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Abstract: The uncertainties of travel choice behaviors can be divided into two differenttypes,
randomness and vagueness. Transportation researchers usually assume only one uncertainty
for travel choice behavior modeling, and the assumption is based on that travelers of their
sample present a homogeneous population. However, traveler perce tions may differ at the
individual level of familiarity with the network attributes. Therefore, it is important to
consider the heterogeneity of traveler perceptions in sample data and to employ a different
modeling methodology by their uncertainty types. In this paper, a latent class clustering
approach is applied for considering the heterogeneity of traveler perceptions in sample data.
In addition, random utility models and fuzzy reasoning models considering the heterogeneity
are developed to find an appropriate model by the types of uncertainty. All results of the paper
emphasize the necessity of a combined model, which can consider the randomness and the
vagueness uncertainty simultaneously.
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1. INTRODUCTION

Treatment of uncertainties is critical for modeling travel choice behaviors. The uncertainties
can be divided into two different types (Lin and George Lee, 1996): One is randomness due to
the non-deterministic nature of travel choice behavior problems. Random utility models have
been employed to deal with the uncertainty, and probability distribution is apCFlicablc for
measuring the randomness. The other is vagueness due to the poor knowledge an the lack of
familiarity with network attributes (Lotan and Koutshopoulos, 1993%). Fuzzy reasoning
models have been used to the vagueness of uncertainty, and possibility distribution is
appropriate for measuring the vagueness. Transportation researchers usually assume only one
uncertainty for travel choice behavior modeling, and the assumption is based on that travelers
of their sample present a homogeneous population.

Traveler perceptions, however, may differ at the gndividual level of familiarity with the
network attributes. Lotan and Koutshopoulos (1993°) instanced that a traveler familiar with
the network attributes is able to derive a distribution of travel times. Therefore, probability
measures can be used to model the perceptions of the very familiar traveler. On the other hand
uncertainty due to vagueness is mainly related to cases in which a traveler is not familiar with
the network attributes and therefore has very little idea about the actual characteristics of that
network. Fuzzy reasoning models can be used in this case to model traveler perceptions.
Therefore, it is important to consider the heterogeneity of traveler perceptions in sample data
and to employ a different modeling methodology by their uncertainty types.

In this paper, route choice behavior models are estimated with the assumption that drivers are
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mainly influenced by their perceived levels of the travel time on each alternative route. A
latent class clustering approach is a}gplied for considering the heterogeneity of driver

erceptions in sample data, that is, the heterogeneous population is classified into finite

omogeneous subpopulations called as latent classes in the paper. After classifying the sample
data into latent classes, random utility models and fuzzy reasoning models considering the
heterogeneity are developed to find an appropriate model by the types of uncertainty. In
addition, the final objective of the paper is to support the nécessity of a combined model
considering the randomness and the vagueness uncertainty simultaneously.

The paper is constituted as follows. In chapter 2, the mathematical framework of latent class
clustering is introduced. In chapter 3, the characteristics of random utility model and fuzzy
reasoning model are explained, and the modeling framework of fuzzy reasoning model is
presented. In chapter 4, an empirical study is carried out. Conclusive comments are given at
the end of this study.

2. MATHEMATICAL FRAMEWORK OF LATENT CLASS CLUSTERING

A wide variety of applications of latent class clustering are given in McLachlan and Basford
(1998) and in McLac;})ﬂan (1997). In the study, the latent class clustering is applied to classify
the heterogeneous data into homogeneous latent classes, and EM algorithm that is widely
used algorithms in statistics (Dempster et al., 1977) is presented. The primary advantages of
this algorithm are numerical stability, simplicity, and a factorization of the likélihood function
(McLachlan and Krishnan, 1997). ‘

It is assumed that the heterogeneous data in our case study has finite mixture distributions,
namely, finite homogeneous latent classes. The latent classes are normally distributed with
different means and variances. Suppose that the probability density function of a random
vector W has a finite mixture of & latent class distribution f,. The k latent class
mixture model has the form ;

K-1

K L
fonie)=3 m.I] fu(wy:6,) subjectto 7, =1-Y =, )
I=]

k=1 k=1

Where ¢ =(x,,...,m, ,,0,) is the vector containing the unknown parameters, namely the
k —1 mixing proportions 7,,...,m, . 6, consists of the parameters of the distribution T ire
L denotes the total number of indicators. )

