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Abstract: we present a methodology of estimating dynamic link flows and origin-destination 

matrices using lower polling frequency probe vehicle data (e.g. one point every 30-60s). Link 

travel time is first obtained from map-matched probe points using a method of proportional 

allocation. A derived speed-density function is then fitted for different types of roads. A 

Bayesian method that carefully incorporates prior information is used to estimate dynamic 

link flows from link travel speed. A bi-level generalized least-square (GLS) estimator is 

formulated so as to estimate dynamic OD matrices from estimated link flows. A traffic 

simulator in VISSIM is developed for a median size urban network using an open data set. 

The results validate the advantages of the proposed method for lower polling frequency probe 

vehicle data. 

Keywords: Probe vehicle, Dynamic link flows, Dynamic origin-destination matrices 

1. INTRODUCTION

Origin-destination (OD) matrix, which contains information on the number of travelers that 

commute or the amount of freight shipped between different zones of a region, is an essential 

element of network based traffic models. Specifically, dynamic OD matrices are one key 

input to dynamic traffic assignment (DTA) models for analysis and management of urban and 

suburban congestion problems (Ashok, 1993, Ashok, 2002). Usually, these matrices are 

estimated from time-dependent link traffic flows, since obtaining them directly is neither 

practical nor economically feasible. Link traffic flow is an important parameter used to 

quantify demand on a road, and it is commonly collected by using roadside (fixed) 

infrastructures such as inductive loops, radars, video cameras, etc. However, installation of 

these infrastructures needs an enormous expense, only a subset of links can be covered by 

them. Further, these infrastructures and gathered link counts are managed exclusively by road 

authorities; therefore, planners and researchers cannot use the data freely. Fortunately, this 

situation has been changing for years due to the availability of probe vehicle techniques and 

other mobile sensors. 

With global positioning system (GPS) device installed, a moving probe vehicle can 

provide its information of link and path travel time, trajectory, origin and destination points. 

Obtaining these data is not limited in a subset of links by fixed infrastructures, but dynamic 

and widespread in the whole road network. There are two inevitable issues on using probe 

vehicle as traffic information collection tool. One is that the level of penetration is currently 
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low (1%-3%) for probe vehicles (e.g. taxis, delivery vehicles). The widely used Smartphone 

in recent years brings a rapid increase of the level of penetration for cellular phone based 

probe vehicles. It is likely that a 10% of penetration will become a reality in coming years 

with the development of various technologies. The other is the polling frequency is usually 

low (e.g., one point every 1-2 minutes) for both dedicated and cellular phone based probe 

vehicles. This fact is less likely to change in near future, since high polling frequency would 

give rise to high expenses and fast energy consumption of battery in GPS device. 

Probe vehicle data has been used to estimate link flows in a few studies. Yamamoto et 

al. (2009) proposed a Bayesian method to infer link flow from prior and current link speed 

distribution. Caceres et al. (2012) presented a set of models for inferring traffic volume by 

means of anonymous call data of phones. However, the inferred traffic volume actually is not 

link flow for a road segment but the number of vehicles from one cell to another.  

More studies have been conducted to estimate OD matrices from probe vehicle data. 

Van Aerde et al. (1993) estimated the level of penetration by calculating the ratio of probe 

vehicles in the population in aggregated time intervals for links, and then estimated dynamic 

OD matrices using the origin and destination points of probe vehicles and the estimated 

penetration. Eisenman et al. (2004) proposed a method of estimated static OD matrices based 

on traffic assignment, in which link choice ratios are inferred from probe route data. 

Ásmundsdóttir et al. (2010) discussed the rules of determining origins and destinations, route 

choice and trip length distribution within probe data from taxies, and then proposed a method 

of estimating dynamic OD matrix from archived data and real time data. Nonetheless, the 

results didn’t support the proposed method well. These methods attempt to develop a direct 

estimation process based on the assumption of random sampling. But in practice probe 

vehicles are from one or several types of vehicles (taxis, delivery vehicles, etc.) and 

consequently are not a random sample from the population. To avoid the assumption of 

random sampling, Yamamoto et al. (2009) suggested a two-step indirect framework. In the 

first step, they inferred link flows from probe vehicle speed using two Bayesian methods; then 

they updated the target OD matrix using an entropy maximization method. However, they 

didn’t treat the variances of estimated link flows in a statistical manner and the results didn’t 

validate the advantage of applying Bayesian methods in estimating the link flow. To address 

these deficiencies, Cao et al. (2013) improved Yamamoto’s two-step method by formulating a 

bi-level generalized least-square estimator in the second step. The results validated the 

importance of carefully treating the variances of estimated link flows. 

