
A New Two-phase Hybrid Metaheuristic for Vehicle Routing Problem with

Time Windows

Mingyao QI
a
, Ying ZHANG

b
, Jinjin ZHANG

c
, Lixin MIAO

d

a,b,c,d
Graduate School at Shenzhen, Tsinghua University, Shenzhen, 518055, China

a
E-mail: qimy@sz.tsinghua.edu.cn

b
E-mail: zhang.ying111@alum.sz.tsinghua.edu.cn

Abstract: This paper proposes a new two-phase hybrid metaheuristic for vehicle routing

problem with time windows (VRPTW). The first phase is to minimize the number of routes by

means of variable neighborhood search algorithm, while the second phase is mainly aimed at

minimizing the total travel distance using tabu search algorithm. Three neighborhood search

operators (All-exchange, All-2-opt, All-crossexchange) and two local serarch operators

(All-relocate and ejection chain) are designed. To further lower the number of vehicles, the

sum-of-squares route sizes is maximized in the first phase. A comparative test is implemented

by our algorithm on the basis of 56 benchmark problems proposed by Solomon (1987), the

mean number of vehicles and running time of this algorithm is very competitive comparing to

previous metaheuristics, showing that the new two-phase hybrid metaheuristic is effective and

fast.

Keywords: Vehicle Routing Problem, Time Windows, Metaheuristic, Variable Neighborhood

Search, Tabu Search

1. INTRODUCTION

The Vehicle Routing Problem (VRP) is a well-known combinatorial optimization problem

which focuses on the optimal arrangement or schedule of a fleet of vehicles while serving

scattered customers. When customer has his own time period and only during this period the

service can be accepted, the problem is called Vehicle Routing Problem with Time Windows

(VRPTW). First introduced in 1959 (Dantzig et al., 1959), it is still a very important problem

that is broadly studied now because of its widespread use and hardness. Even the simplest

form of VRP is Strongly NP-Complete. Thus, heuristic algorithms are always introduced to

get a good solution.

Basically, three kinds of VRP algorithms can be found from previous studies, exact

algorithms, classic heuristics, and metaheuristics (Laporte, 2007). Though exact algorithms

are often developed to obtain global optimal solutions, the most sophisticated exact

algorithms for the VRP can only solve instances up to about 100 customers, and with a varied

success rate (Baldacci et al., 2008). This explains to a large extent why most of the research

effort has been directed to heuristics and metaheuristics. For a complete survey of VRPTW,

see Braysy and Gendreau (2005a, 2005b).

Construction heuristics is a kind of algorithm that adds each customer to existing routes

step by step according to greedy strategies. Although it computes very quickly, the quality of

the solutions is relatively poor. Improvement heuristics (local search) starts its search

procedure from an initial feasible solution that obtained by a construction heuristics. By

docx
Proceedings of the Eastern Asia Society for Transportation Studies, Vol.9, 2013

http://www.editorialmanager.com/easts_isc/download.aspx?id=3337&guid=cca69c98-9759-4bd2-bbf2-4dbba1a7c567&scheme=1

searching the neighborhoods of current solution iteratively, the best solution is updated until

no improvements can be gained. The methods of generating neighborhood solution are based

on swap or reinsert strategies, such as exchange, crossexchange, 2-OPT, 3-OPT, Or-OPT, etc.

Since the construction heuristics always seeks better neighborhood, it will easily fall into local

optima. The metaheuristics overcome this shortage, it can guide the search procedure to

escape from local optima and jump to another solution space. Therefore, it can gain better

solutions.

Over the past decade, a few new metaheuristics for VRPTW were published which can

improve the computational results of some benchmark problems. Although it is very hard to

further improve the results of this classical problem, we still try in this paper to present a new

algorithm which contains a few computation tricks, the results look promising.

2. LITERATURE REVIEW

As a classical combinatorial optimization problem, VRP was studied extensively in a great

quantity of literatures. For recent review papers, refer to Laporte (2007), Bräysy and

Gendreau (2005a, 2005b). Before 2005, Tabu search algorithm was thought as one of the

most efficient algorithm to solve VRP. Tabu search was first introduced by Glover (1986).

Contrary to classical descent methods, it can accept poorer solution from one iteration to

another to escape from local optima. Renaud and Laporte et al. (1996) describes a tabu search

algorithm for the multi-depot vehicle routing problem with capacity and route length

restrictions. The algorithm is tested on a set of 23 benchmark instances. It is shown to

outperform existing heuristics at that time. Badeau and Guretin et al. (1997) proposed a

parallel tabu search algorithm for VRPTW which can reduce calculation time. Chiang and

Russell (1997) proposed a reactive tabu search algorithm which can run out of local optima by

changing the tabu list length dynamically. It renewed several best solutions. For review of

tabu search algorithms of VRPW before 2002, refer to Bräysy and Gendreau (2002). More

recently, Fu and Eglese (2005) proposed a new tabu search algorithm for another version of

the vehicle routing problem (VRP)-the open vehicle routing problem.

Genetic algorithm and simulated annealing are also effective metaheuristics to solve

VRPTW, however, here we just review some new papers that using Variable neighborhood

search (VNS). VNS was first proposed by Mladenovic (1997) and Hansen (1997). As a local

search based metaheuristic, VNS behaves excellent in solving NP hard problems. During the

past few years, the VNS approach has been applied to variants of the VRPs efficiently. Bräysy

(2003) presented a modification of VNS for solving VRPTW, named Reactive Variable

Neighborhood Search (RVNS). Polacek et al. (2004) proposed a VNS heuristic to tackle the

basic capacitated vehicle routing problem (CVRP) and achieved new best solutions in 71

cases. Goel and Gruhn (2006) proposed iterative improvement approaches based on the idea

of changing the neighborhood structure during the search to solve the General Vehicle

Routing Problem (GVRP). Kytojoki et al. (2007) presented an efficient VNS heuristic, which

is specifically aimed at solving very large scale real-life vehicle routing problems. Polacek et

al. (2004) proposed a VNS heuristic to solve Multi-Depot VRPTW and compared it with a

tabu search algorithm. Hemmelmayr et al. (2009) also proposed a new heuristic based on

VNS for the Periodic Vehicle Routing Problem (PVRP) without time windows, and the

computational results testified the excellent competitiveness of their approach. Qi and Li et al.

