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Abstract: In this paper we consider a capacitated single allocation p-hub median problem 
(CSApHMP). We determine the location of p hubs, the allocation of non-hub nodes to hubs in 
the network. This problem is formulated as 0-1 integer programming model with the objective 
of the minimum total transportation cost and the fixed cost associated with the establishment 
of hubs. Optimal solutions are obtained using Gurobi optimizer for the small sized problems. 
Since the CSApHMP is NP-hard, it is difficult to obtain optimal solution within a reasonable 
computational time. Therefore, a Lagrangian relaxation (LR) heuristic is developed to solve 
the problem. The LR performance is examined through a comparative study. The 
experimental results show that the proposed LR heuristic can be a viable solution method for 
the capacitated hub and spoke network design problem. 
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1. INTRODUCTION

The hub location problem (HLP) is to locate hub facilities and allocating demand nodes to 
hubs in order to route the flow between every origin-destination pair of nodes. Instead of 
providing direct links to every origin-destination pair, the hubs serve as trans-shipment points 
or switching points for flows between non-hub nodes. Flows departing from an origin are 
collected in a hub, transferred between hubs if necessary, and finally distributed to a 
destination node by combining with flows that are heading for the same destinations.  The hub 
facilities consolidate flows in order to take advantage of economies of scale in transportation 
rate between hubs. Such a hub-and-spoke network allows many origins and destinations to be 
connected with fewer links than would be required with direct connections. This problem has 
applications in telecommunication, transportation and postal delivery systems. For example, 
Takano and Arai (2009) applied the pHMP for the Asian hub ports with Los Angeles and 
Rotterdam in containerized cargo transport, whereas Lin et al. (2012) solved the Chinese 
H&S air cargo network. 

The fundamental HLP has been extended in many features, such as node allocation 
type, hub capacity limitation, and the number of hubs is known or unknown priori. For node 
allocation, each non-hub node can be allocated either to one hub (single allocation) or to 
multiple hubs (multiple allocation). The hub capacity could be uncapacitated or capacitated. 
The latter one is close to the realistic condition. If the number of hubs is pre-determined to p, 
it is called p-hub location problem (pHLP). Alumur and Kara (2008), Campbell et al. (2002), 
Klincewicz (1998) provided a good survey on different hub location problems. Recently, 
Campbell and O’Kelly (2012) provided some commentary on the present status in 
transportation-oriented hub location research. We refer interested readers to the paper and 
references therein. 
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In this paper, we deal with a particular variant of the pHLP, known as the capacitated 
single allocation p-hub median problem (CSApHMP). The objective is to minimize the sum 
of the overall fixed cost of established p hubs and transportation cost in a network with n 
demand nodes and the following assumptions: the number of hubs is pre-determined (p), 
capacity limitation on total incoming and outgoing flows of candidate nodes, each non-hub 
node is assigned to a single hub, a discount factor for using inter-hub connection, no direct 
service between two non-hub nodes is allowed. The flow between every OD pair of nodes 
must be routed via either one or two hubs. The CSApHMP is a NP-hard problem. Exact 
solution approach cannot provide solutions for large scale practical hub location problem in a 
reasonable computational time.  

Most of the literature in hub location problem deals with uncapacitated variant of the 
problem, where there is not capacity limitation on hubs. One of the uncapacitated variants that 
has been studied is the uncapacitated single allocation hub location problem (USAHLP). 
O’Kelly (1987) presented a quadratic integer programming formulation for the single 
allocation p-hub median problem and proposed two heuristic methods to solve the problem. 
Both heuristics enumerate all possible choices of p hub locations. Aykin (1990) formulated 
the difference in the objective function if a non-hub node is assigned to different hub and 
defined a procedure to find the optimal allocation of non-hub to a given set of hubs. Campbell 
(1992) provided a linear integer programming model of the multiple allocation p-median 
problem.  

