
Empirical Approaches to Improve the Predictive Performance of Spatial 

Distribution Neural Network Models 

Gusri YALDI
a
, Michael A P TAYLOR

b
, Wen Long YUE

c

a
Civil Engineering Department, Padang State Polytechnic, Padang, Indonesia 25163 

E:mail: gusri.yaldi@yahoo.com 
b
School of Natural and Built Environments,

, 
University of South Australia, Adelaide

E:mail: michael.taylor@unisa.edu.au 
c

School of Natural and Built Environments,
, 
University of South Australia, Adelaide

E:mail: wen.yue@unisa.edu.au 

Abstract: Neural Network (NN) approach has been used for both people and commodity 

spatial distribution modeling since about two decades ago. However, this artificial intelligent 

based approach seemed to have the capability in calibrating the trip and commodity 

distribution only. It tends to have poor predictive capability when new datasets are used, 

especially for doubly constrained distribution models, where the information of the trip and 

commodity production and attraction is available. This paper reports empirical approaches 

integrated in a modeling framework used in order to improve not only the predictive 

capability of neural models for spatial distribution estimation, but also its calibration 

performance. A case study using US Commodity Flow Survey conducted in 2007 is used to 

implement those empirical approaches. Findings from this study suggest a promising 

improvement in the predictive capability of neural models.  

Keywords: Neural model, Modeling framework, Predictive capability, Commodity flow 

distribution 

1. INTRODUCTION

Due to its potential capabilities, NN has been adopted as a transportation modeling tool 

including as the traffic forecasting tool since 1990s (Dougherty, 1995). According to 

Cantarella and de Luca (2005), the NN has the capability to address three main demand 

simulation issues, namely (1) Trip generation, (2) Trip distribution, and (3) Modal split.  

Shmueli (1998) suggested that NN has some advantages that can overcome the 

problems faced by the behavioral or disaggregate models. Those advantages are (1) NN 

discovers the relationship between variables automatically (without using any function 

representing the relationship between those variables) and the fitting takes place naturally 

which is found to be a complicated task for a disaggregate model to specify, and (2) NN does 

not face the inaccuracy problem in the relationship of the models to the real choice of the 

travellers as faced by the disaggregate model, where the model outcome differs from the 

reality. In addition, NN directly works on the data without the aid of additional models. 

Further, Shmueli et al. (1996) suggested that NN is relevant for addressing the problems 

requiring large scale, highly dimensional data analysis.  
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2. PREDICTIVE CAPABILITY 

 

The initial utilization of neural network spatial distribution model for strategic forecasting 

was reported by Chin et al. (1992) as described by Dougherty (1995). The next one was 

reported by Black (1995). Both studies suggested promising results. The latter study 

compared the gravity and neural models, where neural models are developed based on the 

traditional form of the gravity model. Although both gravity and neural models produce good 

results, the neural models are found as a better calibration tool and recommended for future 

flow forecasting. 

Mozolin et  al. (2000) reported another strategic forecasting by neural models. The 

difference between the studies by Black (1995) and Mozolin et al. (2000) is that Black (1995) 

used neural models to calibrate the commodity and migration flows, while Mozolin et al. 

(2000) extended the analysis to the predictive/testing level. It was reported the neural model 

has poor generalization performance. Both studies developed neural models based on the 

structure of the traditional doubly constrained gravity model. 

The common things from previous neural model studies generally suggested the neural 

model is good for calibration, however, it is not recommended for predicting trip distribution 

numbers for new datasets as its predictive capability is claimed as poor. However, a recent 

study by Yaldi et al. (2011b) suggested that the neural model predictive capability can be 

improved to the same level as the doubly constrained gravity model. 

 

 

3. MODELING PROCEDURE ISSUES 

 

Basically, the former neural models were developed in relatively the same modeling 

procedures. It starts from specifying the model architecture, number of layers, number of 

nodes for each layer, training algorithm (TA), and the activation function (AF). It is followed 

by training the model based on the specified input and target data. Prior to the training, the 

data must be normalized. These two major steps (model specification and training) are the 

steps to calibrate the doubly constrained trip distribution neural models.  

The properties of the neural models such as the number of layers, TA, and AF could be 

different. The calibration results tend to outperform other modeling techniques such as the 

gravity (Black, 1995) and Box-Cox (Celik, 2004b) models. This is likely because the model 

was trained with an excessively number of epochs like 150000 and 100000 iterations.  

Training the neural models with these high epoch numbers could cause over fitting.  

Different properties of neural models for trip distribution estimation may lead to 

different performance of its testing outputs as indicated in the study reported by Mozolin et al. 

and Yaldi et al. (2011b). The first study claimed neural models had a poor predictive 

capability, while the second one reported an opposite results. It used Quickrop TA, an ad hoc 

and heuristic modified backpropagation (BP) version, and Levenberg-Marquardt (LM) 

respectively. Details on LM can be found in (Hagan and Menhaj, 1994a).  