(2010) proposed a VNS for large scale real-time time-dependent vehicle routing problem with

time windows.

Proceedings of the Eastern Asia Society for Transportation Studies, Vol.9, 2013

Since the objective of VRPTW have two fold: minimizing the number of vehicles as

well as the total travel distance, and the former is set as the primary criteria, a few papers

adopted a two stage strategy to solve the problem. In the first stage, the minimum number of

vehicles is calculated, and the total travel distance is optimized in the second phase.

Recently, several scholars obtained good results using two-phase hybrid metaheuristics.

Gehring and Homberger (2002, 2005) proposed a parallel two-phase metaheuristic and a

two-phase hybrid metaheuristic respectively for VRPTW. The first phase is aimed at

minimizing the number of vehicles by means of evolution strategies and the second phase is

to minimize the total travel distance using tabu search algorithm. Russell, Hentenryck (2006)

proposed a two-phase hybrid metaheuristic for VRP with pick-up and delivery. It adopted

simulated annealing in the first phase and large neighborhood search in the second phase. The

above two-phase metaheuristics all renewed some best solutions of enchmark problems

(Solomon 1987), showing that it’s an effective way.

In this paper we also adopt two-phase strategy and design a hybrid metaheuristic for

VRPTW. VNS is used in the first phase to decrease the number of routes, while tabu search is

used in the second phase with the main objective of minimizing the total travel distance. The

result of the first phase will serve as the initial solution in the second phase. The algorithm

details of the two phases will be introduced in the next section respectively, following by an

evaluation and comparison to previous research based on Solomon’s benchmark problems.

3. SOLUTION FRAMEWORK

3.1 Variable Neighborhood Search

As mentioned above, the main objective of VNS is to lower the number of routes, thus its sub

procedures should reduce the vehicles to the greatest extent. VNS is chosen to find a feasible

solution that uses minimum vehicles. This is because a few neighborhoods are specially

designed to eliminate unnecessary routes. Variable neighborhood search (VNS) is a recent

metaheuristic for solving combinatorial and global optimization problems. Its basic idea is

systematic change of neighborhood within a local search. VNS starts with an initial solution

created by a construction method. And then an attempt is made to improve the initial solution

by applying a certain neighborhood structure. Then a local search is performed to this

neighborhood solution. If no more optimal solution can be updated, change another

neighborhood structure to enlarge the search scope, keep iteration until a convergence

criterion is reached. In this framework, local search is used in the same neighborhood

structure and the new neighborhood is adopted on the basis of the current solution to escape

from local optima in the subsequent search process.

3.1.1 Algorithm procedure

VNS framework contains four main sub procedures: initial solution construction,

neighborhood solution production, local search and optimal solution updating. The algorithm

keeps iteration based on these procedures until the convergence criterion satisfies. The

algorithm flow is described in detail as follows:

Step 1. Construct the initial solution x , set the current optimum bx x , select the set of

neighborhood structures (1, ,)k maxN k k .

Step 2. Set k 1 .

Proceedings of the Eastern Asia Society for Transportation Studies, Vol.9, 2013

Step 3. If maxk k , go to Step 2.

Step 4. If the convergence criterion is met, output the current optimum and exit.

Step 5. Generate solution 'x from the kth neighborhood structure of x  '(.kx N x

Step 6. Apply local search method with 'x as initial solution; denote by ''x the obtained

local optimum.

Step 7. If this local optimum ''x is better than the incumbent bx , set ''

bx x , go to Step

4; otherwise set 1k k  , change another neighborhood structure, go to Step 3.

3.1.2 Sub procedures design

(1) Initial solution construction

A modified insertion algorithm based on Solomon I1 algorithm is designed to construct

a high quality initial solution. In Solomon I1, the best customer to be inserted and its best

insert position is obtained by comparing cost function 2 (, ,)c i u j of each customer. It is

defined as follows:

2 0 1

1 1 1 1 2

11

'

12

(, ,) (, ,), 0

(, ,) (, ,) (, ,), 1

(, ,)

(, ,)

u

iu uj ij

j j

c i u j d c i u j

c i u j c i u j c i u j

c i u j d d d

c i u j b b

 

   

  


   
   

  

 (1)

In this formulation, cost function 1(, ,)c i u j includes two parts: the added distance

11(, ,)c i u j and the time delay  12 , ,c i u j for service to begin at customer j when inserting

customer u between customer i and j, α and β are the corresponding coefficient. ijd

means the distance between customer i and j. jb and '

jb denote the start time to serve

customer j before and after inserting customer u, respectively.

2 (, ,)c i u j is the saving in distance from servicing customer u on the same route with

customers i and j, as opposed to individual, direct service.

In Solomon I1,  12 , ,c i u j is the time delay for service to begin at customer j after

inserting u, while in this paper we make some improvement, considering the added waiting

time of this route. When a vehicle arrives at a customer before its time window opens, it has

to wait. So the waiting time of one route is the sum of waiting time of each customer. We

redefine  12 , ,c i u j as:

 12(, ,) u jc i u j w w 

(2)

Where uw is the sum of waiting time of customer u and all its successors after

inserting customer u. And jw denotes as the waiting time of customer j and all its successors

before insertion.

(2) Neighborhood Solution Generation

In this procedure, a new solution is generated using a certain neighborhood structure.

Current optimal solution is obtained by comparing with the local optimal solution. So this

procedure searches in the new solution space to avoid falling into local optima.

A neighborhood is generated by exchanging some nodes or edges, or relocating them to

some other positions based on current solution. We choose three popular and effective route

improvement operators, including exchange, 2-opt and crossexchange. In our implementation,

Proceedings of the Eastern Asia Society for Transportation Studies, Vol.9, 2013

the operators are modified and renamed as All-exchange, All-2-opt and All-crossExchange,

due to their nature of applicable for both inter- and intra-routes improvements.

