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Abstract: Humanitarian logistics has gain attention as an important tool in disaster 

management. We propose a network design for relief distribution under several uncertain 

parameters based on robust optimization. The model has the solution robustness and model 

robustness properties. Furthermore, we present a methodology to reduce the number of 

variables when an equality constraint and objective function contain same variables. Our 

model attempts to minimize total cost of the system as well as the variance of total cost. We 

examine a case study on the earthquake scenarios in Bangladesh to show the applicability of 

the model. Our findings show that the model is robust in relief distribution planning. We 

analyze sensitivity of several parameters and compare several models to show the superiority 

of stochastic model. 
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1. INTRODUCTION

A disaster is an unforeseen and often sudden event that causes damage, destruction and human 

suffering (Interagency standing committee, 2006). Donor societies (e.g. non-government 

organization, non-profit organization, country government, and donation foundation) play key 

roles to reduce victim's suffering by providing relief (e.g. food, water, and shelter). The timely 

and effective distribution of relief is essential for aiding victims. It is natural that pre-disaster 

preparations strongly affect post-disaster activities. Hence, strategic planning is 

recommended. A decision maker chooses an option for disaster preparation in strategic stage 

from several available alternatives. The selected option is subject to a certain number of 

constraints, and the goal is to optimize certain given criterion. However, some parameters of 

the problem are unknown at the time of selecting the option. Generally, it is assumed that the 

decision maker is given a description of these unknown parameters in terms of a well-

determined probability law. This sort of problems is called decision making under uncertainty 

or stochastic programming problem (Roger and Wets, 1974). The stochastic nature is relevant 

to humanitarian logistics and ensuring the robustness of the solution for all scenarios is 

required. 

The objective of humanitarian logistics is to provide relief to victims after disaster, to 

minimize human suffering and death (Balcik and Beamon, 2008). Several authors define 

humanitarian logistics in different ways and the terms ‘disaster relief’, ‘emergency logistics’ 

and ‘humanitarian logistics’ are used interchangeably (Kovacs and Spens 2007). Sheu (2007) 

defines humanitarian logistics as a process of planning, managing, and controlling the 
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efficient flows of relief, information, services from the points of origin to point of destination 

to meet the urgent needs of the affected people under emergency situation. Very recently after 

acknowledging the importance of logistics planning in disaster, few studies (Barbarosoğlu et 

al. 2002, Balcik and Beamon, 2008, Rawls and Turnquist, 2010) have proposed model 

incorporating uncertainty. The stated study addresses mostly demand uncertainty in 

humanitarian logistics. Demand uncertainty is apparent due to disaster per se parameters, for 

instance location, time, and intensity, cannot be predicted. Addition with it, disaster affects 

supplier's capacity. The reasons of the reduction of supplier's capacity are transportation link 

disruption and capacity limitation. The post-disaster supplier's capacity strongly affects the 

post-disaster procurement and need to be considered in strategic planning. In this regard, the 

proposed model incorporates demand uncertainty and supply uncertainty in the framework of 

robust optimization. The purposes of this study are to resolve a humanitarian logistics 

network for each of candidate location and inventory level through incorporating supply 

uncertainty and demand uncertainty based on robust optimization. This trade-off between the 

pre-disaster cost and the post-disaster cost is also presented here. To put light on our model, 

generally network model generates a large number of variables and is difficult to solve. We 

show a method to minimize the number of variables in the model to keep the model tractable. 

The main contribution of this paper are summarized as follows 

 The proposed model incorporates demand and supply uncertainty and provides robust 

solution. Model robustness has also been ensured.  

 A network model generally produces a large number of variables. A particular 

technique is adopted to decrease the total variables in model.  

We have applied the model for a case study to show the applicability. The remainder of 

the paper is organized as follows. In Section 2, we introduce the problems and our 

assumptions to formulate the problem. Section 3 formulate mathematical model and explain 

the distinct features. A numerical example is explained in Section 4 and the results of the case 

study are discussed. Finally, Section 5 summarizes the main contributions and concludes the 

study. 

 

 

2. PROBLEM DESCRIPTION AND ASSUMPTIONS 

 

Our problem posits possible affected areas that may be hit by a disaster like earthquake and 

candidate relief distribution centers (RDCs) where resources already exist and /or can be pre-

positioned. The proposed humanitarian logistics network becomes of three stages and two 

echelons as shown in Figure 1. 

Figure 1. The relief chain structure 
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The first stage is the set of suppliers, the second stage contains RDCs and the last stage 

consists of affected areas. Concerning the selection of the RDC locations from a set of 

candidate RDCs, certain issues have to be addressed, namely, (1) the storage capacity of the 

RDCs (2) the distance to the affected people that keep the transportation costs at minimum 

and (3) post-disaster supply with respect to supplier's capacity.  