The main reason behind this inconsistent testing performance of neural models is 

because there is no guideline or standardization for using NN for people and commodity 

distribution modeling. Therefore, Yaldi (2012) proposed a neural network modeling 

framework for a trip distribution model as illustrated in Figure 1. It contains the procedures in 

developing the neural models and its application for new datasets. This modeling framework 

is developed based on empirical works and comprehensive literature reviews on the NN and 

its application.  
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1. MODEL SPECIFICATION 

PROPOSED NEURAL NETWORK MODELING FRAMEWORK FOR TRIP 

DISTRIBUTION MODELING 

2. MODEL TRAINING 

 

 

1.1 Network architecture 

1.2 Number of layers 

1.3 Number of nodes for each layer 

1.4 Training algorithm 

1.5 Activation function 

 

2.1 Data split  

 Training dataset 

 Validation dataset 

 Testing dataset 

2.2 Data normalization 

2.3 Mode of training 

2.4 Over training/over fitting 

2.5 Initial weight configuration 

3. MODEL APPLICATION 

4. MODEL OUTPUTS USAGE FOR PLANNING PURPOSES 

 MLFFNNN 

 Input, output, and single hidden layer 

 Depends on the independent and 

dependent variable. 5-15 nodes is 

recommended for hidden layer 

 Levenberg-Marquardt (LM) 

 Logsig for all nodes 

 Random zone based 

 Linear and nonlinear transformation 

 Batch mode 

 Provide validation dataset or limit the 

maximum epoch number and hidden node 

number 

 Maximum epoch is recommended not 

more than 500 

 Randomly select within [-1,+1] 

 

 Random zone based 

 Back scale by using the neural model 

output directly 

 Balance the output by directly use the 

neural model outputs, total trip 

production, and total trip attraction data 

 Larger size and more complex problems 

can be easily modelled by NN. The only 

concern is data preparation 
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3.1 Data preparation 

 Data split 

 Data normalization 

3.2 Output back scale 

3.3 Output balancing 

3.4 Larger number of zones 

 

Generally, the previous studies constructed the neural models and calibrated them based 

on this framework. For examples are the network architecture, number of layers, and number 

of nodes for each layer. Those three sub aspects have a common feature in trip distribution 

modeling as depicted by Figure 2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Modeling procedures and recommendations 

 

Figure 2 illustrates the common multi layer feed forward neural network (MLFFNN) 

used in trip distribution neural models. Three input nodes are attached to this model to store 

the input vector, namely total trip/commodity produced in zone ‘i' and attracted to zone ‘j’ (Oi 

and Dj), and the distance between them (dij). One node is used in the output layer to store the 

target vector (tij) and the estimated trip numbers or commodity tonnage (Tij). There is one 

hidden layer between input and output layer, where the number of nodes in this layer (h) is 

arbitrarily defined. This layer is connected with randomly defined connection weights, wji and 

wkj.  

To train the model, LM is recommended as the training algorithm. It has been proven to 

be a fast and efficient TA (Wilamowski et al., 2001). It was also found that the LM algorithm 

can converge in various cases where the Variable Learning Rate (VLR) and also other forms 
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of second order approach like the conjugate gradient TAs are failed to converge (Hagan and 

Menhaj, 1994b). Yaldi et al. (2010a) found that LM calibrates the trip distribution matrix with 

a statistically significant higher accuracy than VLR and BP. In addition, this algorithm would 

be suitable for modeling spatial interaction as the network structure requires fewer connection 

weights, based on the number of nodes in the input, hidden and output layers. Meanwhile, 

logsig is recommended for the AF in all nodes as it transforms all of the numbers into positive 

value within [0, 1], and this is suitable for trip number data (Yaldi et al., 2009a). All data is 

normalized nonlinearly by using the logsig function, the same function as the AF. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Common neural model architecture 

 

3.1 Transforming Input Data Nonlinearly 

 

To estimate trip number distribution by using a neural model, an iterative procedure is used to 

minimize error (difference/diff) between estimated and real trip numbers. The difference is 

computed as:  

 

diff  = Network output – Observed trip number 

  = Tij – tij         (1) 

 

When logsig function is used to transform the neural model outputs in both hidden and 

output layers, it means the results are nonlinearly normalized. Thus, the difference is 

computed as the gap between the nonlinearly transformed trip numbers (Tij) and real trip 

numbers (tij), which is linearly normalized. Thus the difference becomes the gap between 

nonlinear model output and the linear target pattern, or: 

 

   = (Non-Linear) Tij – (Linear) tij      (2) 

 Unmatched! (Systematic error) 

 

This is incorrect as the comparison should be based on the same basis, i.e. nonlinear 

output data against nonlinear target pattern. Wilamowski et al. (2001) and Hagan & Menhaj 

(1994b)  described that the gradient of the neural models trained with LM is a function of the 

Jacobian transpose and the error. This will affect the computation of the gradient. It can stop 

the training process earlier and so influence its performance. There is a systematic mismatch 
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in the difference computation in the above equation. Therefore, it needs to be corrected so 

that: 

 

Corrected diff = (Non-Linear) Tij - (Non-Linear) tij     (3) 

Matched!   