Klincewicz (1991) developed several heuristics based on local improvement 
considering both the single and double exchange procedures and clustering of nodes. Later 
Klincewicz (1992) presented a tabu search (TS) and a greedy randomized adaptive search 
procedure (GRASP) heuristic where non-hub nodes are assigned to the nearest hub. Skorin-
Kapov and Skorin-Kapov (1994) computed the results of CAB data set by tabu search and 
compared with the heuristics of O’Kelly (1987) and TS of Klincewicz (1992). Their results 
were superior but required longer computational time. Campbell (1994) produced a mixed 
integer linear programming (LP) formulation for four types of discrete hub location problems, 
the p-hub median problem, the uncapacitated hub location problem, p-hub center problems 
and hub covering problems, which extend the hub location problem to consider more reality 
situations. Skorin-Kapov et al. (1996) modified Campbell (1994) formulation with tighter 
mixed integer linear programming relaxations. They computed the result of uncapacitated 
multiple allocation p-hub location problem (UMApHLP). The results were not guaranteed to 
obtain all integral solutions, but the objective function value is less than 1% below the optimal 
value which is obtained by using CPLEX.  

Campbell (1996) proposed two new heuristics, MAXFLO and ALLFLO, for the single 
allocation p-hub median problem based on the multiple allocation p-hub median solutions. In 
these two heuristics, the allocations are done according to different rules but location 
decisions are the same. O’Kelly et al. (1996) modified Skorin-Kapov et al. (1996) model by 
assuming a symmetric flow data and further reducing the problem size. The formulation can 
find integer solutions most of the time. They also provided the sensitivity analysis of the 
solution in terms of number of hubs and hub locations to the inter-hub discount factor . 
Smith et al. (1996) mapped the SApHMP onto a modified Hopfield neural network using 
O’Kelly (1987) quadratic integer programming formulation. A practical postal delivery 
network is used to demonstrate that the quality of these Hopfield network solutions compares 
favorably to those obtained using both exact method and simulated annealing. 

Ernst and Krishnamoorthy (1996) provided a linear integer programming formulation 
for uncapacitated single allocation p-hub median problem. They developed a branch and 
bound method to solve the problem and also demonstrated that the simulated annealing (SA) 
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algorithm can obtain the upper bounds to improve the general branch and bound method. The 
SA is also showed its comparability with the TS of Skorin-Kapov and Skorin-Kapov (1994) in 
terms of solution quality and computational time. However, they cannot solve any problem 
with more than 50 nodes.  

Sohn and Park (1997) provided a linear programming formulation for single allocation 
two-hub median problem and showed that the two-hub location problem can be solved in 
polynomial time. Sohn and Park (1998) presented a further reduction of Skorin-Kapov el al. 
(1996) formulation for a model with fixed hub locations when the unit transportation cost is 
symmetric and proportional to the distance. Later Sohn and park (2000) extended the two-hub 
location problem to a three-hub location problem. They transformed the three-hub location 
problem into a three-terminal cut problem and showed that this is a NP-hard problem.   

Ernst and Krishnamoorthy (1998) proposed another branch-and-bound approach which 
solved shortest-path problems for each origin-destination pair to obtain lower bounds. They 
solved the largest single allocation problem to date with this algorithm with 100 nodes and 
with p = 2 and 3. Pirkul and Shcilling (1998) developed a Lagrangian relaxation method 
based on the Skorin-Kapov et al. (1996) formulation. They used subgradient optimization on 
the Lagrangian relaxation of the model and provided a cut constraint for one of the 
subproblems. In computational experiments on eighty-four standard test problems, average 
gaps are 0.048% and the maximum gaps are under 1%. 

Ebery (2001) optimized the new proposed formulas with two or three hubs using 
CPLEX, and also claimed that such a formula has the potential to solve even larger problems. 
Abdinnour-helm (2001) discussed the solution quality by using the simulated annealing 
method to solve USApHMP and compared with the MAXFLO, ALLFLO, and tabu search. 
However, their results were not as good as those obtained by Ernst and Krishnamoorthy 
(1996). 