Almost all existing methods of estimating link flows and OD matrices using probe 

vehicle data either utilized the accurate link travel times from high polling frequency probe 

vehicle points, or ignored the effect of polling frequency on the derived link travel times (Van 

Aerde, 1993; Eisenman, 2004; Ásmundsdóttir, 2010; Yamamoto, 2009; Cao, 2013). However,  

It is less likely a probe vehicle directly records link travel times, since the two consecutive 

polled positions do not necessarily correspond to the end points of individual links. Methods 

have been proposed to decompose travel times measured by probe vehicles into individual 

road segments (Hellinga, 2008; Zheng and Van Zuylen, 2012). These researches indicate the 

link travel time become less reliable when it is derived from lower polling frequency probe 

vehicle points. This paper analyzes the effects of polling frequency and method of 

decomposing travel time on the derived travel time, and then explores method of estimating 

dyamic link flows and OD matrices from lower polling frequency probe vehicle data (e.g. one 

point every 30-60s). 

This paper first discusses the issue of decomposing probe vehicle travel times into 

individual links, and then proposes a method of estimating dynamic link flows and OD Matrix 

sequentially. The proposed method is expected to give reliable estimates for lower polling 
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frequency probe vehicle data. 

 

2. METHODOLOGY 

 

The raw probe vehicle data are series of track points including location, time. Usually, it 

requires procedures of map-matching and travel time allocation before link travel time being 

obtained. This research starts from the map-matched probe data, discusses travel time 

allocation that is directly related with polling frequency. To build a bridge between link travel 

time and link flow, we derive link performance function based on the density-versus-space 

mean speed (k-v) curve. Then dynamic link flow is inferred using Bayesian inference. Finally, 

a bi-level generalized least squares (GLS) estimator is used to obtain the dynamic OD 

matrices. Therefore, the methodology includes four steps: travel time allocation, link 

performance function fitting, dynamic link flows estimation and dynamic OD matrices 

estimation. 

 

2.1 Step1-Travel Time Allocation 

 

In principle, it’s no necessary to allocate travel time from high polling frequency (e.g. one 

point every 1s) probe vehicle data. Whereas travel time allocation should be taken carefully 

for lower frequency data, since the two consecutive polled positions do not necessarily 

correspond to the end points of individual links. Hellinga et al. (2008) proposed an analytical 

method of travel time allocation by recognizing that vehicles are more likely to incur stopping 

delay at the downstream rather than upstream end of a link, especially when the link is 

influenced by a traffic control device. Soon afterwards, Zheng and Van Zuylen (2012) 

presented a three-layer Artificial Neural Network (ANN) model and got higher accuracy 

estimates than Hellinga’s model. However, both models are not capable for network 

application in that it’s difficult to determine the parameters for them. In Hellinga’s model, 

there are two unknown model parameters that are used to reflect the stopping likelihood 

pattern of a link. In Zheng’s model, all parameters are learned from very high polling 

frequency data (one point every 0.3s), while this kind of data are not available in practice.  

To our knowledge, most existing probe vehicle systems still use a simple but practical 

method to obtain link travel time, in which uniform motion is assumed (Miwa et al. 2004). 

From the perspective of practical applications, we also use this method described as follows. 

 
Figure 1 Calculation of link travel time using probe vehicle data 

In Figure1, we assume raw probe data have been map-matched onto road, A and B are 

intersections which are controlled by traffic signals. 𝑡𝑎 , 𝑡𝑏 ,  𝑡𝑐 , and 𝑡𝑑  are the time 

recorded by the probe vehicle. 𝑡𝐴 and  𝑡𝐵 are the time a probe vehicle departs intersection A 

and B respectively, which need to be estimated. 