 

Zhang (1998) investigated the properties of neural models used in different research 

projects. Some research was reported as using logistic functions in data normalization due to 

the type of activation function used in the output node. The normalization is undertaken prior 

to the training process, so that the outputs of the neural models will be in the same state as the 

target vectors. This requires transforming the data to either logsig or double logsig function, 

which can be expected to benefit the neural model performance. However, this research 

applied this correction for the target vector or observed trip numbers (tij) only.  

 

3.2 Neural Model Output Balancing 

 

There is another important issue related to the neural model for trip distribution. Mozolin et 

al. (2000) and Yaldi et al. (2009b) both reported that the neural model outputs for row and 

column totals are different from the observed values. Mozolin et al. (2000) actually balanced 

the neural model output before comparing the results with the doubly constrained gravity 

model. It indicated that the importance of the constraints to be satisfied in neural model 

testing performance. However, lack of effort was devoted in this essential issue. In addition, 

balancing output itself is inadequate. It must be preceded by the data which has to be in the 

square form as the doubly constrained O-D matrix. 

This study proposes a balancing method for the neural model output which is applicable 

for both calibration and testing levels. It is somewhat similar to the Furness method (Ortuzar 

and Willumsen, 1994). The difference is the balancing is undertaken directly with the output 

generated by the neural model.  

These balancing procedures are also different from the balancing procedures undertaken 

by Mozolin et al. (2000). The balancing is undertaken by directly using the neural model 

outputs. Therefore, it does not require multiplication with any normalization factors. The 

matrix form for calibration, validation, and testing datasets is preserved. The data is randomly 

selected based on the random zone number. This is different from the procedures in Mozolin 

et al. (2000), Yaldi et al. (2009b), and Shir-mohammadli et al. (2010) which randomly 

selected the data from the whole samples, so that the matrix form is unpreserved (termed as 

random vector basis). Thus, the random zone number method will enhance the balancing 

procedures for the neural model outputs (see Yaldi (2011b) for more detail on random zone 

method). 

The disadvantage of the method used in the previous research is that it is difficult to 

measure whether the model outputs are able to satisfy the Oi and Dj constraints. Both studies 

by Mozolin et al. (2000) and Yaldi et al. (2009b) reported that the neural model’s ability to 

satisfy both Oi and Dj constraints was inadequate. 
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3.3 Random Zone Data Split Method 

 

The data for calibration and testing is divided on the basis of random zone number in order to 

maintain the square form of the O-D matrix and hence improve the neural model testing 

performance. It is unlikely the model output can automatically fulfill the Oi and Dj 

constraints. Thus, it will negatively influence the performance of the neural models. 

Therefore, an alternative data split method is proposed, that is compatible with the 

characteristics of the spatial interaction data and model. The data split is undertaken by 

randomly selecting a zone number for three blocks instead of randomly selecting the data 

pattern directly, and then forming the data vectors for each block. The details for this method 

can be found in Yaldi et al. (2011b). 

The advantage of this technique is the performance of the neural model toward Oi and 

Dj constraints can be assessed and should contribute positively to neural model performance 

in forecasting the trip numbers for an unseen dataset (generalization ability). 

All these three aspects (the nonlinear transformation, output balancing, and random 

zone based split methods) are expected to refine the performance of neural models, not only at 

the calibration level, but also at the testing level. Please note that the balancing commences 

after all of the trials are completed. 

Training is conducted in batch mode, where the connection weight is updated after all of 

the input patterns are presented to the network. To prevent over fitting, training is 

recommended not more than 500 epochs. 

After the training, the model is ready for forecasting trip or commodity distribution of 

new datasets. Given the data of the total trip or commodity produced and attracted in zone ’i ‘ 

and ‘j’, the neural model can predict the doubly constrained trip number or commodity 

tonnage (Tij) distribution. The same as doubly constrained gravity model, the neural model 

outputs require to be balanced. The Furness technique can be adopted (Ortuzar and 

Willumsen, 1994). Finally, these procedures can be easily used for larger and more complex 

problems of spatial distributions. 

