 1) where 

the condition of pair of off-ramp is satisfied. The multi-day ETC data which allows the 

repeated route choice observations was collected between August 2010 and February 2011 

with the entry time during 06:00-24:00 hours. To focus more on working trips, the analyses 

mainly consider the travel information on common working days (141 days) of small 

(excluding motorcycle) and medium vehicles. 

Route choice and route switching behavior analyses require a utility function which 

includes several attributes that influence drivers’ route choice decisions. Without further field 

survey for RP data, the relevant attributes were derived from the available data sources (i.e. 

ETC and detector data). The attributes considered in the models can be categorized into 1) 

drivers’ traveling characteristics, and 2) level-of-service characteristics. 

 

3.1 Drivers’ Traveling Characteristics 

 

In general, the socioeconomic variables are used to reflect the differences in preferences of 

individual when choosing alternatives. Without such information, for expressway users, it is 

possible to assume the homogeneous drivers. In this paper, the information used in the model 

is derived from the ETC and detector data only. These data sources do not provide the 

socioeconomic information. However, it is possible to derive other information that can 

reflect the heterogeneity in drivers’ preference from the available data sources. The following 

sub-sections present the definitions of derived information. 

 

3.1.1 Frequency of travel 

 

This variable is defined based on the number of trips made by each driver in the study area. 

Decision making by drivers with high frequency of travel might be different from those with 

low frequency. The frequency of travel represents the demand for travel; hence, might reflect 

through the purpose of travel, income, and so on. Using clustering method, the analyses 

classify drivers into two main groups: frequent and infrequent drivers. Along the study period 

(seven months), the total number of trips made by each vehicle in each month constitutes 

various patterns (Table 1) that can be recognized by the clustering method. This classification 

technique is similar to that in Tiratanapakhom et al. (2012b).  

 

 

 

Kasumigaseki Higashi-Kanto 

Route1 

Route2 
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Table 1. Image of the patterns of monthly trip number made by each individual 
ID Aug Sep Oct Nov Dec Jan Feb 

1 5 5 2 6 3 4 6 

2 20 16 18 20 17 17 19 

3 3 5 7 5 1 0 0 

4 17 20 20 20 19 18 18 

… … … … … … … … 

 

The dendrogram in Figure 2 provides the image of clustering results. To choose the number of 

clusters, using the simple approach, the dendrogram is cut at the large changes in distances as 

shown by the dashed line in Figure 2. As a result, the sample can be partitioned into two 

clusters; frequent and infrequent drivers, defined based on the average number of trips. The 

analyses adopted the k-mean clustering method with the pre-defined number of groups (i.e. 

two groups) for this classification. 

 
Figure 2. Image of clustering results 

 

3.1.2 Time of use 

 

In daily travel, drivers, especially commuters, are more likely to enter the expressway system 

at the similar period on the common working days. The time-of-use variable represents the 

point of time the vehicle enters the system. Since the study area observed the inbound traffic, 

this entry time is the time point when a vehicle passes the Higashi-Kanto toll gate. In general, 

it is expected that the demand of commuting trip is more likely to be observed during the 

morning peak rather than the evening peak. This variable is classified into three durations: 

morning peak, evening peak, and off-peak. The entry time 07:00-09:00 hours is defined for 

morning peak, and 17:00-19:00 hours is defined for evening peak. The trips enters the system 

other than these two periods are defined as off-peak trips. Using the effects coding system, the 

three qualitative levels are transformed into two effects coded variables (Bech and 

Gyrd-Hansen, 2005) as illustrated in Table 2. 

 

 

Table 2. Effects coding variables for attribute time-of-use 
Levels Effects code1 Effects code2 

Morning peak +1 0 

Evening peak 0 +1 

Off-peak -1 -1 
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3.1.3 Habitual route choice behavior 

 

Drivers who are always observed traveling on the same route will be identified as habitual 

drivers. The habitual drivers are not aware of changing route decision, for example, even 

when it is faster to travel on the alternative route or there is an incident on their preferred 

route. Drivers other than habitual drivers will be considered as the non-habitual drivers. To 

classify the habitual drivers, it is necessary to observe repeated route choice decisions of each 

driver from multi-day and multi-period ETC data.  