The traditional exchange operator (Savelsbergh, 1992) swaps simultaneously two

different customers in two different routes, while the ordinary 2-opt (Flood, 1956) operator

improves a single route by replacing two of its arcs by two other arcs. Although improvement

made by intra-route operation may not be so significant than that made by inter-route

operation because of the restriction of time windows, neglecting intra-route operation may

lower the diversity of the neighborhood. Thus, modifications are conducted by extending the

swapping and replacing operations to all routes. CrossExchange operator is the extension of

exchange operator, aimed at swapping multi-nodes in different routes. Let 0 represent the

depot, and the other numbers indicate the customers. Figures 1, 2 and 3 show examples of

All-exchange, All-2-opt and All-crossExchange operators, respectively, with (a) illustrates the

intra-route case and (b) illustrates the inter-routes case.

0

1 2 3 4 5

0

6 7 8

0

1 2 3 4 5

0

6 7 8

0

1 2 3 4 5

0

6 7 8

0

1 2 3 4 5

0

6 7 8

(0 1 2 3 4 5 0 6 7 8 0)

(0 1 2 6 4 5 0 3 7 8 0)

(b) Inter-routes exchange

(0 1 2 3 4 5 0 6 7 8 0)

(0 1 2 5 4 3 0 6 7 8 0)

(a) Intra-route exchange

Figure 1 All-exchange opertor

0

1 2 3 4 5

0

6 7

8

0

1 2 3 4 5

0

6 7

8

0

1 2 3 4 5

0

6 7 8

0

1 2 3 4 5

0

6 7 8

(0 1 2 3 4 5 0 6 7 8 0)

(0 1 2 3 7 8 0 6 4 5 0)

(b) Inter-routes 2-opt

(0 1 2 3 4 5 6 7 0 8 0)

(0 1 2 3 5 4 6 7 0 8 0)

(a) Intra-route 2-opt

Figure 2 All-2-opt operator

Proceedings of the Eastern Asia Society for Transportation Studies, Vol.9, 2013

0

1 2 3 4 5

0

7 8 96

0

1 2 3 4 5

0

7 8 96

(0 1 2 3 4 5 0 6 7 8 9 0)

(0 1 7 8 5 0 6 2 3 4 9 0)
Figure 3 All-crossExchange operator

VNS chooses one of these neighborhood structures to generate neighborhood solutions

according to some mechanism, and those feasible solutions are accepted. In order to lower the

number of vehicles, the sum-of-squares route sizes is maximized in this procedure. This

strategy can make the customers gathered to part of the routes, in other words, the number of

customers in each route may tend to be saturated (as many as possible) or tend to be zero (so

as to move the customers out of those short routes later and finally eliminate such routes).

(3) Local search

The neighborhood solution obtained is submitted to a local search procedure to come up

with a local optimal solution. This procedure further improves the solution by trying to

minimize the number of vehicles.

Since this is a loop process and time consuming, we choose the relocate operator and

ejection chain operator to improve the solution until no improvement is possible. First

proposed by Savelsbergh (1992), Relocate operator is to relocate a customer from one route to

another. We also extend this operator to intra- and inter-routes scenarios and rename it as

All-relocate. By this operator, a randomly selected customer is relocated to the best position,

whatever it is in the same route or not. Ejection chain operator (Bräysy, 2003) tries to move

customers among different routes to generate a feasible solution. Both operators can reduce

the number of customers on some routes, which improves the possibility of eliminating such

routes later. Figures 4 and 5 give examples of All-relocate operator and Ejection Chain

operator.

0

1 2 3 4 5

0

6 7 8

0

1 2

3

4 5

0

6 7 8

0

1 2 3 4 5

0

6 7 8

0

1 2

3

4 5

0

6 7 8

(0 1 2 3 4 5 0 6 7 8 0)

(0 1 2 4 5 0 3 6 7 8 0)

(b) Inter-routes relocation

(0 1 2 3 4 5 0 6 7 8 0)

(0 1 2 4 5 3 0 6 7 8 0)

(a) Intra-route relocation

Figure 4 All-relocate operator

Proceedings of the Eastern Asia Society for Transportation Studies, Vol.9, 2013

3
2

1

6

5
4

9

8

7

10

3
2

1

6

5
4

9

8

7

10

0 0

(0 1 2 3 0 4 5 6 0 7 8 9 10 0)

(0 2 3 0 1 5 6 0 4 7 8 9 10 0)
Figure 5 Ejection Chain operator

The basic idea of relocate operator is to search other feasible positions for each

customer. If the new solution obtained is better than the original one, update the current

optimal solution and continue to search on the basis of the new solution; otherwise the current

optimal solution is not updated, search continues until all customers are searched. During this

procedure, the shorter routes (with fewer customers) will be conducted first; also, relocating a

customer to the shortest route (with minimum customers) is prohibited, since it has the

probability to be eliminated.

The basic idea of ejection chain operator is to find the shortest route first, and then

relocate the customers on this route to other routes to eliminate this route. Ejection chain

operator is embedded into the relocation operator. Every time a new optimal solution is

obtained, apply ejection chain operator to relocate the customers on the shortest route to the

newly update routes.

(4) Current solution updating

If the local optimal solution obtained in the local search procedure is better than the

current optimal solution, update the current optimal solution, and continue to use the current

neighborhood structure; otherwise, change another neighborhood structure and keep searching

until the convergence criterion is met. We limit the maximum number of iterations, when the

current optimal solution hasn’t update for certain iterations, exit.

The comparison between these solutions follows three criteria: the number of vehicles,

the length of the shortest route, and the total distance. For each criterion, the smaller the value,

the better the solution is. The priority of these three criteria reduces in order.