 

 

4. CASE STUDY WITH US 2007 CFS DATA 

 

The procedural steps as illustrated by Figure 1 are rigorously followed in developing the 

neural model for commodity distribution in this paper. This model uses the US Commodity 

Flow Survey (CFS) data, collected in 2007, and extends the neural model evaluation to the 

testing level. For model benchmarking purposes, the neural model is compared with the 

gravity model, as in the previous studies. The calculation of the gravity model is conducted 

rigorously, especially during the calibration and balancing process. The Hyman (1969) 

algorithm is used to calibrate the gravity model. 

 

 

4.1 The Neural Model Properties 

 

The information regarding the properties of the neural model used to forecast commodity 

distribution based on the 2007 US CFS is reported in Table 1.  

 

 

 

Proceedings of the Eastern Asia Society for Transportation Studies, Vol.9, 2013



Table 1. Commodity neural model properties 
Property Remark 

Model architecture Multi layer feed forward neural network/MLFFNN 

Number of layers 3 layers (Input, Hidden, and output layers) 

Number of input nodes 3 nodes (Commodity total  production, attraction, and estimated length) 

Number of hidden nodes 10 nodes 

Number of output nodes 1 node (estimated commodity tonnage) 

Training algorithm Levenberg-Marquardt (LM) 

Activation function Sigmoid (Logsig) 

Data split ‘Random zone based’ 

Data normalization ‘Simple mix’ (simple linear and logsig transformation) 

Mode of training Batch mode 

Initial weight method Closed random [-1, +1] 

Maximum epoch number 500 epochs 

 

 

4.2 Model Data 

 

The data is based on 2007 US CFS. The data is available online thanks to the US Census 

Bureau which can be accessed on the http://www.census.gov/. There are 42 different 

commodity groups. Initially ten commodities were selected; however, only four commodities 

are used to test the applicability of the proposed framework. This is because the information 

on commodity tonnage is only available for a few zones and hence was considered ineffective 

to be modeled. Some of the data shows that the commodity flows were reported for intra 

zonal flows only. For the distance between each zone, it is roughly estimated and obtained 

from http://www.bing.com/maps/.  

The commodity groups which are used in this research are reported in Tables 2 and 3. 

These groups have more data than other groups. The data is sparse with the number of zones 

reported without commodity flows (zero trip zones) reaching up to 84 per cent of the total 

flows. Table 2 shows the commodity code, name, and the terms used for each commodity. 

Meanwhile, Table 3 shows the total tonnages for each commodity in ton thousand/year.  

 

Table 2. Commodity code and name 
Commodity 

code 

Commodity name Remark 

05 Meat, fish, seafood, and their preparations Termed as C05 

06 Milled grain products, and preparations and bakery products Termed as C06 

07 Other prepared foodstuffs and fats and oils Termed as C07 

08 Alcoholic beverage Termed as C08 

 

Table 3. Commodity tonnage (Ton thousand/year) 
Commodity code Calibration Testing (Z16) Testing (Z15) 

05 15374 25273 12225 

06 22574 19327 16470 

07 100298 121923 70547 

08 27979 37094 16516 

 

There are 51 origin and destination geographies reported in 2007 US CFS representing 

the number of states in the USA, however, only 49 states or zones are used in this study. 

Alaska and Hawaii are excluded. This is due to the type of mode used to transport the 

commodities considered in this model. The model only considers those commodities which 
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are transported by trucks. The truck is one kind of mode used to transport the commodity as 

listed in the website. Then, the number of zones for training is set to be 18 zones. 

The commodity neural model in this application does not allocate data for validation. 

Instead, it conducts the testing twice. The number of zones for the first and the second tests 

are 16 and 15 respectively. They are termed as Z16 and Z15 consecutively. The member of 

training and testing group is randomly selected from the 49 states in USA. Each model is 

trained for 30 trials and hence there are 2x4x30 = 240 trials.  

 

 

5. MODEL OUTPUT AND DISCUSSION 
 

5.1 Calibration Performance: RMSE and Goodness-of-Fit 

 

The RMSE and correlation coefficient (r) for calibration are reported in Tables 4 and 5. Each 

table reports the performance for gravity model (GM) and neural model (NM) respectively. 

Table 5 also shows the difference of RMSE between neural and gravity models in terms of 

percentage (see the percentage inside the bracket).  