Before the mathematical formulation is considered, we make the following assumptions 

on the problem:  

(1) The capability of suppliers may be partially disrupted by a disaster through damage to 

the roads and/or miscellaneous reasons 

(2) All affected area nodes are candidate for the pre-positioned of RDCs 

(3) Transportation cost is not scenario dependent 

(4) Each demand point may be served by multiple RDCs 

(5) The locations specified are cities 

(6) Two disasters will not occur simultaneously 

(7) The relief demand is dependent on population density and earthquake intensity 

With the above assumptions in place, we consider total cost minimization for the 

network model. Although cost minimization is not sole objective of humanitarian logistics, 

total cost is a good measure to compare different outcomes. Note that, total cost is not real 

monetary value in our model; it is a complex value where delay and human suffering are 

incorporated through parameter changing. 

 

 

3. MATHEMATICAL FORMULATION 

 

In this section, we introduce two-stage, stochastic mixed-integer model. This is a location 

model with the features of linearity and robustness. We explain our model in two steps. First 

we explain the framework of the model and system properties. All variables and parameters 

are also introduced here. In the second step, we introduce our mathematical model starting 

with basic stochastic model.  

 

3.1 Model Framework 

 

In the aftermath of a disaster, there will be demand for relief at specific location 𝑘 ∈ 𝐾. The 

demand for commodity c at location k is uncertain at the planning stage. Uncertainty is 

modeled by the set S of discrete scenarios indexed by 𝑠 ∈ 𝑆, each with a probability of 

occurrence 𝑝 . The definition of a scenario includes the forecasted demand by commodity and 

location 𝑑   .  

Relief can be pre-positioned at a location j if RDC is made available there. For costing 

purpose, we define facilities to be in one of discrete set L of size categories indexed by 𝑙 ∈ 𝐿. 

The overall capacity of a RDC in category l is 𝑁𝑙 and choosing to open a RDC of size 

category l in location j incurs a fixed cost 𝐹𝑗𝑙. Let 𝑧𝑗𝑙 be a binary decision variable equal to 1 

if there is a RDC of capacity category l located at node j, and 0 otherwise. This is one of first 

stage decision in the two-stage model. 

If a RDC is made available at location j, various commodities can be stocked there, 

subject to the capacity limits of the RDC. Let bc be the unit volume for commodity c and 𝑞𝑖𝑗  

be the amount of commodity c pre-positioned at location j supplied from supplier i. The 𝑞𝑖𝑗  

is another first stage decision in our model. The RDC and stocking decisions are made before 
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knowledge of any disaster scenario is available. 

After a disaster occurs, the stocks of the various commodities are distributed across a 

transportation network to meet demands. Commodity c that is not used in scenario s, denoted 

𝑜𝑗  , incurs unit overflow cost 𝜃  . On the other hand, if demand for particular commodity 

cannot be met in scenario s, denoted ujcs, incurs unit shortage cost ∅   for the commodity c. 

To reflect the connection between the RDC location and the transportation elements, we 

assume that the RDC locations are at nodes in the transportation network. Let 𝑇𝐶 
′ be the 

post-disaster transportation cost of commodity c from supplier to RDC and 𝑇𝐶𝑅 
′  is the post-

disaster transportation cost from RDC to affected area. Let 𝑥𝑖𝑗   be the amount of 

commodity c procured from supplier i and transferred to RDC j in the scenario s. Table 1–

Table 3 show the explanation of sets, parameters and variables. Units are stated within square 

brackets (.) at the end of each of the definitions. Table 1 is the collection of all sets definition. 

Table 2 is the definition of all parameters. 𝑑   , 𝑝  and 𝜌𝑖   are scenario dependent 

parameters.  

 

Table 1. Indices and index sets 

Set Definition 

C set of commodities indexed by 𝑐 ∈ 𝐶 

I set of suppliers indexed by 𝑖 ∈ 𝐼 
J set of candidate RDCs indexed by j∈ 𝐽 
K set of affected areas indexed by k∈ 𝐾 

L set of size of RDC indexed by l∈ 𝐿 

S set of scenarios indexed by 𝑠 ∈ 𝑆 

 

 Table 2. Deterministic and stochastic parameters 

Type Symbol Definition 

Pre-

disaster 

parameter 

𝐹𝑗𝑙 fixed cost of opening a RDC of size l at location j ($) 

𝑁𝑙 capacity of RDC size l 

𝑏  volume of a unit commodity c (m
3
) 

𝑆𝐶𝑖  delivery capacity of supplier i of commodity c 

𝑃𝐶  procuring cost of a unit commodity c before disaster ($ per unit) 

𝑇𝐶  transportation cost for a unit commodity c before disaster ($ per unit of c) 

Post-

disaster 

parameter 

𝑃𝐶 
′ procuring cost of a unit commodity c after disaster ($ per unit of c) 