3.2 Tabu Search

While the first phase—VNS aims at minimizing the number of vehicles, whereas the

second phase—TS tries to minimize the total travel distance. The solution obtained in the first

phase will act as the initial solution of the second phase.

3.2.1 Algorithm procedure

The basic principle of tabu search algorithm is as follows: generate an initial solution x by a

construction algorithm or heuristic algorithm or metaheuristic algorithm. Set the current

solution and optimal solution bestx by x . Define the set of neighborhood structures

(1, ,)k maxN k k . In each iteration, compute the neighborhood solution set. Choose some

better neighborhood solutions to form the candidate solution set { | (x)}candidate candidate

kx x N .

Find the best candidate solution candidatex no matter whether it is tabu or not, if it is better,

update the optimal solution bestx and current solution x by candidatex , and put it in the tabu

list to avoid being searched again; otherwise for every element in the candidate solution set,

Proceedings of the Eastern Asia Society for Transportation Studies, Vol.9, 2013

choose the best one to be the current solution x and update the tabu list. In the second case,

the optimal solution bestx is not updated. Through different neighborhood structures, the

diversity of candidate solution is enlarged. The algorithm flow is list as follows:

Step 1. Given the parameters and initial feasible solution x , set the current solution and

optimal solution bestx x . Clear the tabu list.

Step 2. If the convergence criterion is met, output the optimal solution bestx and exit.

Step 3. Generate the neighborhood solution set (x)kN . Choose some better solutions to

form the candidate solution set { | (x)}candidate candidate

kx x N .

Step 4. If the best candidate solution candidatex is better than optimal solution bestx , set
best candidatex x , put candidatex into the tabu list, go to Step2; otherwise go to Step5.

Step 5. For every solution in the candidate solution set, choose the best non-tabu one 'x ,

set 'x x , go to Step2.

3.2.2 Key element design

The design of tabu search algorithm relates to a few details, including: initialization,

neighborhood structure, tabu list, evaluation of solutions, aspiration criterion, and

convergence criterion.

(a) Initial Solution

In this paper, the final solution obtained in the first phase will be set as the initial

solution of TS algorithm.

(b) Neighborhood Structure

We use All-exchange, All-2-opt, All-relocate and All-crossexchange operator to generate

neighborhoods, these operators are the same as those in section 3.1.2.

(c) Tabu List

A tabu list is a short-term set of the solutions that have been visited in the recent past

(less than T iterations ago, where T is the number of previous solutions to be stored -- also

called the tabu length). This is to memory the solution that has been visited and avoids

trapping in local optimum. In this paper, the tabu list simply stored the objective function

value.

Tabu length T is a finite value, as the current solution or optimal solution continuously

added to the tabu list, the previously tabu solution is popped out. So the search process is able

to reach this solution again, since this design is to avoid the loss of the beneficial search

direction. T has an influence on the release time of the solution in the tabu list. If T is too

big, more solutions will be tabu, so the search space reduces and the quality of the optimal

solution is affected. If T is too small, some better solutions lose the opportunity to be

released, leading to search around some fixed solutions and so the global optimum is limited.

In this paper, different values of T was tested and the best one was adopted.

(d) Evaluation of Solutions

The VRPTW has two main objectives to be optimized: the number of vehicles and total

travelling cost. As mentioned above, the priority is given to the first one. Therefore, a feasible

solution with a certain number of vehicles dominates over any other feasible solutions

requiring more vehicles. For those solutions with the same number of vehicles required, the

one with minimum total travelling cost is selected.

(e) Aspiration Criterion

To avoid cycling, if all solutions in the candidate solution set are tabu, choose the best

one as the new current solution.

Proceedings of the Eastern Asia Society for Transportation Studies, Vol.9, 2013

(f) Convergence Criterion

The stopping condition may be e.g. maximum CPU time allowed, maximum number of

iterations, or maximum number of iterations between two improvements. Here the search is

terminated if either a specified number of iterations have elapsed in total or since the last best

solution was found. If the best solution so far hasn’t been improved for a specified number of

consecutive iterations, the search also stops.

We also implemented the “shaking” step as in VNS. In our test, we found that TS

usually could find a good solution in less than 50 iterations. And for the remaining

computation process, it is very hard to further improve the quality. So each time the solution

cannot be updated for a certain consecutive iterations, e.g. 80, we take the “shaking” step

—embed a disturbance factor, and then the search goes on. It is proved that this method is

very effective — the procedure can easily escape from the local minima trap, thus both the

number of routes and the total travelling cost have the opportunity to be further reduced.

3.3 Data Structure Design

To speed up the algorithm and reduce memory usage, we adopt the one-way linked list data

structure in an array (called “next array”) to represent solutions (Kytöjoki, 2007). This

structure combines the advantages of two data structures: linked list and array. The first

customer of each route is recorded in a separate auxiliary array (“start array”). A customer is

stored in “next array” with the index that is equal to its immediate predecessor. These two

arrays are enough to completely represent solutions.

0

1 13

232210

0

2198

20197
0

5 6 18

17164
0

2 3 15

14

241211

Route1

Route2

Route3

Route4

1:

2:

3:

4:

5:

6:

7:

8:

9:

10:

11:

12:

13:

14:

15:

16:

17:

18:

19:

20:

21:

22:

23:

24:

Index
Next

Array
Start

Array

0: 0

Routes

Figure 6 Example of the one-way linked list data structure

As shown in figure 6, there are four short routes: 0-1-13-14-15-3-2-0,

0-4-16-17-18-6-5-0, 0-7-19-20-21-9-8-0 and 0-10-22-23-24-12-11-0. “Start Array” records

the first customer of each route: 1, 4, 7, and 10; while “Next Array” stores other customers

according to its immediate predecessor. For example, considering route 0-1-13-14-15-3-2-0,

store customer 13 in the position with index 1, store customer 14 in the position with index 13

Proceedings of the Eastern Asia Society for Transportation Studies, Vol.9, 2013

and so on.

