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Abstract: 

In order to improve service quality and satisfy specific delivery requests from different kinds of 

customers, recently wholesalers are tending to provide more efficient and convenient distribution 

services rather than follow traditional approaches. Customers may have different preferred hours, 

and wholesalers must deliver goods in different time windows. In addition, parking restrictions 

and overwhelmed demands during the peak hours also increase the difficulties in urban logistics. 

    The study starts from a typical vehicle routing problem with time windows and then 

considers time-dependent constraints while the traffic flow changes and split delivery during the 

distribution processes. We solve a small case problem to check the feasibility with the 

optimization software CPLEX, and then further apply Genetic Algorithm to solve a large-scale 

network problem. A revised Solomon instance with added time-dependent parameters and real 

wholesalers’ data is tested. The results are also linked with real maps and displayed with 

TransCAD. 

Keywords: Vehicle Routing Problem with Time Windows (VRPTW), Time-Dependent, Split 

Delivery, Genetic Algorithm (GA), TransCAD. 

1. INTRODUCTION

To meet different types of retailers daily’s needs, the wholesalers must visit all scheduled 

retailers during different opening hours. Some retailers may further request visits within certain 

time windows. It is not always easy to meet the time window delivery requirement because the 

delivery processes are usually affected by traffic flow conditions. The traffic congestion during 

the rush hours might cause severe delays and could make the wholesalers’ carriers fail the 

retailers’ delivery requirement. In order to improve service quality in city logistics, this study 

seeks to solve several challenging missions simultaneously among wholesalers and retailers, 

including: 1. to satisfy retailers’ specific time windows; 2. to approximate travel time affected by 

urban traffic; and 3. to schedule a split delivery if necessary. 

    This study extends a basic vehicle routing problem with time windows (VRPTW). Every 

vehicle starts from the depot of the wholesaler, visits all retailers within the requested time 
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windows, and then returns to the depot. Most retailers’ time windows correspond to their 

business hours, which means vehicles cannot arrive early or late based on the time window. In 

order to reflect effect of traffic flow on vehicle travel time, a time-dependent constraint is added. 

According to observations of real-world operations, a split delivery (i.e. in which every retailer 

can be served by more than one vehicle) is also considered in our model. 

The VRPTW has been extensively examined and classified as a NP-hard problem (e.g. Fu, 

2002; Meng et al., 2005). Solomon (1983) first presented a mix integer programming (MIP) for 

the VRPTW and introduced a set of well know benchmark problems now known as “Solomon 

Instances.” He subsequently designed and analyzed algorithms for the VRPTW (Solomon, 1987). 

To consider traffic congestion, the time-dependent traveling time is added into the VRPTW as 

the time-dependent vehicle routing problem with time windows (TDVRPTW). Malandraki & 

Daskin (1992) discussed diversified traffic conditions at different times of the day; the time 

horizon is divided into M slices and then a constant travel time is assigned to each arc in every 

interval. The idea is sound; however, the discontinuous travel time settings may violate the first 

in, first out (FIFO) property. Hill & Benton (1992) also considered TDVRP without time 

windows but based on time-dependent travel speed. Ichoua et al. (2003) assigned a speed 

distribution to each arc during the time horizon and then obtained the travel time distribution by 

integration. Hence, the resulting travel time distribution was a continuous linear function and 

satisfied the FIFO property. 

The other interesting variant of the VRPTW is called a spilt delivery vehicle routing 

problem with time windows (SDVRPTW). The SDVRPTW is considered to be a relaxation of 

the classical VRPTW (Dror & Trudeau, 1990; Archetti et al., 2005), where a fleet of 

homogeneous vehicle has to serve a set of customers. Each customer can be visited more than 

once. Archetti et al. (2006) proved that the cost of a solution can be potentially reduced by as 

much as 50%. In this study, we try to integrate above models as a time-dependent VRP with time 

windows and split delivery (TDVRPTWSD). Some formulations are referenced from Balseiro et 

al. (2011). 

Many previous studies apply genetic algorithms (GAs), one well-known population-based 

heuristic approach, to solve the VRPTW problem. Thangiah et al. (1991) first applied GAs to 

solve VRPTW with a cluster-first, route-second strategy. Berger et al. (2003) and Homberger & 

Gehring (2005) developed hybrid GAs to solve the sample problem. Haghani & Jung (2005) 

proposed GAs to solve the TSVRP. Boudia et al. (2007) solved SDVRP by GAs, combined with 

a local search procedure for intensification and a distance measure to control for population 

diversity. Since GA is well suited for such problems, we also adapt it to solve the proposed 

TDVRPTWSD models in this study. 