 

3.1.4 Driver’s main route 

 

This variable will be used in the route switching behavior analysis. A driver’s main route may 

refer to the most frequently used route observed for that driver. The total number of trips 

made on one route for each driver is observed by multi-day and multi-period ETC data. 

Comparing the total number of trips that one particular driver makes on route 1 and route 2: 

for example, if the number of trips on route 1 is greater than on route 2, in this case, route 1 

will be defined as the driver’s main route.  

 

3.1.5 Driver’s preference for driving speed 

 

The driver’s preference for driving speed may be defined as the observed average speed that 

driver used for traveling on her/his chosen route under a particular traffic condition. We may 

assume that drivers try to achieve their preferred speed (as they recognize by experience) for 

traveling between this OD. They may evaluate the opportunity of using driving speed on each 

route according to the current traffic condition or other information. Such behavior might 

influence the route choice decision. The paper does not attempt to observe or to create a 

model to obtain the information of experience in driving speed for each individual. Instead, 

the paper assumes that drivers satisfy the driving speed that they actually used. This speed can 

be calculated based on the observed ETC travel time of each individual on each trip. 

 

3.2 Level-of-Service (LOS) Characteristics 

 

Drivers may evaluate the attractiveness of selecting a route for travel from the information 

about traffic condition or LOS on the available route choices. On expressway system, drivers 

can receive such information from several media such as message signboard, usually installed 

at the on-ramp locations, or graphic signboard, usually installed before junctions. Particularly 

on these signboards, travel time and the length of congestion on the routes are commonly 

displayed. The paper derived these two sources of traffic condition information from both 

ETC and detector data. The detector data used in this study provides traffic information 

aggregated every five-minute interval. In practice, usually the expressway operator evaluates 

the traffic condition by using the traffic information at the time before the current time point. 

To be more realistic, the traffic condition information is derived from traffic data at one time 

step (5 min.) before the time that vehicle enters the system. 

 

3.2.1 Predicted travel time 

 

Travel time prediction from speed data obtained by detector system is perhaps the most 

common way to obtain information of travel time based on the available traffic condition 

information. Li et al. (2006) evaluated the performance and provided some general 
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formulations of the common speed-based travel time estimation models. Among the available 

travel time estimation models, the instantaneous model is generally adopted by expressway 

operators to provide travel time based on current traffic information measured by detector 

system since this model can perform on-line with real time traffic information. The 

instantaneous model calculates travel time on the route by using the speed information, v(i,k),  

from each detector section along this route collected at the same time interval k. The travel 

time on each detector section is calculated using equation (8).  

 

𝑡(𝑖, 𝑘) =
𝑙𝑖

𝑣(𝑖,𝑘)
           (8) 

 

where t(i,k) denotes the travel time on detector section i at time k. li is the length of detector 

section i. The route travel time under traffic condition at time k can be obtained by the 

summation of travel times from all detector sections along this route. 

 

3.2.2 Length of congestion 

 

On graphic road map signboards, the congestion information on routes may be displayed by 

illuminating the colors representing the levels of congestion based on the current traffic 

condition corresponding to the detector location. On MEX, at the locations under the free 

flow condition, the graphic map is shown as black color or not illuminating. The free flow 

condition is defined when the travel speed is over 40 km/h. The section that highlights with 

orange color represents slight congestion when travel speed is over 20 km/h and below 40 

km/h. For the section of congested traffic condition, where the travel speed is less than or 

equal to 20 km/h, the red color will be displayed. Drivers can evaluate the severity of 

congestion from both the different types of colors and the length of these colors. Following 

the way to display this information, two variables are introduced: slight congestion length and 

heavy congestion length. The values of these variables on each route were calculated by the 

total detector section lengths in which the travel speeds meet the criteria of congestion level 

used for graphic signboards.  