𝑇𝐶 
′ transportation cost for a unit commodity c after disaster from supplier to 

RDC($ per unit of c) 

𝑇𝐶𝑅 
′  transportation cost for a unit commodity c after disaster from RDC to 

affected area ($ per unit of c) 

𝜃   unit overflow cost for commodity c at affected area k ($ per unit of c at k) 

∅   unit shortage cost for commodity c at affected area k ($ per unit of c at k) 

λ parameter for post-disaster deviation-cost  

γ parameter for balance control ($) 

M a very large positive number 

Stochastic 

parameter 
𝑑    amount of demand for commodity c at affected area k in scenario s (unit) 

𝑝  probability of scenario s 

𝜌𝑖   ratio of capacity of commodity c at the supplier i in scenario s 
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Table 3. Decision variables 
Symbol Definition 

𝑧𝑗𝑙 1 if RDC with capacity category l is located at candidate RDC j; 0 otherwise 

𝑞𝑖𝑗  amount of commodity c procured from supplier i and stored at the RDC j () 

𝑢    amount of shortage commodity c observed in scenario s at affected area k 

𝑜    amount of extra commodity c delivered in scenario s at affected area k 

𝑥𝑖𝑗   amount of commodity c transferred from supplier i to RDC j in scenario s 

𝑦𝑗    amount of commodity c transferred from RDC j to affected area k in scenario 

s. If j=k, it represents both RDC and affected area in same location 

𝜔  cost variability for scenario s  

𝜑𝑗   amount of deviation of commodity c at RDC j in scenario s 

 

Table 3 is the list of decision variables. Here, 𝑧𝑗𝑙 and 𝑞𝑖𝑗  are first stage decisions of 

our model and the variables in last block in Table 3 are second stage variables.  

 

Table 4. Combination of analogous variables 

Symbol Definition 

Bt pre-disaster cost (i.e. Eq. (5)) 

As summation of post-disaster procurement cost and transportation cost (i.e. 

Eq. (7))  

 

Table 4 presents the terms that combine analogous variables. Those terms are introduced 

to make the equation simpler.  

 

3.2 Formulation 
 

First, we explain the basic structure of the model aiming to simplification of the presentation 

of the model. 

 

𝑚𝑖𝑛 𝐵𝑡 + 𝐸𝜉[𝑄(𝑡, 𝜉)] (1) 

s.t.  𝐴𝑡 ≥ 𝑏 

        ℎ(𝜔) − 𝑇(𝜔)𝑡 = 𝑊𝑦 

        𝑡 ≥ 0 

(2) 

(3) 

(4) 

 

The objective function in Eq. (1) expresses the cumulative cost of pre- and post-disaster 

circumstances. First term represents pre-disaster cost (𝐵𝑡) and second term is post-disaster 

cost (𝐸𝜉[𝑄(𝑡, 𝜉)]). The pre-disaster cost consists of setup cost (𝐹𝐶𝑗𝑙), procurement cost (𝑃𝐶 ), 

and transport cost (𝑇𝐶 ). Thus pre-disaster cost is defined as follows. 

 

𝐵𝑡 = ∑ 𝑧𝑗𝑙
𝑗∈𝐽,𝑙∈𝐿

𝐹𝐶𝑗𝑙 + ∑ 𝑃𝐶 𝑞𝑖𝑗  

𝑖 ∈𝐼,𝑗∈𝐽, ∈𝐶

+ ∑ 𝑇𝐶 𝑞𝑖𝑗  

𝑖 ∈𝐼,𝑗∈𝐽, ∈𝐶

 
(5) 

 

Now, the post-disaster cost is scenario-dependent cost which includes procurement cost 

(𝑃𝐶 
′), transport cost (𝑇𝐶 

′ and 𝑇𝑅𝐶 
′) and deviation-cost. We have defined the summation of 

procurement cost and transportation cost in post-disaster as As. In the first place, we ignore the 
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deviation-cost for simplification of explanation. Thus, the expected post-disaster cost is 

greater or equal to the summation of procurement cost and transport cost. So 

 

𝐸𝜉[𝑄(𝑡, 𝜉)] ≥ ∑ 𝑝 𝐴  ∈   (6) 

 

where, 

𝐴 = ∑ (𝑃𝐶 
′ + 𝑇𝐶 

′)𝑥𝑖𝑗  +∑ 𝑇𝑅𝐶 
′  𝑦𝑗    𝑗 ∈𝐽, ∈ , ∈𝐶𝑖 ∈𝐼,𝑗∈𝐽, ∈𝐶   (7) 

 