Assume a probe vehicle travels in uniform motion between 𝑡𝑎 and 𝑡𝑏, and between 𝑡𝑐 

and 𝑡𝑑, then 𝑡𝐴 and  𝑡𝐵 can be estimated by: 

L1 

A B 

L2 L3 L4 

ta tb tc td 
tA tB 

Map matched probe point Intersection 

Traffic Direction of Movement 
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𝑡�̂� =
𝑡𝑎∗𝐿1+𝑡𝑏∗𝐿2

𝐿1+𝐿2
                                   (1) 

𝑡�̂� =
𝑡𝑐∗𝐿3+𝑡𝑑∗𝐿4

𝐿3+𝐿4
                                   (2) 

Then the travel time of link AB is calculated by: 

𝑇𝐴�̂� = 𝑡�̂� − 𝑡�̂�                                    (3) 

This method actually allocates travel time according to the distance between probe 

point and intersection point, thus we call it proportional allocation in this paper. Proportional 

allocation can be easily applied to various kinds of probe vehicle systems in spite of probably 

resulting inaccurate link travel times. Moreover, it has a special function of reducing the 

variance of the derived link travel time. It can be illustrated with an example using Figure 1 in 

the following. 

Note that the following calculation is just an illustration example. Without loss of 

generality, we assume the time of a vehicle entering in link AB 𝑡𝐴 is known, the time of this 

vehicle leaving the link should be calculated using equation (2). Intersection B is controlled 

by a traffic signal with 30s red light of 60s cycle. A probe vehicle enters link AB at 

𝑡𝑎 = 100s, and runs at a constant speed of 10m/s or stops at the intersection B waiting for the 

red light. And the polling frequency is one point every 60s. The length of link AB is 300m, 

values of 𝐿3 and 𝐿4 depend on the time when probe vehicle sends data. Since the red light 

is the main factor causing a vehicle to stop, we consider two extreme situations: no stop, stop 

when red light begins.  

Situation 1: No stop 

In this situation, a vehicle always maintains a speed of 10m/s, and experiences the 

minimum delay. A probe vehicle sends one point on 𝑡𝑐 = 115s and 𝑡𝑑 = 175s, then we can 

calculate 𝐿3 = 150m, 𝐿4 = 450m, 𝑡𝐵 = 130s, thus 𝑇𝐴𝐵 = 𝑡𝐵 − 𝑡𝐴 = 30s. If only 𝑡𝑎 and 

𝑡𝑑 are assumed known, 𝑡𝐵 is estimated using equation (2), then 𝑡�̂� = 130𝑠, 𝑇𝐴�̂� = 30𝑠. We 

can see the estimated link travel time 𝑇𝐴�̂� equals the true link travel time 𝑇𝐴𝐵 in this case 

Situation 2: stop when red light begins 

A probe vehicle travels at a speed of 10m/s, and then stops at intersection B waiting for 

30s of red light, finally leaves link AB at the speed of 10m/s. In this situation, the vehicle 

experiences the maximum delay. The probe vehicle reports 𝑡𝑐 = 115s and 𝑡𝑑 = 175s. We 

can calculate 𝐿3 = 150m , 𝐿4 = 150m ,  𝑡𝐵 = 160s , thus 𝑇𝐴𝐵 = 𝑡𝐵 − 𝑡𝐴 = 60 s. Using 

equation (2-3), we can estimate 𝑡𝐵 as 𝑡�̂� = 145𝑠, 𝑇𝐴𝐵 as 𝑇𝐴�̂� = 45𝑠 Thus, in this case the 

estimated link travel time 𝑇𝐴�̂� is smaller than the true link travel time 𝑇𝐴𝐵. 
From the above calculation, we know the true link travel time 𝑇𝐴𝐵 is distributed in 

range of [30𝑠, 60𝑠], whereas the estimated link travel time using proportional allocation 𝑇𝐴�̂� 

is distributed in a smaller range of [30s, 45s]. Therefore, the variance of estimated link travel 

time using proportional allocation is smaller than that of true link travel time.  

 

2.2 Step2-Link Performance Function Fitting 

 

Link performance function builds a bridge between link travel time and link flow. The 

average and variance of link flow can be estimated from link travel time if the performance 

function is given. We have known the basic relation: 

𝑞 = 𝑘�̅�                                             (4) 

where 𝑞 is link flow, 𝑘 is vehicle density, �̅� is space mean speed. 