 

 

4. MODELS ESTIMATION RESULTS AND DISCUSSION 

 

Three types of models were estimated for route choice and route switching behavior: 1) MNL, 

2) MMNL with pooled data and 3) MMNL with repeated observations from panel data. The 

two MMNL models estimated the random parameters based on the assumed theoretical 

distribution. Since this paper aims mainly to show the use of repeated observations from ETC 

data to accommodate the effect of heterogeneity in drivers’ behavior, it is adequate to assume 

the normal distribution for each random variable. In addition, the paper examines only generic 

variables: travel time and length of congestion to be randomly distributed across the 

population. In the simulation estimation process for MMNL, 1,000 draws were used. To avoid 

the issues of misinterpretation especially from the constant terms (Bech and Gyrd-Hansen, 

2005), the categorical variables were coded using the effects coding system. The general 

information of empirical data used in the analyses is presented in Table 3. 
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Table 3. General information of empirical data 

Category 
Statistics 

Pooled data Panel data 

A. Individual characteristics 

Total observations 8363 veh. (100.0) 1718 veh.ID (100.0) 

Frequent drivers 1705 veh. (20.4) 32 veh.ID (1.9) 

Infrequent drivers 6658 veh. (79.6) 1686 veh.ID (98.1) 

Habitual drivers 6213 veh. (74.3) 1391 veh.ID (81.0) 

Non-habitual drivers 2150 veh. (25.7) 327 veh.ID (19.0) 

Main route   

Route 1 3140 veh. (37.5) 664 veh.ID (38.6) 

Route 2 5223 veh. (62.5) 1054 veh.ID (61.4) 

Morning peak usage  2040 obs. (24.4)  

Evening peak usage  807 obs. (9.6)  

Off-peak usage  5516 obs. (66.0)  

Speed preference (km/h)     

Route 1: mean 

      : SD 
 

54.33 

18.33 
  

Route 2: mean 

      : SD 
 

56.26 

19.54 
  

B. Level of service characteristics 

Travel distance (m.)    

Route 1  24510  

Route 2  24790  

Predicted route travel time (min.)    

Route 1: mean 

      : SD 
 

30.26 

12.39 
 

Route 2: mean 

      : SD 
 

29.72 

12.22 
 

Heavy congestion length (m.)    

Route 1: mean 

      : SD 
 

2051.2 

1764.0  
 

Route 2: mean 

      : SD 
 

1356.6 

1121.8 
 

Slight congestion length (m.)    

Route 1: mean 

      : SD 
 

2050.5 

1087.6 
 

Route 2: mean 

      : SD 
 

2363.3 

1705.3 
 

C. Choice observations 

Route 1  3193 obs. (38.2)  

Route 2  5170 obs. (61.8)  

Switch route (using alternative route)  463 obs. (5.5)  

No switch route (using main route)  7900 obs. (94.5)  

Note: veh.ID: number of vehicle ID, where each ID is generated by ETC system.  

obs.: number of observations. 

SD : standard deviation. 

Percentage unit is given in parentheses. 

    

 

4.1 Route Choice Behavior 

 

The general forms of utility functions of MNL, MMNL with pooled and panel data of route 

choice behavior analyses are demonstrated in equations (9), (10) and (11), respectively. 
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MNL route choice behavior: 

Uni  = ASCi +traveltimeTTni + heavyCongestionHVYni  

                    +slightCongestionSLTni 

                    + β
speedPreference

SPEED PREFERENCE + β
freqUser

FREQ USER  

                    + β
morning

MORNING + β
evening

EVENING 

                    + β
habitual

HABITUAL + εni                                         (9) 

 

MMNL route choice behavior with pooled data: 

Uni  = ASCi +N(traveltime,traveltime)TTni  

                    + N(heavyCongestion,heavyCongestion)HVYni  

                    +N(slightCongestion, slightCongestion)SLTni 

                    + β
speedPreference

SPEED PREFERENCE + β
freqUser

FREQ USER  

                    + β
morning

MORNING + β
evening

EVENING  

                    + β
habitual

HABITUAL + εni                                         (10) 

 

MMNL route choice behavior with panel data: 

Uni  = ASCi +N(traveltime,traveltime)TTni  

                    + N(heavyCongestion,heavyCongestion)HVYni  

                    +N(slightCongestion, slightCongestion)SLTni 

                    + β
speedPreference

SPEED PREFERENCE + β
freqUser

FREQ USER  

                    + β
morning

MORNING + β
evening

EVENING  

                    + β
habitual

HABITUAL + εni +N(0, 
ni

)                                (11) 

 

where, 

Uni: The utility of the individual n for alternative i. 