The deviation-cost generates from two sources. One source is the differences of post-

disaster cost from the average post-disaster cost for all scenarios. The treatment of this sort of 

deviation-cost is adopted from Li (1996) and is added 𝜔  in Eq. (6) (underlying method of 

parameter setting of 𝜔  presents in appendices). Another source of deviation-cost generates 

from the balance constraint of commodity. Mulvey and Ruszczynski (1995) suggested adding 

𝜑𝑗   to treat the deviation-cost. In this way, our model gains robustness characteristics. After 

addition of deviation-cost in the Eq. (6), we get the Eq. (8) 

 

𝐸𝜉[𝑄(𝑡, 𝜉)] = ∑𝑝  𝐴 

 ∈ 

+  ∑𝑝  

 ∈ 

[( 𝐴 −∑𝑝  𝐴 

 ∈ 

)+     ]  + ∑ γ𝑝      

  ∈ ,𝑗∈𝐽, ∈𝐶

 (8) 

 

As shown above, the objective function of our stochastic model becomes as follows with 

addition of penalty cost  

 

𝑚𝑖𝑛 𝐵𝑡 +∑𝑝  𝐴 

 ∈ 

+  ∑𝑝  

 ∈ 

[( 𝐴 −∑𝑝  𝐴 

 ∈ 

) +  𝜔  ]  + ∑  𝑝  𝜑𝑗  

  ∈ ,𝑗∈𝐽, ∈𝐶

+ ∑ (∅  

  ∈ , ∈𝐶, ∈ 

𝑢   + 𝜃  𝑜   ) 

 

(9) 

 

The constraints of this model are as follows 

Balance control: 

∑𝑥𝑖𝑗  
𝑖 ∈𝐼

+∑𝑞𝑖𝑗 
𝑖 ∈𝐼

− ∑ 𝑦𝑗   
  ∈ 

= 𝜑𝑗    ∀ 𝑗 ∈ 𝐽, 𝑐 ∈ 𝐶, 𝑠 ∈ 𝑆 (10) 

RDC location: 

∑𝑧𝑗𝑙
𝑙 ∈𝐿

≤ 1   ∀ j ∈ J (11) 

𝑦𝑗𝑗  ≤ 𝑀𝑑𝑗  ∑𝑧𝑗𝑙
𝑙∈𝐿

  ∀ 𝑗 ∈ 𝐽, 𝑐 ∈ 𝐶, 𝑠 ∈ 𝑆 
(12) 

∑𝑦𝑗   
 ∈ 

≤ 𝑀∑𝑧𝑗𝑙
𝑙∈𝐿

  ∀ 𝑗 ∈ 𝐽, 𝑐 ∈ 𝐶, 𝑠 ∈ 𝑆 
(13) 

∑𝑥𝑖𝑗  
𝑖∈𝐼

≤ 𝑀∑𝑧𝑗𝑙
𝑙∈𝐿

  ∀ 𝑗 ∈ 𝐽, 𝑐 ∈ 𝐶, 𝑠 ∈ 𝑆 
(14) 

RDC capacity: 

∑ 𝑏 𝑞𝑖𝑗 
𝑖∈𝐼  ∈𝐶

≤ ∑𝑁𝑙𝑧𝑗𝑙
𝑙∈𝐿

  ∀ 𝑗 ∈ 𝐽 
(15) 
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Post-disaster demand: 

𝑦𝑗   ≤ 𝑀(∑𝑧 𝑙
𝑙 ∈𝐿

+ 𝑑   ) ∀ 𝑗 ∈ 𝐽, 𝑘 ∈ 𝐾, 𝑐 ∈ 𝐶, 𝑠 ∈ 𝑆 (16) 

Post-disaster supplier's capacity: 

∑𝑥𝑖𝑗  
𝑗∈𝐽

≤ 𝜌𝑖  𝑆𝐶𝑖   ∀ 𝑖 ∈ 𝐼, 𝑐 ∈ 𝐶, 𝑠 ∈ 𝑆 (17) 

Mean absolute value: 

  𝐴 −∑𝑝  𝐴 

 ∈ 

+ 𝜔 ≥ 0  ∀𝑠 ∈ 𝑆 
(18) 

Non-negativity constraint: 

𝑧𝑗𝑙 ∈ {0,1}  ∀ 𝑗 ∈ 𝐽, 𝑙 ∈ 𝐿 (19) 

𝑞𝑖𝑗 , 𝑥𝑖𝑗  , 𝑦𝑗   , 𝜔 , 𝜑𝑗  ≥ 0   ∀ 𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽, 𝑘 ∈ 𝐾, 𝑐 ∈ 𝐶, 𝑠 ∈ 𝑆 (20) 

Penalty function: 

𝑦    + ∑ 𝑦𝑗   
 ≠𝑗∈𝐽

− 𝑑   + 𝑢   − 𝑜   = 0  ∀ 𝑘 ∈ 𝐾, 𝑐 ∈ 𝐶, 𝑠 ∈ 𝑆 (21) 

 

The above mentioned two-stage model makes the trade-off between the pre-disaster 

costs and the post-disaster costs. The objective function of our model is Eq. (9) and the 

constraints include Eq. (10) – (21). 