Using this structure, changes to the solution can be performed very quickly and in a

constant time, without having to loop as in standard array implementations. For example, the

addition of a new customer 25 between two adjacent customers 1 and 13 is done simply by

changing the “next-values” of 25 to 13 and 1 to 25. Similarly, delete and reverse operations

are also high efficient. When deleting customer 13 from this route, one can simply change the

“next-values” of 1 from 13 to 14.

4. EXPERIMENTAL RESULTS

In this section, we present and analyze the results obtained with the above two-phase hybrid

metaheuristic based on the Solomon’s (1987) 100-customer benchmark problems.

4.1 Setting of Parameters

During the first algorithm phase, we tested 8 strategies to select seed customers, according to

the customers’ location and time windows, they are: farthest customer (to the depot), nearest

customer, and customer with earliest/latest service start time, earliest/latest service due time,

maximum/minimum time window length. Also we need to determine parameters α,β, γ

which are use in the Solomon I1 algorithm. We set the following bounds for the most crucial

parameters: α : 0.7-1.0 (in increments of 0.1 units), β : 0-0.3 (in increments of 0.1 units),

γ : 0.5-1.7 (in increments of 0.2 units). The value of α and β should satisfy the equation:

α β 1  . The parameter values used depend on the characteristic of the problem. It is

advisable to use a different parameter set in different data sets to get better results. The best

combinatorial parameters and the best selection scheme are determined by multiple

experiments. Another parameter in VNS is the iteration times when the optimal solution

hasn’t been improved, denoted by maxiter1.

In the tabu search phase, parameters to be assigned are the number of candidate

solutions m, tabu length T, iterations maxiter2. The larger scale the instance is, the more

candidate solutions need. So the number of candidate solutions may be different for different

scales of instance.

The setting of parameters is shown in Table 1.

Table 1 Setting of parameters for HM algorithm

Parameters α β λ n m T maxiter1 maxiter2

Values 0.7~1.0 0~0.3 0.5~1.7 100 2000 10 5 2000

In this table, n is the scale of an instance. With the best parameters setting, the results

obtained with two-phase hybrid metaheuristic will be contrasted with results published in the

literature or in the Internet. All our calculations were carried out on a PC (AMD processor,

2.3GHz, 1G RAM). The algorithm was coded in C++ and compiled with Visual Studio 2008.

4.2 Comparative Analysis

To evaluate the proposed two-phase hybrid metaheuristic and to tune its parameter, we test it

multi-times on 56 benchmark problems proposed by Solomon (1987). These problems have

Proceedings of the Eastern Asia Society for Transportation Studies, Vol.9, 2013

100 customers, a central depot, capacity constraints, time windows on the time of delivery,

and a total route time constraint. Customer locations are either randomly generated (problem

sets R1 and R2), clustered (problem sets C1 and C2) or mixed with randomly generated and

clustered customers (problem sets RC1 and RC2).

Each of these instances was calculated 5 times, and the best solutions that were

achieved for the instances of the respective problem class are listed in Table 2. In this table,

averages over each class of problems (C1, C2, R1, R2, RC1, and RC2) are given. We refer to

the simplified terms introduced in Homberger et al. (1999). MNV denotes the mean number of

vehicles, MND the mean travel distance and MCT the mean number of CPU seconds used for

finding the solutions. The first row to the top lists the authors. In the bottom line, the

cumulated number of vehicles CNV and the cumulated total travel distance CND are shown.

Table 2 Results for Solomon Instances

Instances Values RT(1995) PB(1996) LS(1998) Nazif(2010) Ursani(2011) HM(2013)

C1

MNV 10 10 10 10 10 10

MND 828.45 838 830.06 828.430 828.38 828.378

MCT 3200 601 1320.6 / 351.863 15.906

C2

MNV 3 3 3 3 3 3

MND 590.32 589.9 591.03 589.860 589.86 589.858

MCT 7200 2482 215 / 2261.53 34.571

R1

MNV 12.58 12.6 12.17 13.42 13.5 12.25

MND 1197.42 1296.83 1249.57 1209.560 1188.85 1202.7

MCT 2700 679 2657 / 244.57 63.577

R2

MNV 3.09 3 2.82 5.36 5.55 2.72727

MND 954.36 1117.7 1016.58 939.110 885.78 969.29

MCT 9800 2384 398 1482.49 108.023

RC1

MNV 12.38 12.1 11.88 13.12 13.25 11.75

MND 1369.48 1446.2 1412.87 1375.57 1360.96 1387.37

MCT 2600 673 1828 / 256.29 53.477

RC2

MNV 3.62 3.4 3.25 6 6.88 3.25

MND 1139.79 1360.6 1204.87 1096.71 1013.29 1148.84

MCT 7800 2134 427 / 1202.602 136.768

All
CNV 427 422 412 487 498 411

CND 57120 62572 59317 56798 55137.04 57558.5

Notes: RT—Rochat and Taillard (1995), PB—Potvin and Bengio (1996), LS—Liu and Shen (1998), Nazif —
Nazif, H. et, al. (2010), Ursani — Ursani, Z. et, al. (2011)

Due to limited space, best achieved solution for each of the 56 problems instances are

listed in the table in appendices. From the results of the comparative test and detail solutions

in these two tables, we can see that HM algorithm can get a solution as good as current

published optimum.

For problem groups C1 and C2, two-phase hybrid metaheuristic has got all the best

solutions. The mean travel distance of class C1 and C2 is better than ever published literatures.

For class R1, three best solutions have been found. For class R2, the best known mean MNV

and MND are both renewed. For class RC1 and RC2, two-phase hybrid metaheuristic leads

Proceedings of the Eastern Asia Society for Transportation Studies, Vol.9, 2013

new best means MNV. In the former, two best known solutions have been found.

In all, the cumulated number of vehicles CNV obtained by two-phase hybrid

metaheuristic is the lowest, in comparison with the other methods; meanwhile, the total travel

distance CND is also very competitive. Since the number of routes is set as the primary

objective, two-phase hybrid metaheuristic performs better than other heuristic.