ASCi: Alternative specific constant. 

traveltime: Coefficient for estimated travel time (TTni), where the unit of travel time is in 

minutes. In MMNL models, this coefficient is assumed to distribute normally, 

N(traveltime, traveltime), with traveltime mean and traveltime standard deviation. 

heavyCongestion: Coefficient for length of heavy congestion (HVYni), where the length of 

congestion is divided by the distance between junction and destination. In MMNL 

models, this coefficient is assumed to distribute normally, N(heavyCongestion, 

heavyCongestion), with heavyCongestion mean and heavyCongestion standard deviation. 

slightCongestion: Coefficient for length of slight congestion (SLTni), where the length of 

congestion is divided by the distance between junction and destination. In MMNL 

models, this coefficient is assumed to distribute normally, N(slightCongestion, slightCongestion), 

with mean slightCongestion and standard deviation slightCongestion. 

speedPreference: Coefficient for drivers’ preference for driving speed (SPEED PREFERENCE), 

where the speed is divided by the free speed condition defined for message sign bard 

(i.e. 40 km/h). 

freqUser: Coefficient for frequent/infrequent users (FREQ USER), where frequent/infrequent 

users are coded by effect coding system: frequent user (+1), infrequent user (-1). 

morning: Coefficient for morning peak usage (MORNING) coded by effects coding system 

(Table 1). 

evening: Coefficient for evening peak usage (EVENING) coded by effects coding system 

(Table 1). 

Proceedings of the Eastern Asia Society for Transportation Studies, Vol.9, 2013Proceedings of the Eastern Asia Society for Transportation Studies, Vol.9, 2013



 

 

 

habitual: Coefficient for habitual users (HABITUAL), where habitual users are coded by 

effects coding system: habitual user (+1), non-habitual user (-1). 

ni: The unobserved portion of utility that is distributed iid (independent and identically 

distributed) extreme value with zero mean.  

ni: The unobserved portion of utility which is assumed to be normally distributed with zero 

mean and is correlated over choice situations for each individual. 

 

The estimation results for route choice behavior are illustrated in Table 4. In general, the 

mean values of parameters estimated in MMNL with panel data are greater than those in MNL 

and MMNL with pooled data. To make the comparison between different models, the 

parameters estimated in both MMNL models have been scaled with respect to the estimated 

travel time parameter in MNL model. This scaling technique is referred to Frejinger and 

Bierlaire (2007).  

 

Table 4. Route choice model estimation results 

Independent Variables 
MNL 

MMNL 

(pooled data) 

MMNL 

(panel data) 

Parm. t-stat Parm. t-stat Parm. t-stat 

ASCR1 0.338 3.54 0.270 3.12 0.974 7.44 

Estimated travel time        

traveltime -0.028 -4.22 -0.028 -3.22 -0.028 -4.42 

traveltime - - 0.017
*
 0.41 0.036 3.40 

Heavy congestion length       

heavyCongestion -4.780 -12.83 -4.935 -9.67 -3.210 -7.71 

heavyCongestion - - 3.375 3.38 1.341 2.00 

Slight congestion length       

slightCongestion -1.440 -6.02 -1.238 -5.42 -1.382 -5.85 

slightCongestion - - 2.790 2.12 1.058 3.95 

speedPreference -0.391 -6.47 -0.322 -5.96 -0.283 -4.04 

freqUser 0.145 5.03 0.136 5.07 0.925 13.09 

morning 0.047
*
 0.92 0.050

*
 1.06 0.064

*
 1.19 

evening -0.088
*
 -1.48 -0.088

*
 -1.58 -0.039

*
 -0.64 

habitual -0.158 -6.06 -0.138 -5.92 -0.039 -6.66 

-panel - - - - 2.111 14.11 

Scale factor
**

 - - 0.848 - 0.272 - 

Parameters 9 12 13 

Final log-likelihood -5272.505 -5267.955 -2506.228 

Adjusted  0.089 0.089 0.565 

- * rejected at 5% level,
 **with respect to the parameter “estimated travel time” in MNL.  

 

The final log-likelihood for the MMNL with pooled data is slightly greater than that for 

MNL model. This indicates that there is an improvement of model estimation when 

accounting for the unobserved heterogeneity across population in drivers’ behavior through 

the randomness of the selected variables. For MMNL with panel data, in addition to the 
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standard deviations that capture the unobserved taste variation in the defined random 

coefficients, the error term (-panel) is introduced to capture the remaining panel effects of 

other factors that are not included in the model. When the panel effect is taken into account, 

obviously, the significant improvement of log-likelihood value can be observed. The adjusted 

rho-squared ( �̅�2 ) values from each model show the similar indication with the final 

log-likelihood values. 