This paper supposes that the k latent class distributions come from Jultivariate normal
densities with unknown means ..., [, and unknown variances o7,..,0},. Therefore,
0, = (fyerallyi s Ol 0% ) - and

(W 'ﬂu)z

1
(w,;8,)= exp{ —
FuWyi8y r—27r0'f, p{ 20_51 }

The log likelihood function for ¢ that can be formed from the observed data W is given by

log L(¢) =zlog{znknfu(wu;9u)} . @)
P = =

However, the likelihood equation does not yield an explicit solution for ¢. Therefore, now
observed data W is considered to be an incomplete data of a complete data vector
2, =(2),..,2,), where z, is a k dimensional vector of zero-one indicator variables and
where 'z, =(z;), is one or zero according as whether w, arose or did not arise from the
k™ latent class (k=1,.,K;i=1,.,I). If these z, were observable, then the maximum
likelihood estimate of 7, is simgl?/ given in Equation (6), which is the proportion of the
sample having arisen from the k™ latent class. The complete-data log likelihood for ¢ has
the multinomial form

)
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Maximizing the complete-data log likelihood L (¢) is equivalent to maximizing [, (6,)
separately In the partition. Therefore, the EM algorithm requires the iterative Expectation (ti)
and Maximization (M) of the complete log likelihood L (¢). The M step involves the
maximization of a likelihood funetion that is redefined in each iteration step by the E step. As
Equation 4 is linear in the unobservable data z,, the E-step (on the (¢+1)" iteration) simply -
requires the calculation of the current conditional expectation of z, given the observed data

L X L
<E-STEP> E, (2, \W) =z} =n;,”1‘[ fk,(w,.,;B‘f,”)/En,ﬁ"H Fuwi:0) (5)
I=1 k=1 (=1

The M-step on the (z+1)" iteration simply requires replacing each z, by z.' in the

equation as follows:

!
<M-STEP> 2 =Y 20/ (5
=1

/ !
(141). . (1) (r)
By ° = E:zik wy / E,Zik ()
i=l i=1

1 I
(r+1) _ () (r+1)y2 )
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The EM algorithm starts from an initial solution ¢“=® and it develops solution

0" ,...,0""7 iteratively, where ¢ is the number of iteration (¢#=1,...,T). In each iteration,
the likelihood value increase monotonously (McLachlan and Krishnan, 1997).

One of the major difficulties in anlying the latent class approach is determining the “correct”
number of latent classes. Typically, this decision is based on information criteria such as the
Bayesian Information Criterion (BIC) or the Akaike Information Criterion (AIC). In this paper,
the Bayesian Information Criterion will be employed to decide the number of latent classes.
BIC =-21In(L) + pIn(1) 9

Where p and / are anumber of parameters and samples, respectively.

3. ROUTE CHOICE BEHAVIOR MODELS
3.1 Characteristics of Fuzzy Reasoning Model and Random Utility Model

Random utility models have been widely applied to analyze the driver’s route choice behavior,
and the characteristics and methodologies of the models are well documented. In the other
hand, fuzzy reasoning models may be regarded as a new approach in travel choice behavior
modeling, even though many related papers have found in recent years. Therefore, the
characteristics of fuzzy reasoning models and random utility models are briefly described by
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comparing the two models.

As showed in Table 1, there exist some different characteristics between random utility
models and fuzzy reasoning models. In the case of random utility models the
non-deterministic nature of driver is mainly focused on the modeling, while the vagueness of
driver’s perception is focused on the fuzzy reasoning models. In addition, the possibility
distribution in the fuzzy reasoning models is applied to consider the knowledge and
experience of drivers and experts. For instance, the probability that the travel time less than
T is the sum of the probabilities that the time is less than 7 and each probabilities are
independent (see Figure (b) in the table 1). In the other hand, the horizontal strips of Figure
() in the table 1 are the estimated travel time results by observers, and the results are stacked
up. Therefore, the optimal possibility measure is the form ;

Poss(A) = MaxP,,,.pime (X) , forall xcA (10)