The density 𝑘 cannot be directly obtained from probe vehicle, but can be estimated 

from space mean speed using a k-v function. From Gazis’s nonlinear follow-the-leader model 

(Gazis et al. 1961), we derive a k-v function: 
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�̅� = 𝑣𝑓𝑒𝑥𝑝 (−𝛼 (
𝑘

𝑘𝑗
)

𝛽

)                                   (5) 

where 𝑘𝑗 denotes the jam density, 𝑣𝑓 denotes the free flow speed and 𝛼 and 𝛽 are 

parameters. 

This formula is essentially a generalized version of the Underwood model (Underwood, 

1961). As indicated by Wu et al. (2012), the fundamental diagram is significantly affected by 

signal timings in the case of an urban road, and thus the speed-density relationship is different 

from that for a highway. It should be noted that the derived function is a little different from 

the one given in Yamamoto et al. (2009), where link capacity 𝐶 replaces jam density 𝑘𝑗, and 

𝛼 and 𝛽 have different meanings. The above formula is applied in this study, because 𝑘𝑗 

can be easily set for a particular link as the length of the link divided by the average vehicle 

spacing.  

In a probe system, link travel times and thus link speeds can be easily obtained in 

real-time in aggregated time intervals. However, the observed link travel speed of probe 

vehicle is not necessarily identical to the mean speed, since the speed of a probe vehicle 

depends on the arrival flow rate and distribution, traffic signal timings and arrival time 

(Hellinga and Fu, 1999), which are random variables. So the link speed of probe vehicle 𝑖 in 

time interval 𝑡 is regarded as a random variable distributed around the mean speed �̅�𝑡: 

𝑣𝑡
𝑖 = �̅�𝑡 + 𝜀𝑡

𝑖                                                        (6) 

where 𝜀𝑡
𝑖 is an error term. 

Assume that 𝜀𝑡
𝑖 follows a normal distribution 𝑁(0, 𝑠𝑡), then the probability density 

function of 𝑣𝑡
𝑖  can be given as 

𝑓(𝑣𝑡
𝑖|�̅�𝑡, 𝑠𝑡

2 ) =
1

√2𝜋𝑠𝑡
𝑒𝑥𝑝 {−

(𝑣𝑡
𝑖−�̅�𝑡)

2

2𝑠𝑡
2 }                                   (7) 

A Lagrangian likelihood function can be constructed for equation (7) into which 

equation (5) is substituted, then parameters 𝑣𝑓, 𝛼, 𝛽 and 𝑠𝑡 can be estimated using the 

maximum likelihood method. The reader is recommended to refer to Yamamoto et al. (2009) 

for more details of this procedure. 

 

2.3 Step3-Dynamic Link Flows Estimation 

 

To utilize prior information that can be obtained from archived probe data, a method based on 

Bayes’ inference theory, namely the Bayesian method, is used in this study. For each link at 

time interval 𝑡, the posterior mean and variance of the mean speed 𝑣1, 𝜎1
2 are given as 

𝑣1 =
𝜎0

−2∙𝑣0+𝑛∙𝑠−2∙�̂�

𝜎0
−2+𝑛∙𝑠−2                                                   (8a) 

𝜎1
−2 = 𝜎0

−2 + 𝑛 ∙ 𝑠−2                                               (8b) 
where 𝑣0,  𝜎0

2 are the prior mean and variance of the mean speed, respectively, and 

𝑣 is the average link speed of probe vehicles. 

Then using the posterior distribution of link speed, the link performance function and 

the relationship among link flow, traffic density and link speed as in equation (4), the 

posterior mean and variance of link flow, �̅� and 𝜎𝑞
2, are given as 

�̅� = ∫ 𝐾(𝑣) ∙ 𝑣 ∙ 𝑓(𝑣|𝑣1, 𝜎1)𝑑𝑣
∞

𝑣=0
                                      (9a) 

𝜎𝑞
2 = ∫ (𝐾(𝑣) ∙ 𝑣 − �̅�) ∙ 𝑓(𝑣|𝑣1, 𝜎1)𝑑𝑣

∞

𝑣=0
                                (9b) 

where 𝐾(𝑣) is the function of density k with respect to speed v solved from equation 

(5). 