For the estimated parameters, after scaling, the values of all parameters are consistent 

across the three models. The variables relating to estimated travel time and congestion length 

show the negative sign. This implies that drivers are less likely to travel on route 1 when they 

receive the increasing of congestion information through travel time or length of congestion. 

In addition, the heavy congestion length influences drivers’ preference around more than 

twice as much as that under slight congestion. Moreover, it is found that drivers with higher 

average speed and more habitual in route choice are prone to travel on route 2 rather than 

route 1. Conversely, the results show that drivers who travel between this OD more often are 

more attracted to travel on route 1. Two variables relating to the time of use: morning peak 

and evening peak (with respect to off-peak hours) were found statistically insignificant. 

However, comparing the t-stat values across three models, it is observed that the absolute 

value of t-stat of morning-peak variable is greater than the value of evening-peak variable 

after accounting for the panel effect. Since the data is based on inbound traffic, the t-stat 

values of these variables in MMNL with panel data would be more realistic than other two 

models. 

 

4.2 Route Switching Behavior 

 

In this study, route switching or diversion occurs when drivers opt to divert from their defined 

main route to alternative route. The major attributes for investigating the impact to route 

switching behavior are mostly similar to the route choice behavior analysis. The variable 

related to habitual drivers is excluded in this analysis since all habitual drivers will not choose 

to use the alternative route. Instead, the variable main route is considered to investigate the 

behavior of drivers whose main route is route 1 with respect to route 2. 

The general forms of utility functions of MNL, MMNL with pooled and panel data of 

route switching behavior analysis are demonstrated in equations (12), (13) and (14), 

respectively. 

 

MNL route switching behavior: 

Uni  = ASCi +traveltimeTTni + heavyCongestionHVYni  

                    +slightCongestionSLTni 

                    + β
speedPreference

SPEED PREFERENCE + β
freqUser

FREQ USER  

                    + β
morning

MORNING + β
evening

EVENING 

                    + β
mainRoute

MAIN ROUTE + εni                                    (12) 

 

MMNL route switching behavior with pooled data: 

Uni  = ASCi +N(traveltime,traveltime)TTni  

                    + N(heavyCongestion,heavyCongestion)HVYni  

                    +N(slightCongestion, slightCongestion)SLTni 

                    + β
speedPreference

SPEED PREFERENCE + β
freqUser

FREQ USER  

                    + β
morning

MORNING + β
evening

EVENING  

                    + β
mainRoute

MAIN ROUTE + εni                                    (13) 
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MMNL route switching behavior with panel data: 

Uni  = ASCi +N(traveltime,traveltime)TTni  

                    + N(heavyCongestion,heavyCongestion)HVYni  

                    +N(slightCongestion, slightCongestion)SLTni 

                    + β
speedPreference

SPEED PREFERENCE + β
freqUser

FREQ USER  

                    + β
morning

MORNING + β
evening

EVENING  

                    + β
mainRoute

MAIN ROUTE + εni +N(0, 
ni

)                            (14) 

 

where, 

mainRoute: Coefficient for driver’s main route (MAIN ROUTE), where driver’s main route are 

coded by effects coding system: main route is route1 (+1), main route is route2 (-1). 

 

Table 5 displays the model estimation results for route switching behavior analysis. In 

general, the estimated mean values for each variable before scaling are quite close across 

three models. This might be due to the very low number of observations in the case of 

switching route (using alternative route) compared to the choice of non-switching (Table 3).  