Pérez et al. (2007) presented a hybrid algorithm that merges the variable neighbourhood 
search (VNS) and the path-relinking (PR) paradigms. Both VNS and PR use systematic 
neighbourhood-based strategies to explore the feasible region and yield adequate results even 
with large-sized problems. Their computational results showed that the proposed hybrid 
algorithm constitutes an efficient alternative for solving the p-hub median problem. Kratica et 
al. (2007) constructed two genetic algorithms (Gas) for the USApHMP. The numerical 
experiments showed that the GAs can solve the problem with up to 200 nodes and 20 hubs. 
Takano and Arai (2009) presented a genetic algorithm for the hub-and-spoke problem 
(GAHP) for the liner shipping with shuttle service. The GAHP was first validated by CAB 
instances and an example of the H&S network with shuttle services with 18 ports was also 
analyzed. Ilić et al. (2010) proposed a general variable neighborhood search (GVNS) 
approach for the USApHMP. The experimentation shows that GVNS outperform the 
comparing heuristics in terms of solution quality and computational times. 

To our knowledge, the majority of research has addressed uncapacitated HLPs. There 
are just a few articles in the literature dealing with capacitated allocation version of HLPs. 
Aykin (1994) studied the capacitated hub location problem with direct links, as well as 
multiple allocation, and included capacity limitations and fixed costs for hubs. Two 
Lagrangian relaxation based heuristics are proposed. Ernst and Krishnamoorthy (1999) 
extended the Skorin-Kapov et al. (1996) formulation to the capacitated case and also 
proposed a mixed integer programming formulation. They proposed a simulated annealing to 
solve the problem. Ebery et al. (2000) presented formulations and shortest path based solution 
approaches for the capacitated multiple allocation hub location problem. Both CAB and AP 
data set were tested. 
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Labbé et al. (2005) studied a CSAHLP where only the operation costs associated with 
the flow were considered. A branch-and-cut algorithm was proposed to solve the problem up 
to 50 nodes. Pérez et al. (2005) proposed a GRASP-path relinking (GRASP-PR) for the 
CSApHMP. Computational experiments showed that GRASP-PR provided better solutions 
than by either GRASP or PR individually on large scale instances. Costa et al. (2008) 
considered the CSAHLP using bi-criteria approach. They presented two models on the second 
objective, the first minimizes the time to processing flows, while the second minimizes the 
maximum service time at the hubs.  

Contreras et al. (2009) proposed a Lagrangean relaxation to obtain tight upper and 
lower bounds on CSAHLP. Computational experiments on benchmark instances and new 
generated large size instances showed that the LR obtained or improved the best known 
solution. Stanimirović (2010) proposed a genetic algorithm for solving the CSApHMP that is 
to minimize the total transportation cost. The GA can reach all optimal solution for instances 
up to 50 nodes. García et al. (2012) provided a new 2-index integer programming formulation 
for the capacitated multiple allocation p-hub median problem (CMApHMP) and solved the 
problem with a branch-and-cut algorithm. Some research considered fixed cost of the selected 
hubs (O’kelly et al., 1996; Contreras et al., 2009), while others only considered the 
transportation cost (Campbell, 1996; Labbé et al., 2005). 

The remainder of this paper is organized as follows. In Section 2 we introduce the 
mathematical formulations of the CSUpHMP. The proposed Lagrangian relaxation heuristic 
and the structure of the subproblems are described in Section 3. Computational results of 
benchmark instances from the literature and comparisons with optimal solutions from 
optimization software Gurobi are provided in Section 4. We conclude with directions for 
further research in Section 5. 
 
 
2. MATHEMATICAL FORMULATION 
 
Consider a network of n demand nodes and p hubs must be located. Each non-hub node is 
allocated to a single hub. The flow between an OD (i, j) pair must be routed through either 
one or at most two hubs k and l. The cost of transport a unit of flow along the path i-k-l-j is 
computed as Cijkl. The transportation cost for an OD (i, j) pair served via hubs k and m 
includes cost for collection from the origin i to hub k, transfer between hubs k and m, and 
distribution from hub m to the destination j. The rate for transfer cost between hubs is less 
than that for collection and distribution discount due to the economics of scale. Usually, the 
routing cost between two hub nodes is discounted at a rate of  to reflect the savings due to 
economies of scale. The CSApHMP consists of locating a set of pre-determined number of 
hubs and assigning each node to one of the selected hubs that does not violate the hub 
capacity constraints and minimize total cost.  
 