 

Table 4. Gravity model performance 

Commodity 
Calibration Testing_1 (Z16) Testing_2 (Z15) 

RMSE r RMSE R RMSE r 

C05 50 0.992 115 0.969 51 0.965 

C06 40 0.998 79 0.978 47 0.985 

C07 202 0.997 419 0.982 138 0.993 

C08 73 0.997 44 0.998 28 0.997 

 

Table 5. Neural model performance 

Commodity 
Calibration Testing_1 (Z16) Testing_2 (Z15) 

RMSE r RMSE R RMSE r 

C05 13 (-74) 0.999 82 (-29) 0.989 33 (-35) 0.985 

C06 18 (-55) 0.999 76 (-4) 0.980 59 (25) 0.980 

C07 97 (-52) 0.999 256 (-39) 0.993 135 (-2) 0.995 

C08 18 (-75) 0.999 38 (-14) 0.999 24 (-14) 0.997 

 

Both models have all of the correlation coefficients above 0.9 indicating that both 

models have considerably high mapping ability. However, there are huge differences in the 

RMSE. It can be seen that all of the neural model RMSE at calibration level are considerably 

lower than the gravity model. The differences vary from 52 to 75 per cent. This percentage 

supports the finding reported by Black (1995). 

Black (1995) reported that the neural model can have the RMSE for calibration up to 50 

per cent lower than the gravity model. However, in his case the neural model was trained with 

BP and the maximum epoch was 150000. This number is significantly higher than the one 

used to train the model in this research, which is not more than 500 epochs. Therefore, the 

advantages of the proposed framework depicted by Figure 1 is not only improved neural 

model performance at calibration level, but also reduced number of epoch, hence shortening 

the training time, and avoiding over-fitting. 
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5.1.1 Calibration performance: t-test  

 

In order to test the significance of the difference between average RMSE of neural and gravity 

models, a t-test was conducted. There was no significance test study reported prior to 2009. 

The initial use of the t-test was reported at calibration level only by Yaldi et al. (2009a). Thus, 

the two-tailed t-test in this research was conducted for degrees of freedom 29, and level of 

confidence 95 per cent. The results are reported in Table 6. Actually, the results reported in 

Table 5 strongly demonstrate that neural model outperforms the gravity model. The test 

results as reported in Table 6 only confirm these results – but indicate their strong statistical 

significance. All of the neural models have significantly lower RMSE than the gravity model. 

 

Table 6. T-test for average RMSE (Calibration, 30 trials) 
Commodity t-calculation Remark  

C05 -41.915 Critical t 2.04 

C06 -84.565 Degree of freedom 29 

C07 -77.492 Level of confidence 95% 

C08 -75.217 Two-tailed   

 

 

5.1.2 Calibration performance: Linear regression relationship 

 

The linear regression relationship between the observed and estimated commodity tonnage is 

illustrated by Figures 3-6. These figures suggest that the gravity model tends to overestimate 

the commodity flows, except for commodity CO7. The neural model is shown to have better 

goodness-of-fit than the gravity model in all cases. The regression equation on the left top 

side of the figures represents the neural model, and the other one represents the gravity model. 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

Figure 3. Observed and estimated commodity tonnage at calibration level (C05) 

 

This is one of the main advantages of the NN, namely its ability to learn from the data 

pattern without having prior information of relationship between the independent and 

dependent variables. The gravity model forecasts the movements of either passengers or 

commodities with specific decay functions. It assumes that zone pairs with short distances or 

trip lengths have more movements or flows than those with long distance or trip length 

separations. This is not always true as the distribution of people and commodities can also be 
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determined by other factors such as socioeconomic and demographic factors. Investigating 

those factors and analyzing them are time consuming and costly, and in the case of the gravity 

model have led to the occasional use of empirical ‘K-factors’, which are difficult to justify in 

theory. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Observed and estimated commodity tonnage at calibration level (C06) 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

Figure 5. Observed and estimated commodity tonnage at calibration level (C07) 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

Figure 6. Observed and estimated commodity tonnage at calibration level (C08) 
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On the other hand, a neural model has the freedom to forecast person movement or 

commodity flow. It is not bounded by any specific functions, except the functions used in the 

training algorithm and the activation function. Those functions are used so that the training 

can be conducted. They do not represent any relationship between the independent and 

dependent variables. The neural model distributes the flow based on the pattern captured 

during the training and then uses it to generalize trip patterns for new sets of independent 

variables. Then, the results are improved by applying external processes such as the balancing 

procedures as described before. This is neither time consuming nor costly. This is then 

another advantage of the NN, especially for use in countries and regions where limited 

budgets are available for transport data collection and modeling. 

 

 

5.2 Testing Performance: RMSE and Goodness-of-Fit 

 

The neural model performance at the testing level is also reported in Table 5. The results 

suggest that almost all of neural models have a lower RMSE than the gravity model, ranging 

from 2 to 39 per cent. It also can be seen in the same table that only one gravity model has a 

lower RMSE than the neural model (by 25 per cent, for commodity CO6 in Testing 2 (Z15)). 