The remainder of this paper is organized as follows: the relevant optimization problems are 

described in detail. Through a series of cases solved with CPLEX (for a small case revised from 

the Solomon instances) and GAs (for a large scale network case), the model demonstrates its 

ability to evaluate the best routing decisions. Another case study with real input data is further 

tested. Results are linked with real maps and displayed with TransCAD. The paper concludes 

with a discussion of possible future research. 
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2. Model Assumptions and Formulations 

A directed graph is given with a set of nodes and a set of directed arcs. Those directed arcs are 

represented by an ordered pair of nodes (i, j) in which i is called the origin and j is called the 

destination of the arc. We assume that there are V service vehicles departed from the depot, and 

each vehicle has to return to the depot after serving the assigned demand nodes. The candidate 

demand nodes are given, along with the required amount of cargos and delivery time window. 

The demand and the time window for the node i can be denoted as di and [ei, li], respectively. 

The cargo unloading time is also treated as the required service time, si. A capacity limitation for 

each vehicle is denoted as Q. Each demand node could be served by more than one vehicle if 

necessary. The depot also has its own business hours. 

In addition, the link travel time may vary over time, especially during the rush hours. To 

simplify, we divide the whole time period into several intervals, Tw. The time-dependent 

traveling times, w

ijc , for one OD pair (i, j) in different periods are assumed to form a step function. 

The following MILP model is revised from the VRP model introduced by Balseiro et al. (2011). 

One major revision is to relax the restriction which holds that every demand node is served by 

one vehicle only. The model is expressed as follows: 

Minimize 
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The minimized objective function (Equation 1) is formulated as the sum of total vehicle 

dispatching costs and the sum of total travel time, service time and waiting time along the all 

service routes. In Equation 2, every demand node is served at least once. Equation 3 expresses 

the balance between in-and-out flows. Equation 4 specifies that every node’s demand should be 

satisfied. Equation 5 ensures that total demand loaded on each vehicle should not exceed the 

vehicle capacity Q. 

Equation 6 indicates the amount of demand split to more than one vehicle still equal to the 

total demand for each node. Equation 7 computes the departure time at node j. Equations 8 and 9 

link the departure time tiv with the time slice Tw, hence the proper slice of traveling time 

function is employed. Equation 10 imposes the time windows that are defined in terms of the 

departure time at the node i. Equation 11 represents that if arc (i, j) is traversed by vehicle v 

during time slice w is 1, otherwise it will be 0. Equation 12 states that the fraction of a node’s 

demand delivered by vehicle v at time slice w is between 0, 1. Equation 13 assumes that 

departure times at each node are non-negative. 

All notations are listed as follows: N = the set of all nodes,  0,1,...,N n , 0 is the depot; 

V = the set of all vehicles,  1,...,V v ; W = the set of all slices,  1,...,W w ; id = the 

demand of the node i; Q = the capacity of the vehicle; w

ij = arc(i,j) coefficient at slice w; w

ij = 

arc(i,j) coefficient at slice w, 1w

ij   ; js = the serviced time of node j; M = a large enough 

number; wT = upper bound for slice w; ie = the earliest time to start to service node i; il = the 

latest time to start to service node i; w

vc  = the dispatching costs of vehicle v during w slice; 

1, if link( , ) is traversed by vehicle  during  slice.
=

0,  o.w.

w

ijv

i j v w
x





fraction of node's demand  delivered by vehicle  during  slice.w

ivy i v w  

the departure time at node  by vehicle .ivt i v  

 

 

3. Model Applications and Analytical Results  

Through this work we seek to optimize the routing decisions for ready outbound vehicles at a 

dispatching center (i.e. the depot). A small case problem is solved by the optimization software 

CPLEX, and another large-scale network problem is solved by Genetic Algorithm (GA). These 
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case studies also provide flexibility in delivery with split demands. The network configurations 

of the case studies are illustrated in Figures 1 and 2. 