2.1 Notations 
 
The following notations are used through out the paper. 
Parameters 
Bk: capacity of node k 
Cijkl: the transportation cost of a unit of flow from node i to node j routed via hubs k and l, 

(Cijkl = dik + dkl + dlj) 
dij: the distance between nodes i and j 
fk: fixed cost of locating at node k 
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N: set of nodes 
p: number of required facilities 
wij: the flow between nodes i and j 
: the unit flow costs for transfer 
: the unit flow costs for collection  
: the unit flow costs for distribution
Decision variables 






otherwise0

 and  hubs  viarouted   to node from flow  theif1 lkji
X ijkl  
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2.2 The Model 
 
In this paper, we revised the mathematical formulation for the uncapacitated pHMP presented 
by Campbell (1996). The mixed integer formulation is as follows. 
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The objective function, equation (1), calculates the total transportation cost of flow and 
the fixed cost of established facilities. Constraint (2) ensures that exactly p hubs are chosen. 
Constraint (3) ensures that node i can be allocated to hub k only when k is selected as a hub. 
Constraint (4) states that every node is allocated to exactly one hub. Constraint (5) ensures 
that for every destination j, the total flow from origin i to destination j routed via paths using 
link i-k will be nonzero only if node i is allocated to hub k. Similarly, constraints (6) assures 
that for every origin i and every hub k, a flow through the path i-k-l-j is feasible only if j is 
allocated to hub l. Constraint (7) ensures that all the assigned demand to an opened facility 
must less than or equal to the capacity. Constraints (8) and (9) are binary integrality 
constraints.  
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3. Lagrangian Relaxation  
 
Lagrangian relaxation (LR) is a method to solve large-scale combinatorial optimization 
problems. It exploits the problem structure to obtain lower bounds on the optimal solution (in 
minimization problem). In order to simplify the problem, we relax the constraints that link the 
location/assignment variables with the flow variables (Eqs. (5) and (6)). Dualizing Eqs. (5) 
and (6) with Lagrangian multiplier vectors u and v, then we obtain the following Lagrangian 
function L(u, v): 
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It is noted that L(u, v) could be separated into two subproblems: the problem in the space of Z 
variables, and the problem in the space of X variables. 

The subproblem in the space of Z variable: 

In this subproblem, feasible solution do not require that the non-hub node be assigned to 
more than one hub. Thus, it can occur that a node is assigned to more than on hub or not 
assigned at all in LZ(u, ). To prevent that capacity of selected p hubs does not satisfy the total 
customer demand, we add constraint (12) to make sure the capacity of selected p hubs is 
enough. Contreras et al. (2009) solved LZ(u, v) as the knapsack problem in CHLPSA. Ours is 
much harder to solve therefore we use the Gurobi optimizer to solve this problem. 

The subproblem in the space of X variable: 
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Nk Nl

kl
ijXTS 1..  Nji  ,  (4)

  1,0kl
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In LX(u, v)  problem we just need to find the shortest route through k and l for each (i,
 
j) 

pair which has the lowest contribution of function (13).  
We apply subgradient optimization for solving the L(u, v). For a given vector (u, v), the 

Lagrangian relaxation processes are as follows. The output of the algorithm is a best lower 
bound LB and UB denotes a best upper bound on the optimal value of the original problem. 
The step size parameter n is halved if lower bound has not improved in a given number e of 
consecutive iterations.  
 
Step1. u0 = 0, v0 = 0, 1 = 2, UB = , LB = -, n = 1.  
Step 2. Use optimization software Gurobi to solve ),( vuLz  for selecting the p locations. 
Step 3. Find the assignment for non-hub nodes based on the selected p locations found in 

step 2 as follow. 

 Nji
NlkvuCw

X
n
ijm

n
ijk

kl
ijijkl
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 ,,
                                      Otherwise0
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Step 4. Compute Lagrangian objective function (Ln), if Ln > LB then LB = Ln. 
Step 5. Set Zik = 0, i, k (i  k).  

Step 5.1.  For each non-hub node i, find the nearest hub node (Zkk = 1), 
NiZd kkik

k
 },1|{min . 