According to Tables 3 and 4, a majority of the neural model have higher generalization ability 

than the gravity model as indicated by the observation that more than 60 per cent of the neural 

models have higher correlation coefficients than gravity models. These results indicate that 

NN can be used not only for passenger trip distribution, but also to forecast commodity flows. 

This applies for both calibration and testing or generalization levels. The usage of the 

proposed framework enhances the reliability of this ‘black box’ approach for travel demand 

modeling as indicated by the results in this research. 

 

 

5.2.1 Testing performance:  t-test 

 

Like the calibration, t-tests are also conducted to test the significance of differences between 

neural and gravity models average RMSE. The results are reported in Tables 7 and 8 for Z16 

and Z15 consecutively. The entire commodity neural models for Z16 have a significantly 

lower RMSE than the gravity model, except for the commodity C06. Although the neural 

model has a lower RMSE compared to the gravity model, the difference is statistically 

insignificant. 
 

Table 7. T-test for average RMSE for Z16 (Testing, 30 trials) 
Commodity t-calculation Remark   

C05 -16.856 Significant Critical t 2.04 

C06 -1.482 Insignificant Degree of freedom 29 

C07 -23.987 Significant Level of confidence 95% 

C08 -3.156 Significant Two-tailed   

 

Table 8. T-test for average RMSE for Z15 (Testing, 30 trials) 
Commodity t-calculation Remark   

C05 -24.198 Significant Critical t 2.04 

C06 21.223 Significant Degree of freedom 29 

C07 -1.121 Insignificant Level of confidence 95% 

C08 -2.519 Significant Two-tailed   
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Meanwhile, the commodity neural model for Z15 has slightly different results to those 

for Z16. According to Table 8, the gravity model has a significantly lower RMSE than the 

neural model for commodity C06 which is also indicated by the results reported in Table 5. 

Both neural and gravity models have insignificant difference in average RMSE for 

commodity C07 although the neural model has a lower RMSE. Then, the remaining 

commodity neural model has significantly lower average RMSE than the gravity model. 

Again, this result confirms the finding in Table 5. It confirms that the neural model not only 

significantly outperforms the gravity model at calibration level, but also at the testing level. It 

demonstrates that a neural model which is properly prepared and trained will be able to 

generalize with significantly lower deviation between the model outputs and the observed 

values. 

 

 

5.2.2 Testing performance: Linear regression relationship 

 

The linear regression between observed and estimated commodity flow tonnages are 

represented by Figures 7&8 for Z16, while for Z15 represented by Figures 9&10. These 

figures illustrates the regression for some commodity types only. As described before, a 

majority of the neural models have better goodness-of-fit than the gravity model (for 63 per 

cent). When the gravity model outperforms the neural model, the gaps are relatively low 

compared to when the neural model outperforms the gravity model where the gaps can reach 

as much as 39 per cent.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. Observed and estimated commodity tonnage at testing level (C05_Z16) 

 

It can be seen from all of those figures that the neural and gravity models have almost 

identical relationship between observation and estimation, except that some points belong to 

the gravity model are located further away than the neural model. Thus, the neural model has 

relatively higher goodness-of-fit than the gravity model.  

Both models have good estimations, fitting the observed values well, with correlation 

coefficients above 0.9.  The intercept is relatively low, where the highest one belongs to 

commodity code C07. This commodity has the highest total cumulative tonnage. However, 

the gravity model has the highest intercept for commodity C07. According to Table 5, the 

gravity model for this commodity has a RMSE 39 per cent higher than the neural model. 
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Figure 8. Observed and estimated commodity tonnage at testing level (C06_Z16) 

 

 

 

 

 

 

 

 
 

 

 

 

 

 
 

Figure 9. Observed and estimated commodity tonnage at testing level (C05_Z15) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10. Observed and estimated commodity tonnage at testing level (C06_Z15) 

 

 

Proceedings of the Eastern Asia Society for Transportation Studies, Vol.9, 2013



5.2.3 Testing performance: Zero flow estimation 

 

There are zones reported to have no commodity flows in each commodity O-D matrix used in 

this research. Thus, the evaluation of both neural and gravity models also covers the 

estimation for those zones which have no commodity flows according to the observed data. 

The results are reported in Tables 9-12, and also illustrated by Figures 11-12. 
 