Note that we obtain both the link flow and the variance using Bayesian method. The 
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variances virtually reflect the difference in the reliability of link flow estimates among links. 

In practice, a huge number of data can be obtained after a probe vehicle system has been 

running for several months. This make it possible get enough data for particular time of 

particular day on particular road, thus provide enough prior information for link speed 

distribution. 

 

2.4 Step4-Dynamic OD Matrices Estimation 

 

Existing methods of estimating dynamic OD matrix can be categorized into two classes: DTA 

(dynamic traffic assignment) -based vs. non-DTA-based, depending on whether a DTA 

component is incorporated into the estimation model (Chang and Tao, 1999; Peeta and 

Ziliaskopoulos, 2001; Zhou and Mahmassani, 2007). We focus on the DTA-based in this 

research in that it is recommended when dealing with complex network (Frederix, 2010). In 

this section, we describe a DTA-based bi-level GLS model. This is an extension of the 

iterative bi-level estimation framework proposed by Tavana et al. (2001a), and we adopt the 

same notation for variables in the model formulation that follows.  

We consider a traffic network where L is the number of sensed links, and I and J are 

the numbers of origins and destinations, respectively. We are interested in finding a feasible 

vector OD demand D for 𝛤 aggregated time intervals, given a target demand vector �̂�, and 

observed link flow vector �̂� for T observation time intervals. The assignment of the OD 

matrix onto the links in the network is made according to the link-flow proportion matrix 

𝑃 = {𝑝(𝑙,𝑡)(𝜏,𝑖,𝑗)}, 𝑙 = 1,2, ⋯ , 𝐿; 𝑡 = 1,2, ⋯ , 𝑇; 𝜏 = 1,2, ⋯ , 𝛤; 𝑖 = 1,2, ⋯ , 𝐼; 𝑗 = 1,2, ⋯ , where 

each element 𝑝(𝑙,𝑡)(𝜏,𝑖,𝑗) in the matrix represents the proportion of aggregated demand flow 

𝑑(𝜏,𝑖,𝑗) in aggregated time interval 𝜏 that flows on link 𝑙 during observation time interval 𝑡. 

Further, 𝑣(𝑙,𝑡) is the element of �̂� representing the observed link flow for link l during 

observation time interval t, and �̂�(𝜏,𝑖,𝑗)  is the element of �̂� representing the target OD 

demand for trips originating in zone 𝑖 in aggregated time interval 𝜏 with destination 𝑗. It is 

noteworthy that the duration of the aggregated time interval can be one or several departure 

time intervals, and the departure time interval is equal to the observation time interval. 

Similarly to the static case (Cascetta, 1984), the dynamic bi-level GLS estimator can 

be formulated as 

𝑚𝑖𝑛 𝐹(𝐷) = 𝜔(�̂� − 𝐷)
𝑇

𝑍−1(�̂� − 𝐷) + (1 − 𝜔)(�̂� − 𝑃𝐷)𝑇𝑊−1(�̂� − 𝑃𝐷)     (10) 

subject to 𝑃=assignment 𝐷 from DTA                                 (11) 

               𝐷 ≥ 0 

where 𝜔 is a weight factor, 𝑍 and 𝑊 are variance-covariance matrices. 

Weight factors (1 − 𝜔) and 𝜔 are used to reflect the decision maker’s preference or 

perceived importance for observed link flows and the target OD matrix. Generally speaking, if 

no target OD matrix or an unreliable OD matrix is provided, the value of  𝜔 should be small 

and vice versa. Usually, if no further perceptual information about observed link flows and the 

target OD matrix is known, 𝜔 is given a value of 0.5 for both terms to indicate no preference. 

In the objective function, both the distance between the estimated and target OD 

matrices and the distance between the calculated and observed link flows are considered, if 

both 𝑍 and 𝑊 are set to be the identity matrix 𝐼, our formulation will drop back to the 

ordinary least squares (OLS) presented by Zhou et al. (2003). Actually, 𝑊 was set to 𝐼 in 

Tavana’s experiments, so the benefit of 𝑊 has not been validated. In this paper, the merits of 

both Z and W will be carefully considered and implemented. 