 

Table 5. Route switching model estimation results 

Independent Variables 
MNL 

MMNL 

(pooled data) 

MMNL 

(panel data) 

Parm. t-stat Parm. t-stat Parm. t-stat 

ASCmain 3.890 18.38 4.067 16.25 4.338 14.29 

Estimated travel time       

traveltime -0.070 -4.86 -0.070 -5.00 -0.070 -4.88 

traveltime - - 0.070 2.64 0.089 4.76 

Heavy congestion length       

heavyCongestion -6.610 -8.59 -6.493 -8.40 -6.528 -7.94 

heavyCongestion - - 3.545
*
 1.68 3.809 2.76 

Slight congestion length       

slightCongestion -2.330 -4.68 -2.127 -4.54 -2.507 -4.71 

slightCongestion - - 3.368 3.00 3.117 4.86 

speedPreference -0.445 -3.28 -0.600 -4.18 -0.419 -2.34 

freqUser 0.454 6.04 0.451 6.16 0.615 4.26 

morning -0.262 -2.62 -0.341 -3.34 -0.175
*
 -1.45 

evening 0.177
*
 1.42 0.242

*
 1.86 0.167

*
 1.17 

mainRoute 0.021
*
 0.39 0.017

*
 0.34 0.030

*
 0.45 

-panel - - - - 1.155 13.74 

Scale factor
**

 - - 0.933 - 0.814 - 

Parameters 9 12 13 

Final log-likelihood -1626.08 -1619.62 -1506.49 

Adjusted  0.718 0.719 0.738 

- * rejected at 5% level,
 **with respect to the parameter “estimated travel time” in MNL. 

 

2

Proceedings of the Eastern Asia Society for Transportation Studies, Vol.9, 2013Proceedings of the Eastern Asia Society for Transportation Studies, Vol.9, 2013



 

 

 

The final log-likelihood values improve slightly when using the MMNL with pooled 

data instead of MNL. As expected, more improvement in term of final log-likelihood value 

can be obtained when applying the MMNL with panel. The similar conclusions can also be 

drawn from the adjusted rho-squared (�̅�2) values. 

The negative sign of the values of estimated parameters for estimated travel time, length 

of congestion and speed recognition indicates that drivers are more likely to switch route 

when the congestion condition on their main route increase. The effect of congestion under 

heavy situation is found to be as much as around three times greater than the slight 

congestion. In addition, those who prefer to drive at higher speeds may have higher 

preference to switch to the alternative route. Drivers who travel to the downtown area during 

the morning peak are more likely to switch route than those who travel during the evening 

peak. It is also found that drivers who travel between this OD more often and those who 

usually travel on route 1 are more reluctant to divert their route. 

For the estimated parameter values, the independent variables of evening peak and main 

route are not statistically significant across the three models. When accounting for panel data, 

in addition to those variables, the variable morning peak in MMNL with panel data also 

exhibits to be statistically insignificant. In MMNL with pooled data, the standard deviation of 

variable heavy congestion length is not significant from zero. This implies a more 

homogeneity in drivers’ behavior under this variable. However, the standard deviation 

becomes statistically significant when using panel data. This indicates that accounting for 

panel data, not only can improve the goodness-of-fit of the model estimation, but also might 

provide different information from the basic models. 

 

 

5. CONCLUSION 

 

In this paper, RP route choice data derived from multi-day ETC data between August 2010 

and February 2011 on the selected study area of MEX have been used. From this data, the 

repeated observations of route choice decision of each individual can be obtained. In addition 

to the route choice data, the information of several attributes that influence route choice 

behavior were derived from the corresponding detector data. These long term RP data sources 

allow the models to capture more actual heterogeneity in route choice behavior. The paper 

analyzes route choice and route switching behavior from those data sources. Three types of 

model have been estimated and compared in each analysis: 1) MNL, 2) MMNL with pooled 

data, and 3) MMNL with panel data or repeated observations. In general, the results show that 

MMNL models provide the improvement in estimation results in terms of final log-likelihood 

and goodness-of-fit statistics. 

In route choice and route switching behavior analysis, drivers select their route in 

response to the informed congested situations in terms of travel time and congestion length. 

Moreover, it is found that the heavy congestion length influences drivers’ decision more than 

the slight congestion length. In route switching analysis, particularly, the estimated results of 

three models show the different information of statistical significance in parameter 

estimations. Moreover, as can be observed from both analyses, the panel effect (-panel) is 

statistically significant. When using repeated observations to accommodate panel effect, the 

model estimation is superior to the MMNL with pooled data. This confirms that the panel data 

should be taken into account in modeling route choice.  

In summary, collecting panel data is generally expensive and difficult in practice. This 

study shows the possibility to use ETC data and available data sources to analyze and model 

route choice behavior especially with repeated observations on urban expressway.  
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