 

Case 1: Small Size Network Configurations 

In Case 1, four trucks depart from the depot (node 0) and are assigned to the four retailers (nodes 

1~4). The capacity of each truck is 165 boxes (i.e. single-wall corrugated with contents up to 95 

lbs) and the entire time horizon is divided into three slices. The optimized results are illustrated 

in Figure 1. 

 

 

Route 1 Route 2 

 

 
Route 3 Node 2 split by Routes 1 and 3 

Figure 1 Optimized Results for Case 1 
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Three delivery routes are optimized in Case 1. Especially for the node 2, some demands are 

separately served by Vehicles 1 and 3. The optimized results show that eight vehicles / routes 

spend 248.8 minutes to complete all delivery requests. 

 

Case 2: Large-Scale Network Configurations 

We initially assume that the optimal solution is an infinite number, and a set of genetic 

sequences is generated. After calculating total travel time T of each sequence, the minimized T* 

in this set of sequences is defined as the current dominant solution. Another set of genetic 

sequences is then generated. If T is smaller than the dominant solution T*, then we replace it 

until improvements become negligible or we reach our pre-specified stopping criteria (e.g. the 

maximum number of generations, k.) 

In Case 2, there are 50 trucks serving 100 retailers, revised from the Solomon Instance 

C109, where customers’ locations are clustered with much similarity to the environments of city 

logistics. The capacity of each truck is 200 boxes and the depot’s opening time horizon is 

divided into five slices of equal durations between the depot opening and closing times [e0, l0]. 

The travel speed settings are revised from Figliozzi’s (2012) study. Travel speed is up to 60 

km/hr and drops to 24 km/hr with heavy traffic congestions. 

Different travel speeds imply different vehicle travel times. Two types of extreme travel 

speed distributions are tested, where travel speeds of Types A and B in odd time slices are slower 

and higher than even ones, respectively. On average, speeds of Type A (including TD1a, TD2a, 

and TD3a) are relatively lower than those of Type B (including TD1b, TD2b, and TD3b), as 

shown in Table 1. 

Table 1 Travel Time Settings in Case 2 

Time Slices 

Speed Types (km/hr) 

Extreme Travel Speeds of Time Slices 

Slice 1 Slice 2 Slice 3 Slice 4 Slice 5 

Type A 

TD1a 24.0 38.4 25.2 38.4 24.0 

TD2a 24.0 48.0 36.0 48.0 24.0 

TD3a 24.0 60.0 42.0 60.0 24.0 

Type B 

TD1b 38.4 24.0 25.2 24.0 38.4 

TD2b 48.0 24.0 36.0 24.0 48.0 

TD3b 60.0 24.0 42.0 24.0 60.0 

Under operations split between two vehicles, the total travel time can be reduced by up to 

66%, which is even better than the results (i.e. 50%) claimed by Archetti et al. (2006). Based on 

the overall results listed in Table 2, implementing split delivery does not significantly increase 

the program computation time. It takes only a few more seconds to solve the TDVRPTWSD 

problem. 
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Table 2a Optimized Results of TDVRPTW with Type A Settings 

 With Split Delivery Without Split Delivery   

 
Number of 

vehicles 

Number of 

split nodes 

Total 

travel time 
CPU time (s) 

Number of 

vehicles 

Total  

travel time 

CPU time 

(s) 

Travel 

time 

reduction 

Increase 

CPU time 

TD1 19 3 1099.1 48.4071 15 1961.7 41.4807 43.97% 16.70% 

TD2 17 1 741.7781 45.9423 13 1583.4 39.1875 53.15% 17.24% 

TD3 17 2 481.3311 46.1139 16 1429.9 42.9003 66.34% 7.49% 

Table 2b Optimized Results of TDVRPTW with Type B Settings 

 With Split Delivery Without Split Delivery   

 
Number of 

vehicles 

Number of 

split nodes 

Total 

travel time 
CPU time (s) 

Number of 

vehicles 

Total  

travel time 

CPU time 

(s) 

Travel 

time 

reduction 

Increase 

CPU time 

TD1 16 2 1726.9 44.0391 14 2534.6 39.4215 31.87% 11.71% 

TD2 18 1 809.8683 44.9907 16 2385 46.7691 66.04% -3.80% 

TD3 19 1 712.5908 46.6911 15 1863.5 42.8223 61.76% 9.03% 

 

Case 3: Real-World Applications 

In order to enhance the capability of the proposed model, the real data of one food wholesaler r 

located in Hualien, Taiwan, is examined in Case 3. The demand unit is denoted by the specified 

box, which is more convenient for arranging goods and deliveries in practice. The wholesaler’s 

depot opens at 7:00 am and closes at 5:00 pm. The service time for each node is 5 minutes. Here 

we still assume the entire time horizon equally divided into five parts and the corresponding 

average traveling speeds are 20km/hr, 50km/hr, 30km/hr, 50km/hr, and 20km/hr, respectively. 