As already noted, this proposed model is a DTA-based bi-level GLS estimator. This 

model is solved using an iterative solution procedure presented by Zhou et al. (2003). In each 
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iteration, we solve the upper level using a constrained algorithm which is first proposed for 

static OD estimation by Bell (1991) and extended to the dynamic case by Tavana (2001b), and 

for the lower level, we use the DTA module in VISSIM as the simulator. 

 

3. NUMERICAL EXPERIMENT AND RESULTS 

 

3.1 Study Network 

 

The network studied in this research is a western part of central Tokyo, namely 

Kichijoji-Mitaka area, which extends about 2 km from east to west and 1 km from north to 

south (Figure 2). This network consists of 138 links and 57 nodes, including four major 

north-south streets and two major east-west streets. Horiguchi et al.(1998) carried out a 

precise traffic survey on this network in morning peak period 7:00 am-10:00 am on 30 Oct. 

1996, and made an open data set. Link volume on 70 links were observed and totally 16,043 

vehicle trajectories are identified and, after data cleaning, link flows and OD demands for 

each 10-minute period for the effective time interval 7:50 am to 10:00am are derived. There 

are 26 origins and 26 destinations identified in this network. In addition to these data, 

geometry of most intersections and all signal timings can be also found in the 

Kichijoji-Mitaka open data set. We use this network not only because of the rather complete 

data set, but also because there are multiple routes for many O-D pairs. 

 
Figure 2 The Kichijoji-Mitaka network (Horiguchi, 1998) 

 

3.2. Traffic Simulator 

 

In order to reproduce the real traffic conditions, we develop a microscopic traffic 

simulator based on VISSIM using Kichijoji-Mitaka network and its data set. An equal scale 

road network is drawn on VISSIM. Network geometry including link lengths, number of lanes 

and link connectivity etc. is set the same as in reality. Parameters for the simulator, including 

signal timings and traffic controls are also set using the real data. The observed dynamic OD 

matrix is mapped onto the developed network to validate the simulator.  

The comparison between the developed simulator and the real traffic network is 

shown in Figure 3. Figure 3a is the scatter plot of observed link flows given by the Kichijoji 

Benchmark Data Set and simulated link flows obtained from the simulator for each 10-minute 
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period. The linear correlation coefficient between them is 0.8901, the slope of the linear fitted 

line is 0.9793, and the root mean square error (RMSE) is 13.56 vehs/10mins. We also select 

four links and observe dynamic link flows for various time intervals (Figure 3b). In Figure 3b, 

the red plots represent observed link flows while the blue plots represent simulated link flows. 

As we can see, the simulated link flows fits the observed values well. These results suggest 

that the simulator is able to reproduce real traffic conditions with high accuracy, although a 

better simulator would be obtained if more parameters of the true network, such as lane 

widths, stop line locations and road gradients were available. 

 

 

 
  

  
Figure 3a Scatter plot of observed and simulated 

link volume for each 10-minute period 

Figure 3b Link flows comparison for all time 

intervals. x-axis is the aggregated time interval, and 

y-axis is link flows per 10minuts 

Figure 3 Validation of the developed simulator 

 

3.3 Link Flow Estimation 

 

Utilizing the developed VISSIM simulator, we can simulate the traffic within certain ratio of 

probe vehicles. Before implementing this simulator, we make assumptions of system as 

follows: 

 Single class vehicles. All vehicles are assumed passenger vehicles with standard 

vehicle properties like length and width. Multi-class vehicles in the original network 

have been converted using vehicle conversion factors (Horiguchi, 1998). 

 Driving behavior. We use the psycho-physical model of Wiedemann 74 (1974), 

which classifies four driving states: free driving, approaching, following and braking. 

Wiedemann 74 is applicable for inner urban road traffic. We assume free lane 

changing for vehicles which would change lane for larger traveling space or higher 

traveling speed. This means overtaking is permitted at any lane as long as conditions 

are satisfied.  

 Dynamic traffic assignment. All vehicles are not equipped route guidance devices, 

thus make route choice decision only based on cost in previous iteration. We assume 

that driver chooses not only the optimal route but also a series of feasible routes. 

The probe ratio is set 0.1 in the experiment. The simulation time is the morning peak 

period from 7:50am to 10:00 am, the length of aggregate time interval is assumed 10 minutes, 

and thus there are 13 time interval during the simulation time.  