Eq. (10) is a balance control constraint of the in-coming flow and the out-going flow of 

relief. One RDC cannot delivery relief more than the summation of inventory and post-

disaster procurement. The constraints Eq. (11) – (14) represent feasibility of RDC locations 

and deliver-ability from RDC. The constraint Eq. (12) explains that one RDC will not deliver 

more than the demand in same location. The Eq. (15) bound maximum storage limitation. It 

cannot be more than the RDC capacity. Eq. (17) bounds the post-disaster procurement and 

right hand sight of this constraint is scenario dependent. In other words, supplier’s capacity is 

scenario-dependent. The Demand management Eq. (16) restricts the flow more than the 

demand at affected area. The Eq. (18) shows post-disaster cost variability. This constraint 

aims to reduce the post-disaster cost variation in different scenarios. The Eq. (19) – (20) are 

non-negativity and variable type restriction. The penalty function Eq. (21) adds cost for either 

shortage or overflow.  

Both objective Eq. (9) and constraint Eq. (21) contain shortage unit (ukcs), and over-

supply unit (𝑜k  ) and Eq. (21) is an equality constraint. These properties force us to add 

artificial variables and using 'two phase' or 'big M' (Scharge, 1991) method to solve the 

model. However, those methods will add many extra variables. To solve the model, we have 

changed the objective function and penalty function in line with Yu and Li (2000).  

The objective function turns to 

 

𝑚𝑖𝑛 𝐵𝑡 + ∑  𝑝  𝜑𝑗  

  ∈ ,𝑗∈𝐽, ∈𝐶

+∑𝑝  𝐴 

 ∈ 

+  ∑𝑝  
 ∈ 

[(  𝐴 −∑𝑝  𝐴 

 ∈ 

)+  𝜔  ]    

+ ∑ 𝑝 (∑(𝜃  (𝑦    + ∑ 𝑦𝑗   
 ≠𝑗∈𝐽

− 𝑑   + 𝛿   )+ ∅  𝛿   )

 ∈ 

)

 ∈𝐶, ∈ 

 

(22) 
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Eq. (21) turns to  

 

−𝑦    − ∑ 𝑦𝑗   
 ≠𝑗∈𝐽

+ 𝑑   − 𝛿   ≤ 0  ∀ 𝑘 ∈ 𝐾, 𝑐 ∈ 𝐶, 𝑠 ∈ 𝑆 
(23) 

𝛿   ≥ 0  ∀  𝑘 ∈ 𝐾, 𝑐 ∈ 𝐶, 𝑠 ∈ 𝑆 (24) 
 

The Eq. (21) transform to Eq. (23) with introducing single variable 𝛿   . After 

transformation of the Eq. (21), the variables ukcs and 𝑜k   turns to single variable 𝛿    and 

thus the number of variables are reduced in the whole system. The Eq. (24) is added to ensure 

the positive value. In our final model, the objective function is Eq. (22) and the constraints are 

Eq. (10) – (20) and Eq. (23) – (24).  

 

 

4. CASE STUDY 
 

4.1 Study Area 

 

This study selected Bangladesh for case study which is surrounded by several active tectonic 

faults. The Major faults are Himalyan arc, Shillong and Dauki fault system in the north, 

Burmese arc and Accretionary wedges in the east, and Naga- Disang-Haflong thrust zone in 

the north-east. The earthquake records suggest that since 1900 more than 100 moderate to 

large earthquake occurred in Bangladesh, out of which 65 earthquakes occurred after 1960. 

The recent earthquake activity in Bangladesh indicates the fresh tectonic activity of 

propagation of fractures from adjacent seismic zones (Khan et al. 2001). In a study by Villacis 

et al. (1999) on 20 cities of the world, Dhaka appeared to have one of the highest values of 

earthquake disaster risk index (EDRI) mainly due to its inherent vulnerability of building 

 Figure 2. Location of earthquake epicenter in Bangladesh period 1750 to 2000 

(source: United States geological survey; adapted from Khan et al. 2001), node 

and supplier added 
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infrastructure which lacks earthquake resistant features, high population density and poor 

emergency response and recovery capability.According to Figure 2, we consider three 

suppliers, named supp1, …, supp3 (Dhaka (Dhk), Chittagong (Ctg), and Rajshahi (Raj)) and 7 

demand points, named dem1, …, dem7 (Dhaka (Dhk), Chittagong (Ctg), Rajshahi (Raj), 

Rangpur (Ran), Barisal (Bar), Khulna (Kul), and Sylhet (Syl)) spread geographically over the 

entire map. Alam et al. (2011) analyzed the earthquake scenarios in Bangladesh and we 

consider four scenarios, s1, …, s4 with occurrence probabilities of 0.4, 0.3, 0.2 and 0.1, 

respectively. Alam et al. (2011) reported five scenarios for representing earthquake scenarios. 