HM also outperforms other algorithms on the computing time, regardless the effect of

different hardware. Although previous literatures were computed on different computer

platforms, the difference of computing time between these heuristics and HM are really

obvious—HM only occupies 1/5 to 1/30 of the mean CPU time. This for one hand may due to

the one-way linked list data structure, for the other hand to our specially designed operators

and evaluation criteria which may decrease the objective more quickly.

To study the consistency and reliability of the results obtained by two-phase hybrid

metaheuristic, we also analyzed the variance as introduced in Tan et al. (2006). 8 repeated

simulations with different seed customers’ selection strategies have been performed for the

Solomon’s data sets. We only take the first instance in every problem class (C101, C201,

R101, R201, RC101 and RC201) as a representative. The simulation results are presented in

Table 3.

In this table, the first row of each class describes the number of vehicles used, while the

second represents the total travelling cost under this strategy. The last two columns list the

standard deviations (denotes as S) and coefficient of variation (denoted as CV) for the various

simulation results.

Proceedings of the Eastern Asia Society for Transportation Studies, Vol.9, 2013

Table 3 Reliability performance for the algorithm

 1 2 3 4 5 6 7 8 S

CV

3(10)

C101

10 10 10 10 10 10 10 10

0 0 828.93

7

828.93

7

828.93

7

828.93

7

828.93

7

828.93

7

828.93

7

828.93

7

C201

3 3 3 3 3 3 3 3

0 0 591.55

7

591.55

7

591.55

7

591.55

7

591.55

7

591.55

7

591.55

7

591.55

7

R101

19 19 19 19 19 19 19 19

1.10 0.668
1650.8

1653.5

3

1652.1

7

1652.4

7

1652.1

7

1653.8

4

1654.2

2

1652.6

3

R201

4 4 4 4 4 4 4 4
15.5

5
12.207 1261.8

7

1286.1

6

1266.4

3

1300.0

3

1257.4

1

1278.2

9
1283.7

1257.4

1

RC10

1

15 16 16 15 15 15 16 15
18.3

4
10.858 1664.1

3

1678.6

9

1680.0

2

1699.0

7

1724.3

7

1699.6

4

1690.4

8

1679.8

1

RC20

1

4 4 4 4 4 4 4 4
16.0

8
11.008 1455.0

6
1462.6

9
1462.8

9
1466.9

2
1487.5

5
1462.8

6
1429.4

1
1455.6

1

From this table, for class C101 and C201, all the simulations have obtained the same

best optimal solutions. For category of type R, customer locations are randomly distributed;

small differences exist between these tests. But the coefficient of variation, which reflects the

ratio between the standard deviation and the mean value, is so small that the strong robustness

of the new two-phase hybrid metaheuristic is obvious. For category of type R and RC, an

approximate solution which is very close to the best published solution is obtained among

these 8 experiments. We also observe that results for category of type 1 (C101, R101, and

RC101) have smaller standard deviation values as compared to those for other test cases.

We also notice that different calculation result exist between different instances, two

main reasons is list as follows:

(1) The calculation results have certain randomness. Randomness is embodied in

neighborhood operator selection and candidate solution generation. This paper chooses the

best result among several tests. Some new optimal solution may be generated if repeated more

times.

(2) The computing time limitation. Eight different parameters are used in two-phase

hybrid metaheuristic (see Table 1). In our test, we find that they contribute a lot to the quality

of final solution. In the normal case, the search process can easily trap in local optimum. But

testing all the parameter combination is time-consuming and nearly impossible. We only

random choose some combinations, which may have an influence on the quality of the final

optima. If more test performed, some better results may be obtained.

5. CONCLUSIONS

This paper introduces a new two-phase hybrid metaheuristic based on variable neighborhood

search and tabu search to solve the classical VRP. Five neighborhood structures (All-exchange,

Proceedings of the Eastern Asia Society for Transportation Studies, Vol.9, 2013

All-2-opt, All-crossexchange, All-relocate and ejection chain) are designed. We modify

Solomon’s I1 heuristic by redesign the cost function so as to consider the waiting time of each

customer. More seed selection strategies are tested to get better initial solution. To further

lower the number of vehicles, the sum-of-squares route sizes is maximized in the first phase.

Computational testing on 56 benchmark problems has shown that the overall solution quality

of this algorithm is competitive with existing metaheuristics

For further research, a few improvements can be attempted to obtain better results and

lower running time. More combination of parameters setting can be explored. Meanwhile,

currently the evaluation of solutions of the second phase is based on the number of vehicles or

the total travelling cost, whereas the number of customers on the route may also be taken into

consideration. The data structure also has room to be improved so as to reduce the running

time.

ACKNOWLEDGEMENTS

This work is supported by the National Natural Science Foundation of China (Number

70702003, 71272030), Science & Technology Foundation of Dongguan City (Number

201010810107), and fund from Guangdong provincial department of science and technology

(Number 2011B090400384).

APPENDICES

The best published results and results by HM for Solomon’s data sets (1987) are listed in table

4. For detailed best-known results to Solomon’s benchmarks, we refer the reader to the web

site http://neo.lcc.uma.es/radi-aeb/WebVRP/.
Table 4 Best results for Solomon (1987)

Instance Best Published Solution
Best Solution

(HM)
Comparison

 MNV MND Reference MNV MND Veh (%)
Cost

(%)