In principle every link has its own performance function, which is affected by factors 
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like number of lanes, width and length of link and signal timings at intersections. However, in 

practice there is usually not enough data for determining performance function for each link. 

Considering the practical application, we choose number of lanes as the only criterion that 

distinguishes one link from another. Thus, two types of link are identified for the study 

network according to the number of lanes: roads with one lane and roads with two lanes in 

one direction. Then the link performance functions and k-v functions for them are obtained 

using method described section 2.2. The calibrated link performance functions and k-v 

functions are then used to estimate dynamic link flows using Bayesian method in section 2.3. 

In the Bayesian method, prior distributions of vehicle speed are aggregated over each 10 

minutes. 

 
Figure 4 RMSE of estimated link flows 

Figure 4 shows the RMSE of estimated link flows using various polling frequencies 

probe data. As we can see, the polling frequency does affect the accuracy of link flow 

estimation. Along with the polling interval becoming longer (i.e. the polling frequency 

becoming lower), the RMSE of estimated link flows decreases before polling interval is 50s, 

later begins to slow down. Further, we obtain acceptable estimates of link flows with RMSE 

24.6 veh/10 minutes when polling interval is longer than 50s. In other words, using the 

proposed Bayesian method, the longer polling interval would produce higher accuracy 

estimated link flows. 

In order to get insight of estimation results, we plot scatter figures of true link flow 

and estimated link flow for four different polling intervals: 1s, 10s, 30s and 60s (figure5). In 

figure 5, we also demonstrate the distribution of estimate with different 𝜎1 value ranges (the 

variance of posterior link speed distribution calculated by equation 8b) denoted by different 

tags. We can observe from these figures that the scatter plots become more concentrated on 

the diagonal line for each 𝜎1 value range with the increase of polling interval, and the 

correlation coefficient R becomes larger. Therefore, we can obtain the conclusion that the 

estimate link flows are more accuracy for longer polling intervals, which consists with that 

from figure 4. Additionally, from all plots in figure5 we can see the trend that the 𝜎1 increase 

with the decrease of link flow and this trend is clearer for longer polling interval. The reason 

can be found in equation (8b). There are more probe vehicles observed in certain time interval 

for links with higher volume of flow. The increase of number of probe vehicles n would bring 

the decrease of 𝜎1 in equation (8b).  
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Polling Interval: 30s Polling Interval: 60s 

Figure 5 scatter plots of true and estimated link flows for various polling intervals 

These results show that the link flow estimates are more accurate for longer polling 

intervals than shorter polling intervals. The reason lies in the proportional allocation in 

dealing with signalized intersection. Short polling interval probe data might incorrectly reflect 

the traffic condition in some specific cases. For example, even in the free flow situation, a 

probe vehicle, which arrives at the intersection when the red signal begins, will report a long 

link travel time (free travel time + red signal time, thus low link speed). The reported link 

travel time from short polling interval reflects actual travel time of the vehicle but it will lead 

misunderstanding of the traffic situation in some cases. Suppose that penetration of probe 

vehicle is 0.1 and there are 100 vehicles passing an intersection in one cycle. Even when 50 

vehicles experience stop and 50 vehicles don't, it's possible that 8 probe vehicles experience 

stop and 2 probe vehicles don't stop. In this situation, the travel times from shorter interval 

data will lead biased traffic condition. In the long polling interval case, on the other hand, 

although the observed travel times will be relatively inaccurate, they are evened link by link 

and vehicle by vehicle and they can reflect actual traffic condition better than that in short 

polling interval case. As illustrated in section 2.1, the variance of derived link travel times 

from longer polling interval data using proportional allocation is smaller than that from 

shorter polling interval data regardless of free flow or congested flow. From these analyses, 

we can find that our conclusion is more suitable for the lower penetration of probe vehicle, 

since the randomness whether a vehicle experiences a stop is larger for small number of probe 

vehicles. Therefore, the proposed method is applicable for practice application, because 
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penetration of probe vehicle is usually low in reality. Although our method performs better for 

longer polling interval (lower polling frequency), it doesn't mean that very low polling 

frequency data (e.g. one point every 2-5 minutes) can still give better results. In reality, polled 

points become sparser and map-matching becomes much more difficult and for lower 

frequency probe vehicle data, which results less reliable information. Based on this 

consideration, it’s better for the proposed Bayesian method to be applied in the situation of 

lower polling frequency probe vehicle data (e.g. one point every 30-60s). 