We remove one scenario from the list that has the lowest earthquake magnitude; because, 

there is no relief demand after the lowest magnitude earthquake. In this way, we keep the 

number of variables tractable without losing the generality. 

 

4.2 Data 

 

Two commodities, namely prod1 and prod2, that may be pre-positioned in RDC. In the 

example, we assume prod1 represents water and prod2 is shelter. One unit of prod1 consists 

of 1000 liter of water and one unit of prod2 consists of 1000 unit of shelter. We assume the 

RDC sizes are available with specific cost as shown in Table 5. RDC setup cost depends on 

the storage capacity. 

 

Table 5. RDC setup cost and capacity 

Size Fjl(10
3
$) Nl (10

3
 m

3
) 

small 500 10 

medium 800 16 

large 1200 24 

 

Procurement price and transportation cost per unit distance are calculated based on local 

currency (afterwards, converted to USD). Procurement price in post-disaster situation is more 

than that of pre-disaster situation. Transportation cost in post-disaster is also higher than the 

pre-disaster transportation cost. The higher cost in post-disaster situations can also be 

considered as proxy of delay cost and human suffering. Costs of different items are shown in 

Table 6. 

 

Table 6. Unit procurement price, transportation cost, and volume of commodity 

Commodity (103) PCc (103$/unit) TCc (103$/unit-km) bc (m
3/unit) 

prod1 0.5 0.6 4.5 

prod2 20 1.8 120 

 

We assumed the demand for each scenario by using the population density and 

earthquake intensity, collected from Alam et al. (2011). Note that there is no well accepted 

methodology for relief demand estimation and literature (Akkihal, 2006, Balcik and Beamon, 

2008) suggests using historical relief demand for earthquake disaster. The demand data are 

shown in Table 7. 

Proceedings of the Eastern Asia Society for Transportation Studies, Vol.9, 2013



Table 7. Demand data 

 Dhk 

(prod1, 

prod2) 

Ctg 

(prod1, 

prod2) 

Raj 

(prod1, 

prod2) 

Ran 

(prod1, 

prod2) 

Bar 

(prod1, 

prod2) 

Kul 

(prod1, 

prod2) 

Syl 

(prod1, 

prod2) 

s1 (319,106) (222,74) (238,79) (225,75) (0,0) (0,0) (579,193) 

s2 (476,143) (1339,446) (0,0) (0,0) (75,25) (30, 10) (20,7) 

s3 (76,10) (187,62) (0,0) (0,0) (100,33) (100,33) (0,0) 

s4 (177,59) (166,55) (990,330) (1654,551) (21,7) (20,7) (94,31) 

 

In the response phase, the available supplier's capacity is scenario dependent and shown 

in Table 8. It is assumed that supplier’s capacity changed for both commodities. 

 

Table 8. Fraction of available supplier's capacity 

 Dhk Ctg Raj 

s1 0.94 0.95 0.9 

s2 0.95 0.95 1 

s3 1 0.99 1 

s4 0.99 1 0.9 

 

The post-disaster procurement prices are assumed to be 1.5 times of the pre-disaster 

procurement price and the increment of procurement price also represents delay of delivery of 

the commodity. The post-disaster unit transportation cost from supplier to RDC is assumed to 

be 1.8 times of that of the pre-disaster phase and from RDC to affected area is 2.0 times. 

These data are assumed to be fixed among scenarios. The cost of transportation between 

nodes is dependent of distance between two nodes. We have collected distances between 

different nodes using car-route option from the Google Map. It is natural that unit overflow 

cost (θ) is lower than the unit shortage cost (Ø). The unit overflow cost is assumed to be kept 

equal to pre-disaster procurement price of the corresponding commodity. The unit shortage 

cost is assumed to be the ten times the pre-disaster procurement price of the corresponding 

commodity (Raws and Turnquist, 2010.) The value of λ is equal to 2. It is a weight parameter 

for difference between the mean-value of As and the As for each scenario among different 

scenarios. 

 

4.3 Results 

 

In this section, we present computational results and analyze the behavior of proposed model. 