The first and the last time slices represent the rush hours (i.e. the morning and afternoon peaks), 

so the speeds are slow. Detailed results are listed in Table 3. 

Table 3 Overall Results of All Routes with Split Delivery 

 Service Sequence Delivery Nodes 
Travel Time 

(minutes) 

Start of Travel 

Time 

End of Travel 

Time 

Route1 1→37→46→1 29, 71 30.7866 12:01 12:31 

Route2 1→46→31→10→1 53, 24, 17 35.9835 11:01 11:36 

Route3 1→20→8→1 21, 11 16.5471 8:51 9:07 

Route4 1→29→12→15→40→1 20, 17, 14, 19 51.6947 11:00 11:51 

Route5 1→35→27→5→7→1 23, 29, 32, 12 32.0963 12:47 13:19 

Route6 1→32→43→1 88, 12 13.0384 8:05 8:18 

Route7 1→34→4→1 43, 57 24.221 7:17 7:41 

Route8 1→4→21→25→1 45, 11, 44 28.0394 7:08 7:36 

Route9 1→25→44→33→1 67, 11, 19 20.8074 7:08 7:28 
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Route10 1→41→42→26→1 22, 13, 65 22.0985 8:42 9:04 

Route11 1→26→6→14→18→1 3, 56, 23, 14 33.5472 7:54 8:27 

Route12 1→3→23→24→1 12, 28, 60 29.6259 13:19 13:48 

Route13 1→24→13→1 45, 31 21.5243 12:33 12:54 

Route14 1→36→28→19→9→1 24, 10, 28, 20 34.5373 8:52 9:26 

Route15 1→11→30→38→1 30, 35, 21 29.4779 9:27 9:56 

Route16 1→22→2→1 20, 77 17.5008 14:05 14:22 

Route17 1→39→16→45→17→1 15, 10, 55, 12 35.0807 10:26 11:01 

Split operations are applied at three nodes. Demands at Node 46 (124 boxes) are split 

between Routes 1 (71 boxes) and 2 (53 boxes); demands at Node 25 (111 boxes) are split 

between Routes 8 (44 boxes) and 9 (67 boxes); and demands at Node 26 (68 boxes) have been 

split between Routes 9 (3 boxes) and 10 (65 boxes). Detailed routing results are displayed 

through the software TransCAD, as shown in Figure 2. 

  
The solutions of all routes. Node 46 served by Routes 1 and 2 

  
Node 25 served by Routes 8 and 9 Node 26 served by Routes 9 and 10 

Figure 2 Optimized Results for Case 3 

In Case 3, total travel time is about 476 minutes and CPU time is only 14.5705 seconds. It 

is found that our proposed models yield better results than the traditional VRPTW models, and 
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the extremely short computation time can improve the efficiency and increase the feasibility and 

flexibility during the real-time dispatching operations. 

 

 

4. Conclusions 

In this study, a mathematical model is developed for solving the TDVRPTWSD problem. Since 

the studied TDVRPTWSD problem belongs to the set of NP-hard problems, a heuristic algorithm, 

namely a Genetic Algorithm (GA), is chosen to solve it. In our case studies, the algorithm can 

solve the 46 demand nodes within only 14.57 seconds and 100 nodes within 40 seconds, which 

can provide a complex distribution and routing plan in a timely manner. The optimal vehicle 

routing results can be shown in a city map by TransCAD, which can be further linked to 

GIS/GPS technology. 

The results show that the split delivery constitutes a significant percentage of the total 

travel time reduction, which is even better than the performance tested by Archetti et al. (2006). 

Although the GAs program running times are satisfactory in this study, some other hybrid 

metaheuristic techniques (e.g. Chen and Schonfeld, 2012) will be tested in the future. In addition, 

it might be worth to consider multi-trips while solving this problem, and to optimize the fleet 

size of service vehicles based on overall trade-off considerations. 
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