Table 9. Percentage of underestimate and overestimate (Z16) 

Commodity code 

Zero flow 

percentage 

(%) 

Underestimate percentage 

(%) 

Overestimate percentage 

(%) 

NM GM NM GM 

C05 52 24 23 25 25 

C06 66 23 24 11 9 

C07 51 29 27 20 22 

C08 77 15 18 8 6 

 

Table 10. Percentage of underestimate and overestimate (Z15) 

Commodity code 

Zero flow 

percentage 

(%) 

Underestimate percentage 

(%) 

Overestimate percentage 

(%) 

NM GM NM GM 

C05 58 21 20 21 21 

C06 67 24 22 9 12 

C07 48 28 35 24 17 

C08 84 12 11 4 4 

 

Table 11. Average statistic for Z16 

Commodity 

code 

Average zero flow 

estimation (T) 

Average underestimate 

(%) 

Average overestimate 

(%) 

NM GM NM GM NM GM 

C05 13 17 -43 -49 599 771 

C06 13 12 -48 -57 272 297 

C07 52 66 -40 -67 336 505 

C08 8 6 -42 -74 414 69 

 

Table 12. Average statistic for Z15 

Commodity 

code 

Average zero flow 

estimation (T) 

Average underestimate 

(%) 

Average overestimate 

(%) 

NM GM NM GM NM GM 

C05 6 7 -39 -41 177 199 

C06 6 7 -59 -51 122 150 

C07 23 17 -42 -55 155 177 

C08 3 1 -43 -61 49 46 

 

It can be seen in Tables 9 and 10 that the percentages of zones which have no 

commodity flows range from 48 to 84 per cent. This percentage is crucial, as both neural and 

gravity models forecast these zones to have some positive commodity flow distribution. In 

general, the neural and gravity models forecast the zero flow zones along the same trend. Both 

neural and gravity models estimate the zero trip zones as having positive commodity flows, 

ranging from 1 to 66 tons (see Tables 11 and 12). This wide range is because each commodity 

has a different total tonnage. The highest total tonnage belongs to commodity C07, which is 

about ten times higher than the lowest one (which is commodity C05). See Table 3 for the 

tonnage information for each commodity. 
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5.2.4 Testing performance: Underestimate and overestimate distribution 

 

The evaluation of neural and gravity models is expanded by analyzing the distribution of 

estimated commodity tonnages for two different classifications, something that has not been 

done in previous studies. This is important as the trend of both neural and gravity models can 

be investigated, for either underestimation or overestimation. Then, the modeled distribution 

may be classified as either underestimate or overestimate. 

The percentage of zones having underestimated tonnage tends to be the same as the 

overestimated percentage for both neural and gravity models (see Tables 9 and 10). However, 

when the zero flow is included, there tends to be more overestimation than underestimation 

(because the models will always generate a positive value for zero flow zones). See Tables 9 

and 10 for the percentages of O-D pairs with zero commodity flows. The average tonnage for 

underestimation ranges from 39 to 59 and from 41 to 74 per cent below the real tonnage for 

neural and gravity models respectively as can be seen in Tables 11 and 12. This means the 

gravity model has higher gaps between observed and estimated commodity tonnages for the 

zones forecast as underestimate, as can be seen in Figures 11 and 12.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11. Underestimate and overestimate distributions (Z16) 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

Figure 12. Underestimate and overestimate distributions (Z15) 
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Meanwhile, the average percentage for overestimation ranges from 49 to 599 per cent 

and from 46 to 771 per cent above the real tonnage for neural and gravity models respectively. 

Thus the gravity model has higher gaps between observed and estimated commodity tonnage 

for the zones forecast as overestimate. In this regard, the neural model forecasts the 

commodity tonnages closer to the observed values, for both categories of underestimate and 

overestimate, and neural model estimates theses distributions without using any decay 

function as in the gravity model. 

 

5.2.5 Calibration and testing performance: Outlier removal 

 

Figures 3-10 show the linear regression among the neural and gravity models’ outputs and the 

observed values. All of them show both models’ outputs fit the observed values. However, it 

can be seen that some commodity flows are predicted much bigger or smaller than the 

observed ones as indicated by their locations which are far from majority of the points in 

those figures (outliers). These points will have a strong influence on the regression analysis 

and the computed R
2
 values. Thus, the points which are considered as ‘outliers’ are removed 

from the figures, to remove this influence. The results are represented in Figures 13-15 for 

calibration, testing (Z16), and testing (Z15) respectively. There are only three figures 

representing the ‘outlier removal’, however, the details of linear regression for all of the 

models are reported in Tables 13-15. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 13. Observed and estimated commodity tonnage without ‘outlier’ (Calibration) 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 14. Observed and estimated commodity tonnage without ‘outlier’ (Testing_Z16) 
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Figure 15. Observed and estimated commodity tonnage without ‘outlier’ (Testing_Z15) 

 

It can be seen in the figures that there seems to be more points compared to before the 

outliers are removed – this results from the change of scale for the scatter plots. These figures 

also show different functions of linear regression and coefficient of determinations as a result 

of the outlier removal. In general, the outlier removal reduces the regression slope and 

increases its intercept constant. 