Step 5.2  Set Zik = 1 
Step 6. NlkjiZZX jlik

kl
ij  ,,,,  

Step 7. Computing Eq. (1) objective function (Objn), if Objn < UB then UB = Objn 
Step 8. Compute Step size using Eq. (14) 
Step 9. Updating Lagrangian multipliers, u and v, using Eqs. (15) and (16) 
Step 10. n = n+1 repeat Steps 2-9 until the stopping criterion is met. 
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For stopping criterion in Lagrangian relation heuristic, in our experiment we implement 3 
stopping criterion, the algorithm terminates when one of the following condition is met. 
 
1. The given maximum number of iterations Itermax is reached. 
2. The step size parameter n  is less than a threshold value. 
3. The  lower bound equals the best upper bound or is close to upper bound below a 

threshold value (|UB – Ln| < ). 
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4. COMPUTATIONAL RESULTS 
 
In this section the computational results of the proposed Lagrangian relaxation (LR) and 
comparison with the results obtained by using Gurobi 4.5.2 optimizer are given. All tests were 
carried out on the Intel Core2 Duo 3.0GHz CPU with 2 GB RAM, running under Windows 7 
operations systems. The LR was coded in Microsoft Visual Studio 2010 C++ and tested on 
four sets of OR-Library (http://people.brunel.ac.uk/~mastjjb/jeb/info.html) instances taken from 
Beasley (1996). The computational time for Gurobi optimizer is set for 2 hours. 

The small size AP instances up to fifty nodes from Ernst and Krishnamoorhy (1996), is 
derived from a study of the Australian postal (AP) delivery system. The data set contains four 
instances of each of the sized n = 10, 20, 25, 40, and 50. These instances include capacities 
and fixed costs on nodes. Ernst and Krishnamoorhy (1999) used a combination of two types 
of fixed cost, tight (T) and loose (L), and two types of capacities, tight (T) and loose (LT) for 
each problem size. Instances with fixed costs of type T have higher fixed costs for nodes with 
large flows. This makes it more difficult to solve. For every problem size the four instances 
correspond to one of the four possible combinations, LL, LT, TL, and TT. The number of hubs 
p in tested instances is between 2 and 5. The instances for n > 25 in LT and TT must have at 
least 3 hubs. Thus, there are 20 and 18 instances for loose and tight capacity type problem, 
respectively. The cost parameters are  = 3,  = 0.75, and  = 2.  

After a preliminary test, we set the following parameter values: e = 25,  = 0.001, and 
Itermax = 1000. Tables 1 to 4 show the results of Gurobi optimizer and our Lagrangian 
relaxation (LR) approach for all instances. Columns 1 and 2 are number of nodes n and 
number of hubs p. The optimal solutions and computational time obtained by Gurobi 
optimizer are listed in columns 3 and 4. Columns under LR indicate the best upper bound and 
computation time by our LR. The Gurobi can only solve the instance up to 25 nodes (n  25). 
For the instances with more than 25 nodes, the Gurobi optimizer cannot find the optimal 
solution within 2 hours (marked as a dash “-”). For instances with n > 25, we present the 
results from Ernst and Krishnamoorhy (1999) for the CSAHLP for comparison. The solution 
quality is evaluated as a percentage gap with respect to the optimal solution obtained by 
Gurobi as eq. (17).  
 

%100
Opt.

Opt. -solution  LR
gap  (17)

 
Table 1 provides the results for the LL instances. We observe that our LR can obtain the 

optimal solutions for all instances except 2 for n  25. For the instances with n > 25, LR can 
obtain the same results as those from Ernst and Krishnamoorhy (1999). The average gap of 
those instances with available optimal solution is only 0.29%. The computational time 
decreases as the number of hubs increases. 

Table 2 presents the results for the LT instances. As can be seen, the number of hubs 
must be at least 3 for instances with n > 25 in tight capacity. Our LR cannot find 2 optimal 
solutions for instances with n  25. The LR does not show good solution quality for instances 
with  n > 25 as those for loose type instances in Table 1. The average gap is 1.39% which is 
much higher than the loose capacity instances in Table 1. 