C101 10 828.94 Rochat and Taillard (1995) 10 828.937 0.00% 0.00%

C102 10 828.94 Rochat and Taillard (1995) 10 828.937 0.00% 0.00%

C103 10 828.06 Rochat and Taillard (1995) 10 828.065 0.00% 0.00%

C104 10 824.78 Rochat and Taillard (1995) 10 824.777 0.00% 0.00%

C105 10 828.94 Rochat and Taillard (1995) 10 828.937 0.00% 0.00%

C106 10 828.94 Rochat and Taillard (1995) 10 828.937 0.00% 0.00%

C107 10 828.94 Rochat and Taillard (1995) 10 828.937 0.00% 0.00%

C108 10 828.94 Rochat and Taillard (1995) 10 828.937 0.00% 0.00%

C109 10 828.94 Rochat and Taillard (1995) 10 828.937 0.00% 0.00%

C201 3 591.56 Rochat and Taillard (1995) 3 591.557 0.00% 0.00%

C202 3 591.56 Rochat and Taillard (1995) 3 591.557 0.00% 0.00%

C203 3 591.17 Rochat and Taillard (1995) 3 591.173 0.00% 0.00%

C204 3 590.6 Rochat and Taillard (1995) 3 590.599 0.00% 0.00%

C205 3 588.88 Rochat and Taillard (1995) 3 588.876 0.00% 0.00%

C206 3 588.49 Rochat and Taillard (1995) 3 588.493 0.00% 0.00%

C207 3 588.29 Rochat and Taillard (1995) 3 588.286 0.00% 0.00%

C208 3 588.32 Rochat and Taillard (1995) 3 588.324 0.00% 0.00%

Proceedings of the Eastern Asia Society for Transportation Studies, Vol.9, 2013

R101 19 1645.79 Homberger (2000) 19 1650.8 0.00% -0.30%

R102 17 1486.12 Rochat and Taillard (1995) 17 1486.12 0.00% 0.00%

R103 13 1292.68 Li, Lim and Huang (2001) 13 1294.64 0.00% -0.15%

R104 9 1007.24 Mester et al. (2005) 9 1013.26 0.00% -0.60%

R105 14 1377.11 Rochat and Taillard (1995) 14 1377.11 0.00% 0.00%

R106 12 1251.98 Mester et al. (2005) 12 1263.31 0.00% -0.90%

R107 10 1104.66 Shaw (1997) 11 1073.34 -10.00% 2.84%

R108 9 960.88 Berger et al. (2001) 9 960.876 0.00% 0.00%

R109 11 1194.73
Homberger and Gehring

(1999)
12 1155.46 -9.09% 3.29%

R110 10 1118.59 Mester et al. (2005) 11 1093.01 -10.00% 2.29%

R111 10 1096.72 Rousseau et al. (2002) 11 1060.65 -10.00% 3.29%

R112 9 982.14 Gambardella et al. (1999) 9 1003.77 0.00% -2.20%

R201 4 1252.37
Homberger and Gehring

(1999)
4 1257.41 0.00% -0.40%

R202 3 1191.7 Rousseau et al. (2002) 3 1195.3 0.00% -0.30%

R203 3 939.5
Woch and Lebkowski

(2009)

3 949.764 0.00% -1.09%

R204 2 825.52
Bent and Van Hentenryck

(2001)

2 843.48 0.00% -2.18%

R205 3 994.42 Rousseau et al. (2002) 3 1004.8 0.00% -1.04%

R206 3 906.14 Schrimpf et al. (2000) 3 929.604 0.00% -2.59%

R207 2 890.61 Ropke and Pisinger (2007) 2 890.608 0.00% 0.00%

R208 2 726.75 Mester et al. (2005) 2 747.395 0.00% -2.84%

R209 3 909.16 Homberger (2000) 3 933.655 0.00% -2.69%

R210 3 939.34 Mester et al. (2005) 3 952.754 0.00% -1.43%

R211 2 885.71
Woch and Lebkowski

(2009)
2 957.42 0.00% -8.10%

RC101 14 1696.94 Taillard et al. (1997) 15 1642.09 -7.14% 3.23%

RC102 12 1554.75 Taillard et al. (1997) 13 1493.85 -8.33% 3.92%

RC103 11 1261.67 Shaw (1998) 11 1264.64 0.00% -0.24%

RC104 10 1135.48 Cordeau et al. (2000) 10 1173.77 0.00% -3.37%

RC105 13 1629.44 Berger et al. (2001) 13 1629.44 0.00% 0.00%

RC106 11 1424.73 Berger et al. (2001) 11 1424.73 0.00% 0.00%

RC107 11 1230.48 Shaw (1997) 11 1290.16 0.00% -4.85%

RC108 10 1139.82 Taillard et al. (1997) 10 1180.31 0.00% -3.55%

RC201 4 1406.91 Mester et al. (2005) 4 1429.41 0.00% -1.60%

RC202 3 1,365.645 Grabysz et al. (2004) 3 1389.57 0.00% -1.75%

RC203 3 1049.62 Czech and Czarnas (2002) 3 1098.17 0.00% -4.63%

RC204 3 798.41 Mester et al. (2005) 3 810.179 0.00% -1.47%

RC205 4 1297.19 Mester et al. (2005) 4 1309 0.00% -0.91%

RC206 3 1146.32 Homberger (2000) 3 1218.83 0.00% -6.33%

RC207 3 1061.14
Bent and Van Hentenryck

(2001)

3 1084.61 0.00% -2.21%

RC208 3 828.14 Ibaraki et al. (2001) 3 850.915 0.00% -2.75%

REFERENCES

Badeau, P., Guertin, F., Gendreau, M., Potvin, J., Taillard, E. (1997). A parallel tabu search

Proceedings of the Eastern Asia Society for Transportation Studies, Vol.9, 2013

heuristic for the vehicle routing problem with time windows. Transportation Research

Part C: Emerging Technologies, 5(2), 109-122.

Baldacci, R., Christofides, N., Mingozzi, A. (2008). An exact algorithm for the vehicle

routing problem based on the set partitioning formulation with additional cuts.

Mathematical Programming, 115(2), 351-385.

Bent, R., Hentenryck, P. V. (2006). A two-stage hybrid algorithm for pickup and delivery

vehicle routing problems with time windows. Computers & Operations Research, 33(4),

875-893.

Blocho, M., Czech, Z. J. (2012). A parallel EAX-based algorithm for minimizing the number of

routes in the vehicle routing problem with time windows. High Performance

Computing and Communication & 2012 IEEE 9th International Conference on

Embedded Software and Systems (HPCC-ICESS)

Bräysy, O. (2003). A reactive variable neighborhood search for the vehicle-routing problem

with time windows. INFORMS Journal on Computing, 15(4), 347-368.