We solve the problem using the mixed-integer linear programming solver 'Gurobi' from neos-

server (Czyzyk et al. 1998). Gurobi uses branch and cut algorithm for solving mixed-integer 

problem. We ran the model and the results are described in this section. Table 9 shows that 

three of five opened RDC are specialized for storing prod1 and prod2. The remaining two 

RDC do not maintain inventories and assist relief distribution in different scenarios. The total 

cost of designing the distribution network is 8.3 million dollar. 
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Table 9. Location and inventory 

RDC Size prod1 prod2 

Dhk small 323 10 

Ctg small 184.5 62 

Raj small - - 

Syl small 20 7 

Kul small - - 

 

Table 9 also explains the quantity of each commodity that will be stored in pre-disaster 

period. The supplier city (see Table 8) in which a RDC is located can take advantage of its 

relief commodities from supplier to RDC in lower cost. One exception is in Sylhet where 

supplier is not present but established the RDC and maintain inventory. Table 10 represents 

the relief distribution in scenario 4 

 

Table 10. Relief commodities transferred from RDCs to demand points (for Scenario 4) 

 Dhk 

(pd1,pd2) 

Ctg 

(pd1,pd2) 

Raj 

(pd1,pd2) 

Ran 

(pd1,pd2) 

Kul 

(pd1,pd2) 

Bar 

(pd1,pd2) 

Syl 

(pd1,pd2) 

Dhk (177,59) - - (146,0) - - - 

Ctg - (166,55) (0,7) - (21,0) - - 

Raj - - (550,100)  

 

(254,200) 

 

- - - 

Syl - - - - - - (94,31) 

 

Kul - - - - (0,7) 

 

(21,7) 

 

- 

 

We analyze the sensitivity with the number of RDC in Figure 3. It can be seen that the 

objective value decreases when the possible number of RDCs increases until a certain 

number. After passing the threshold number, the objective value increases again. Thus it 

concludes that the best value of RDCs is five. In order to arrive at an appropriate solution 

such that the decision maker will be able to see trade-off between the pre-disaster cost and the 

post-disaster cost. 

In Figure 4 and Figure 5, sensitivity analysis is performed for solution and model 

robustness against the multiplier of gamma. Figure 4 shows expected cost increases 

exponentially by increasing the value of gamma. On the other hand Figure 5 demonstrates the 

penalty cost 𝑝 𝜑    will eventually drop to zero with an increase in the value of gamma. 

Both figures indicate that decision maker can choose gamma value based on the preference. It 

is suggested to decision maker to select higher gamma value to avoid risk of shortage of relief. 

Then, we have performed the sensitivity of lambda (λ) value. The model is run for lambda 

values of ‘1’, ‘2’, ‘3’, ‘5’, and ‘10’. The objective value of model does not differ noticeably 

because we have only four scenarios. 
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 Figure 3. Sensitivity of total cost with the No of open RDC  
 

 

  
Figure 4. Sensitivity of solution robustness with 

respect to gamma 

Figure 5. Sensitivity of model robustness 

with respect to gamma 
 

To highlight the role of uncertainty in modeling, we compare here, three models result: 

deterministic demand and deterministic supply (DDS), deterministic demand and stochastic 

supply (DDSS), and stochastic demand and stochastic supply (SDSS). In DDS model, we 

assume that demand and supply parameters are known certainty. While DDSS model is 

designed with assumption that demand parameter are known certainly (demand parameters 

(dkcs) are not scenario dependent), SDSS model represents complete stochasticity of demand 

(dkcs) and supply (ρkcs) parameters. This comparison is made to show the benefit of 

considering stochastic parameters. To quantify the cost saving by considering the various 

sources of uncertainty, each typical model is solved for the case problem and results are 
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shown in Figure 6. The cost of relief distribution is much higher than the SDSS. The DDS 

model have little cost benefit is scenario three. The remaining three scenarios cause much 

higher cost in DDS compare with all uncertain models. The similar phenomenon is also 

observed in DDSS model which gains lower cost compare with DDS model. It can be said 

that stochastic model gain cost benefits. By doing this analysis, we can also calculate the 

value of stochastic solution (VSS). The VSS provides relative advantage of stochastic model. 

In situations in which one cannot gather more information about the future, however, it may 

be more pertinent for decision makers to know how well the deterministic model solutions 

perform relative to solutions from more complicated stochastic programs (Birge, 1982).  

 

𝑉𝑆𝑆 = 𝐶𝑑𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑖 𝑡𝑖 − 𝐶 𝑡𝑜 ℎ𝑎 𝑡𝑖  (25) 

 

where, first term in right hand side of Eq. (25) represents average solution of DDS model and 

second term is that of SDSS model. In our example, the VSS is 0.34 million dollar. 

 

  
Figure 6. Comparison of different models in 

different scenarios 

Figure 7. Comparison of cost items in 

different models 

 

In the last, Figure 7 shows the components of the average cost in three different models 

explained above. The SDSS model incurs higher inventories cost compare with other two 

models. The SDSS model gain benefit in post-disaster situations and transportation cost is 

much lower in SDSS model. The penalty cost is also much lower in SDSS model which show 

the robustness of this model. 