There is no slope above value one. All of Z16 commodities (C05-C08) have a higher 

slope than the Z15 commodities. It is due to the Z16 commodities have a higher tonnage than 

for Z15 as seen in Table 3. The highest intercept constant belongs to commodity C07 which 

has the highest tonnage of commodity among others. It also can be seen that C07 for Z16 has 

a higher slope than the C07 for Z15. This is because the C07 data for Z16 has a higher 

tonnage. Then, the coefficient of determination decreases. 

Tables 13-15 show the decrease for each coefficient of determination. A majority of the 

coefficient of determinations are nearly or above 0.8 for both neural and gravity models. All 

of coefficients of determination were above 0.9 before the outliers were removed. The highest 

decrease belongs to commodity C07 for Z16. It also has the poorest goodness-of-fit. Its 

coefficient of determination is 0.406 and 0.360 for neural and gravity models respectively. 

However, the neural model continues to have higher goodness-of-fit than the gravity model 

for both calibration and testing levels, as seen in Figures 13-15 and Tables 13-14. 

 

Table 13. Linear regression slope, intercept, and R
2
 (Calibration-no outliers) 

Commodity 

code 

Neural model Gravity model 

Slope Intercept R
2 

Slope Intercept R
2 

C05 0.973 1.043 0.973 (-2.6) 0.821 4.655 0.668 (-31.8) 

C06 0.991 0.792 0.967 (-3.2) 0.906 3.573 0.898 (-9.9) 

C07 0.899 6.829 0.830 (-16.9) 0.797 19.288 0.432 (-56.5) 

C08 0.914 1.754 0.982 (-1.7) 0.750 4.971 0.766 (-23.0) 

 

Table 14. Linear regression slope, intercept, and R
2
 (Testing Z16-no outliers) 

Commodity 

code 

Neural model Gravity model 

Slope Intercept R
2 

Slope Intercept R
2 

C05 0.812 17.802 0.790 (-19.2) 0.652 26.321 0.575 (-38.8) 

C06 0.852 9.657 0.836 (-13.0) 0.845 9.756 0.823 (-14.0) 

C07 0.742 41.777 0.406 (-58.9) 0.967 52.726 0.360 (-67.2) 

C08 0.893 5.880 0.936 (-6.2) 0.997 2.070 0.906 (-9.1) 
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Table 15. Linear regression slope, intercept, and R
2
 (Testing Z15-no outliers) 

Commodity 

code 

Neural model Gravity model 

Slope Intercept R
2 

Slope Intercept R
2 

C05 0.888 5.265 0.935 (-3.6) 0.776 10.600 0.854 (-8.4) 

C06 0.888 0.934 0.816 (-15.1) 0.828 4.517 0.860 (-11.4) 

C07 0.913 -0.151 0.944 (-4.7) 0.908 13.868 0.924 (-6.3) 

C08 0.953 1.603 0.980 (-1.5) 0.968 -1.176 0.941 (-2.0) 

 

 

6. SUMMARY 

 

The important findings from the discussion in this paper may be summarized as below: 

1. The usage of the empirical approaches integrated in the modeling framework 

proposed by Figure 1 has resulted in all of the neural models having lower RMSE 

and higher goodness-of-fit than the gravity model for calibration level. The neural 

model has a significantly lower average RMSE than the gravity model.  

2. About 63 per cent of the neural model has significantly higher generalization 

performance than the gravity model in term of RMSE and correlation coefficient, 

when applied to an independent dataset (the 2007 US commodity flow data).  

3. Both neural and gravity models have the same trend for percentage of 

underestimated and overestimated outputs.  

4. When the outputs are underestimated, the neural model has lower average gaps 

between its outputs and the real ones compared to the gravity model.  

5. When the outputs are overestimated, the neural model has lower average gaps 

between its outputs and the real ones compared to the gravity model.  

6. The neural model does not require any function representing the relationship between 

independent and dependent variables. Therefore, it forecasts the distribution of 

person movement or commodity flow based on the pattern in the calibration data. It 

does not require any additional data. The usage of additional data is believed capable 

of further enhancing the neural model generalization performance. Thus, neural 

models become an effective and efficient reliable modeling tool for forecasting 

person travel and commodity flow distribution.  

7. The results in this research also support the finding by Tillema et al. (2006) which 

claimed that neural models outperform the gravity model for scarce data. This 

research extends it to the testing level. 

8. The gravity model relies on its decay function in order to calibrate and forecast the 

person movement and commodity flow distribution. There are likely to be other 

socio-economic and socio-demographic variables which determine the movement of 

people and commodities. However, identifying the relevant O-D pairs and collecting 

relevant information about them is time consuming and costly  
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