 

3.4 OD Matrix Estimation 

 

In the OD matrix estimation experiments, the matching link flow estimation results are used 

as the observed link flows defined in the bi-level GLS estimator. And the variances calculated 

from equation (9b) are used as the variances of the observed link flows in matrix W of 

equation (10). A noise level of 50% is added to the true OD matrix and the resulting OD 

matrix is used as the target matrix. Therefore, the 50% dispersion in true demand is regarded 

as the variance of the target OD demand in matrix Z of equation (10). Co-variances of both 

the observed link flow and the target OD demand are assumed to be 0. The value of 𝜔 is 

assumed to be 0.5 as in most studies. The aggregated time interval for OD demand is taken to 

be the same as the departure time interval and observation time interval for link flows, which 

is 10 minutes. 

 
Figure 6 Results of dynamic OD matrices estimation 

Various polling intervals probe data are tested in experiments. Figure 6 shows the 

iterative process of OD estimation. The RMSE of calculated link flow and the RMSE of 

estimated OD flow are calculated in each iteration. According to the left graph of Figure 6, the 

calculated link flow is improved using all kinds of polling intervals probe data. The calculated 

link flow using polling interval 60s is slightly better than 30s, 10s and 1s. This trend can be 

observed more significantly for the estimated OD matrix in the right graph of Figure 6. It is 

clear that the reason is that the estimated link flows from longer polling interval are more 

accuracy than that from shorter polling interval demonstrated in section 3.3. All in all, the 

network traffic assigned from dynamic OD matrix is improved using the proposed four-step 

methodology, and implement using lower polling frequency probe data performs better than 

that using higher polling frequency probe data.  
 

4. CONCLUSION 

 

In this paper, method of estimating dynamic link flows and OD matrices using lower polling 

frequency probe vehicle data is explored. The probe data is assumed the map-matched points 

on the road network. We proposed a four-step methodology including: travel time allocation, 

link performance function fitting, dynamic link flow estimation and dynamic OD matrices 
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estimation. 

In the first step, method of proportional allocation is used to decompose probe travel 

time onto individual links. This method can be easily carried out for network application, and 

it has a function of reducing the variance of the derived link travel time. In the second step, 

link performance function is obtained from a derived speed-density function. The speed 

–density function is derived from Gazis’s nonlinear follow-the-leader model. The key feature 

of this function is that it only has four parameters, which are estimated using maximum 

likelihood method. We only classify links into two types by their number of lanes in the 

experiment from a view of practical application. If link performance function is known for 

each link, the estimate would be better. In order to estimate link flow, a Bayesian method that 

incorporates prior distribution of link speed is applied in third step. It has been shown that the 

Bayesian method can effectively use the prior distribution of vehicle speed accumulated from 

archived probe vehicle data, and produce an acceptable link flow estimate even if there is no 

probe vehicle observed in that link. In addition to the average value of link flow, the Bayesian 

method estimates the variance of estimated link flow at the same time (see equation 9b). 

Using the estimated link flow and its variance, we can implement the proposed bi-level GLS 

estimator to estimate dynamic OD matrices in the forth step. It is an extension of Tavana’s 

model, both the distance between the estimated and target OD matrices and the distance 

between the calculated and observed link flows are considered in the objective function. 

To make the proposed method more capable in application, we chose a commercial 

system VISSIM as the DTA simulator for a DTA-based dynamic OD matrix estimation model. 

This DTA simulator is developed according to a rather complete Kichijoji-Mitaka benchmark 

data set. Results show, the Bayesian method can give acceptable estimates of link flows, and 

bi-level GLS estimator can improve the original target OD matrices assumed in this research. 

Especially, the estimates become more accuracy for lower frequency probe data, which 

validates the proposed methodology is applicable to the cases of lower polling frequency 

probe data. As a whole, the proposed method can be applied in practice for estimating dyamic 

traffic state (link flow) and dynamic OD matrices using probe data, such as in probe 

vehicle-based dynamic route guidance system, or in situation that link counts are not 

available. 
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