The stochastic nature of supply and demand parameters are formulated in this research 

and implemented in a narrow set of experiments. The results show that this consideration can 

gain cost benefits over deterministic models. Although stochastic models require a large 

number of data sets and to solve complex model, it is worth to apply stochastic model in 

strategic logistics planning for relief distribution. 

 

 

5. CONCLUSIONS 

 

We propose two-stage, stochastic, mixed-integer location model with the incorporation of 

demand uncertainty and supply uncertainty. This model and the solutions have robustness 

feature. Deterministic model is suitable for contexts, where all parameters are known 
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certainly. Deterministic model is easy to solve and highly sensitive to parameter changes. On 

the other hand, stochastic model is superior over deterministic model in terms of rational 

decision. Stochastic model is difficult to solve and requires sufficient amount of data. In this 

research, stochastic parameters were presented under scenario approach. The first stage 

decisions were location of RDC and inventory level in each RDC, and the second stage 

decisions were distribution of relief in different locations and procurement of relief. Our 

model aimed to minimize the penalty cost, distribution cost with the operational constraints. 

This model showed the trade-off between the pre-disaster cost and the post-disaster cost. The 

model also selects two RDCs (Raj and Kul) that do not maintain inventory. It is worth to 

mention that this model is easy to solve via open-source solver and decision maker does not 

need to spend money for buying commercial software to solve the model. 

The case study was performed to provide insights of the model. Sensitivity analyses 

were also performed to show the validity of the model. We also proposed the robustness of the 

model for several uncertainties. Our model showed that decision maker could save 0.34 

million dollar by adopting stochastic model over deterministic model. Some parameter values, 

for instance penalty factor, robustness factor, and oversupply cost, are subject to decision 

maker's view to risk. Risk adverse decision maker can select higher value of parameter. 

Finally, this model is a generic model and possible to extend for business logistics. However, 

network model with supply uncertainty is highly appropriate for humanitarian logistics. 

At the end, we make the following relevant suggestion for further research: (1) we have 

not explicitly considered the uncertainty of transport link. The incorporation of transport link 

uncertainty enables using different types of transport modes. The research in this avenue can 

provide some interesting results. (2) Although the open-source solver can solve a large 

network, it will be beneficial to propose heuristic algorithm for solving large network problem 

with lower time-duration. (3) The result is highly dependent on scenario selection. We used 

only four scenarios in our case study. A new research direction can be to produce scenarios of 

earthquake for a nation. 

 

 

APPENDICES 

 

Parameter of ωs : 

Li (1996) proposed a model for minimizing deviation cost. The overall purpose of this 

model is to minimize the deviations between the achievement of the goals (in this paper 

scenario) and their aspiration levels.  

 

(P1) 𝑚𝑖𝑛∑ (𝜔 
+ + 

 =1 𝜔 
−)  (.a) 

s.t.  𝑓 (𝑥) − 𝜔 
+ +𝜔 

− − 𝑔 = 0  ∀𝑠 = 1,… , 𝑠 (.b) 

    𝑥 ∈ 𝐹, 𝑥 ≥ 0 (.c) 
   𝜔 

+,𝜔 
− ≥ 0  ∀𝑠 = 1,… , 𝑠  (.d) 

 

where  

( )sf x = linear function of the s th scenario 

   sg = aspiration level of the s th scenario 

after introducing the artificial variable in Problem (P1) and using big M method 
 

(P2) 𝑚𝑖𝑛∑ (𝜔 
+ + 

 =1 𝜔 
−) +𝑀∑ 𝑆 

 
 =1  (.e) 

s.t.  𝑓 (𝑥) − 𝜔 
+ +𝜔 

− + 𝑆 = 𝑔   ∀𝑠 = 1, … , 𝑠 (.f) 
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    𝑥 ∈ 𝐹, 𝑥 ≥ 0 (.g) 

   𝜔 
+,𝜔 

−, 𝑆 ≥ 0  ∀𝑠 = 1,… , 𝑠 (.h) 

 

observing the constraint (.b) in (P1)  
 

𝜔 
− = −𝑓 (𝑥) + 𝜔 

+ + 𝑔 ≥ 0 (.i) 

 

substituting the constraint (.i) in objective function and constraints, denoting 𝜔 
+ as 𝜔  

the equivalent formulation of (P2) is 
 

(P3) min∑ ( 𝜔 − 𝑓 (𝑥))
 
 =1  (.j) 

s.t.  −𝑓 (𝑥) + 𝜔 + 𝑔 ≥ 0  ∀𝑠 = 1,… , 𝑠 (.k) 

    𝑥 ∈ 𝐹, 𝑥 ≥ 0 (.l) 

    𝜔 ≥ 0  ∀𝑠 = 1, … , 𝑠 (.m) 

 

Thus, the parameter of 𝜔  is ‘2’. 
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