Table 3 provides the results for the TL instances. We observe that our LR can obtain the 
optimal solutions for all instances except 2 for n  25. For the instances with n > 25, LR can 
obtain the same results as those from Ernst and Krishnamoorhy (1999). The average gap of 
those instances with available optimal solution is only 0.04%.  
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Table 1. The results for the LL instances 

N p 
Gurobi LR 

Opt. time gap Time 

10 2 230008.5 1.14 0.00 25.28  
3 224250.1 1.21 0.00 2.32  
4 229172.6 1.32 0.00 2.31  

  5 239292.3 1.21 0.00 1.28  
20 2 234691.0 18.13 0.00 79.23  

3 239444.2 20.56 0.00 35.54  
4 251939.7 20.91 0.00 38.80  

  5 266745.2 19.00 0.00 15.18  
25 2 238978.0 87.19 0.00 190.37  

3 242437.2 88.64 0.55 132.29  
4 252716.6 123.20 0.00 64.91  

  5 263518.3 59.97 2.87 74.68  
40 2 241955.71a -c 0.00 18.97  

3 - b - - 17.10  
4 - - - 326.07  

  5 - - - 22.36  
50 2 238520.59 - 0.00 564.40  

3 - - - 530.10  
4 - - - 34.06  

  5 - - - 37.78  

Average 0.29 110.65  
a: Solution provided by Ernst and Krishnamoorthy (1999). 
b: Gurobi cannot solve the instance within 2 hours. 
c: The computational time is not available. 
 

Table 4 presents the results for the TT instances. As can be seen, the number of hubs 
must be at least 3 for instances with n > 25 in tight capacity. Our LR cannot find 4 optimal 
solutions for instances with n  25. The LR does not show good solution quality for instances 
with  n > 25 as those loose type instances in Table 1. The average gap for all instances is 
2.14%.  

Note that the LR is able to obtain optimal solutions in most of loose capacity type 
instances. However, the performance of our LR algorithm does not provide good solutions in 
tight capacity instances. The computational time is also not fast as we expected. The reason 
might be that we run the subproblems with Gurobi optimizer to optimality. It could occur that 
Gurobi spend long time to find the optimal solution. If we use other heuristic approach, the 
computational time could be reduced.  

 
 

5. CONCLUSION 
 
In this paper, we consider the capacitated single allocation p-hub median problem 
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(CSApHMP). The number of locations is not known priori, and the amount of flow collected 
in the hub is limited. We propose a Lagrangian relaxation that decomposed the problem into 
smaller subproblems that can be solved efficiently. Four sets of benchmark instances from AP 
hub data set are tested for our Lagrangian relaxation heuristic. The results are also compared 
with the Gurobi optimizer. 

Our LR algorithm is able to obtain good solutions for instances n  25. However, the 
performance is not as good for n > 25 instances. The present study shows that the LR is an 
effective method to solve CSApHMP, the multiple allocation of p-hub median problem 
(CMApHMP) that considers a more relaxed situation could be further discussed. Future 
research can apply the LR algorithm to solve the CMApHMP and for the real world problem. 
We can also add the local search to the solution found by LR to improve the solution quality, 
especially for the tight capacity instances. Other research direction might to develop 
metaheuristic algorithms, such as GRASP and ACO, to solve the problem.  
 

Table 2. The results for LT instances 

n p 
Gurobi LR 

Opt. time gap Time 
10  2  256048.6 1.17 0.00 46.87  

3  252973.6 1.05 0.00 137.65  
4  250992.3 1.03 0.00 22.91  

  5  261451.2 1.01 0.00 38.59  
20  2  253517.4 639.65 2.99 316.97  

3  257247.7 2079.15 3.18 18.39  
4  260678.9 269.24 0.00 280.05  

  5  274975.4 291.50 0.00 217.75  
25  3  276372.5 751.32 0.00 1494.30  

4  278235.0 271.99 0.00 1862.89  
  5  284952.6 73.54 0.00 377.67  

40  3  272218.32 a -c 5.36 289.24  
4  - b - - 28.38  

  5  - - - 303.53  
50  3  - - - 665.93  

4  272897.49 - 6.30 49.98  
  5  - - - 41.33  

Average 1.37 364.26  
a: Solution provided by Ernst and Krishnamoorthy (1999). 
b: Gurobi cannot solve the instance within 2 hours. 
c: The computational time is not available. 
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