Bräysy, O., Gendreau, M. (2002). Tabu search heuristics for the vehicle routing problem with

time windows. Top, 10(2), 211-237.

Bräysy, O., Gendreau, M. (2005a). Vehicle routing problem with time windows, part II:

Metaheuristics. Transportation science, 39(1), 119-139.

Bräysy, O., Gendreau, M. (2005b). Vehicle routing problem with time windows, Part I: Route

construction and local search algorithms. Transportation science, 39(1), 104-118.

Chen, H., Hsueh, C., Chang, M. (2006). The real-time time-dependent vehicle routing problem.

Transportation Research Part E: Logistics and Transportation Review, 42(5), 383-408.

Chiang, W., Russell, R. A. (1997). A reactive tabu search metaheuristic for the vehicle routing

problem with time windows. INFORMS Journal on computing, 9(4), 417-430.

Cordeau, J., Laporte, G., Mercier, A. (2001). A unified tabu search heuristic for vehicle routing

problems with time windows. Journal of the Operational research society, 928-936.

Dantzig G B, Ramser J H. (1959). The truck dispatching problem. Management science,

6(1),80-91.

Flood, M. M. (1956). The traveling-salesman problem. Operations Research, 4(1), 61-75.

Fu, Z., Eglese, R., Li, L. Y. (2004). A new tabu search heuristic for the open vehicle routing

problem. Journal of the operational Research Society, 56(3), 267-274.

Gehring, H., Homberger, J. (1999). A parallel hybrid evolutionary metaheuristic for the vehicle

routing problem with time windows. Proceedings of EUROGEN99, Finland.

Gehring, H., Homberger, J. (2002). Parallelization of a two-phase metaheuristic for routing

problems with time windows. Journal of heuristics, 8(3), 251-276.

Glover, F. (1989). Tabu search—part I. ORSA Journal on computing, 1(3), 190-206.

Goel, A., Gruhn, V. (2008). A general vehicle routing problem. European Journal of

Operational Research, 191(3), 650-660.

Hansen, P., Mladenović, N. (1997). Variable neighborhood search for the p-median. Location

Science, 5(4), 207-226.

Hemmelmayr, V. C., Doerner, K. F., Hartl, R. F. (2009). A variable neighborhood search

heuristic for periodic routing problems. European Journal of Operational Research,

195(3), 791-802.

Homberger, J., Gehring, H. (2005). A two-phase hybrid metaheuristic for the vehicle routing

problem with time windows. European Journal of Operational Research, 162(1),

220-238.

K. C. TAN, Y. H. CHEW. (2006). A Hybrid Multiobjective Evolutionary Algorithm for

Solving Vehicle Routing Problem with Time Windows. Computational Optimization

Proceedings of the Eastern Asia Society for Transportation Studies, Vol.9, 2013

and Applications, 34, 115-151.

Kytöjoki, J., Nuortio, T., Bräysy, O., Gendreau, M. (2007). An efficient variable neighborhood

search heuristic for very large scale vehicle routing problems. Computers & Operations

Research, 34(9), 2743-2757.

Laporte, G. (2007). What you should know about the vehicle routing problem. Naval Research

Logistics (NRL), 54(8), 811-819.

Mester, D., Bräysy, O. (2005). Active guided evolution strategies for large-scale vehicle

routing problems with time windows. Computers & Operations Research, 32(6),

1593-1614.

Mladenović, N., Hansen, P. (1997). Variable neighborhood search. Computers & Operations

Research, 24(11), 1097-1100.

Nazif, H., Lee, L. S. (2010). Optimized Crossover Genetic Algorithm for Vehicle Routing

Problem with Time Windows. American Journal of Applied Sciences, 7(1), 95-101.

Pisinger, D., Ropke, S. (2007). A general heuristic for vehicle routing problems. Computers &

Operations Research, 34(8), 2403-2435.

Polacek, M., Hartl, R. F., Doerner, K., Reimann, M. (2004). A variable neighborhood search for

the multi depot vehicle routing problem with time windows. Journal of Heuristics,

10(6), 613-627.

Potvin, J., Bengio, S. (1996). The vehicle routing problem with time windows part II: genetic

search. INFORMS journal on Computing, 8(2), 165-172.

Prescott Gagnon, E., Desaulniers, G., Rousseau, L. M. (2009). A branch‐and‐price‐based

large neighborhood search algorithm for the vehicle routing problem with time

windows. Networks, 54(4), 190-204.

Qi, M. Y., Li, N., Zhang, J. J., Miao, L. X. (2010). Variable Neighborhood Search Heuristic for

Large Scale Real-time Time-dependent Vehicle Routing Problem with Time Windows,

3rd T- Log International Conference. Japan.

Qi, M. Y., Zhang, J. J., Li, N. (2010). A Variable Neighborhood Search Heuristic for Large

Scale Real-time Time-dependent Vehicle Routing Problem with Time Windows, China

logistics academic conference. Nan Jing.

Renaud, J., Laporte, G., Boctor, F. F. (1996). A tabu search heuristic for the multi-depot vehicle

routing problem. Computers & Operations Research, 23(3), 229-235.

Rochat, Y., Taillard, É. D. (1995). Probabilistic diversification and intensification in local

search for vehicle routing. Journal of heuristics, 1(1), 147-167.

Savelsbergh, M. W. (1992). The vehicle routing problem with time windows: Minimizing route

duration. ORSA Journal on Computing, 4(2), 146-154.

Solomon, M. M. (1987). Algorithms for the vehicle routing and scheduling problems with time

window constraints. Operations research, 35(2), 254-265.

Ursani, Z., Essam, D., Cornforth, D., Stocker, R. (2011). Localized genetic algorithm for

vehicle routing problem with time windows. Applied Soft Computing, 11(8),

5375-5390.

Proceedings of the Eastern Asia Society for Transportation Studies, Vol.9, 2013