Where A is a set representing “travel time less than T, and P, (x) is possibility

distribution (Kjkuchi, 998) trayeltime

Table 1. Characteristics of fuzzy reasoning models and random utility models

Fuzzy Reasoning Models Random Utility Models

Perceptions | Inherent vagueness of driver perceptions | Non-deterministic nature of the route
choice behavioral process

Rules Partially compensatory and partially | Compensatory and lexicographic
lexicographic rules of the appraisal of | rules of the appraisal of network
network attributes attributes

Set Fuzzy set: [0,1] Discrete set (Crisp set): {0,!}

Example A travel time of the route is| A travel time of the route equals 50
approximately 20 minutes. The route | minutes with probability 0.9, while
is now light congestion. with probability 0.1 the travel time

equals 20 minutes

Distribution 4
AREA=1

|
|
|
|
|
1
|
i
1

L
|
i
i {\ n

s A T iy
Figure (a) Possibility distribution Figure (b) Probability distribution
Estimation Trial-and-error estimation Maximum likelihood estimation
Criteria Goodness of Fit n?, Goodness of Fit
MFI Fuzzy Fuzzy Frobabilistic Deterministic
0 min max min max min max time

Better knowledge
Figure(c) Change of driver’s perception on the network attributes

(Hoogendoorn et al, 1999; Kikuchi, 1998; Lotan and Koutsopoulos. 1993*%)
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However, some drawbacks of the fuzzy reasoning models are criticized in behavior modeling.
One is the estimation problem of the parameters describing the membership functions of
fuzzy reasoninF models and of the defuzzification yielding a representative value of the fuzzy
reasoning results. There are no exact methodological strategies yet. Another is a criterion of
the fuzzy reasoning models. The goodness of fit has been used to assess a quality of the
eftirgaétg)d model, but a higher goodness of fit does not means a better model (Hoogendoorn et
al, 1 ;

The Figure (c) in the bottom line of Table 1 instances the changes in the driver’s perceptions
on the road networks as he or she is more familiar with the road networks by gaining wide
experience; the membership functions are becoming a more narrow range and less diffuse
shape. Their route choice behaviors correspond on the probability distribution (Lotan and
Koutshopoulos, 1993).

3.2 Modeling Framework of Fuzzy Reasoning Model

This chapter outlines the modeling framework of fuzzy reasoning models in detail, while the
explanation on the random utility models is abbreviated to the simplicity of the paper.

Fuzzy IF-THEN rules, in which the antecedents and the consequent involve linguistic
variables, are applied to model the decision-making process of drivers. The general rule form
of this paper is

R*:If xis A,, AND,yis B,,THENz=C,, k=1,..K (11)
Where x, y and z are linguistic variables representing the input variables and the control
variable respectively. A,, B, and C, are the linguistic predicates of the linguistic
variables x, y and z 1n the universes of discourse U, V and W respectively. k is the number
of fuzzy rules. In this paper, A, and B, characterize the ordinary travel time levels of
each alternative route.
Travel time = {short, moderate,long } = {short travel time, moderatetravelitme, long travel time}.

Long

0 1 i >
I } —+ + { Travel time(min)

Figure 1. Membership functions of travel time

In this paper, the optimal fuzzy membership functions are estimated by trial-and-error method.
Three indices shown in Figure 1 are employed for the estimation. Index “m” is to approach
the membership functions into the real perceptions of drivers on the travel times, “w” is to
find the optimal overlap range of membership functions, and “d” is to estimate the level of
vagueness of drivers. The goodness of fit are estimated at the each step in which the three
indices are changed, and finally the optimal membership functions are decided at the point of
the highest goodness of fit. Note that the initial points of membership functions can be assumed
at any point of collected data, and the overlap rate of membership functions begin from 0%.

For the consequent term, five linguistic predicates characterize the preference levels of driver.
on the alternative routes as shown in Figure 2: C, (preference)= {HPH, PH, M, PL, HPL?
where the predicates mean High Preference of Highway, Preference of Highway, Middle
Preference, Preference of Local way, and High Preference of Local way, respectively. :

MF
HPH P > HE

o +
-1 05 0 05 1 Preference

Figure 2. Membership functions of preference
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Finally, nine fuzzy inference rules are established as shown in Table 2, and all rules will be
fired n parallel. For estimating fuzzy reasoning models, Min-Max composition strategies is
employed, and Centroid of Area method is applied as a defuzzification method to extract a
crisp value that represents the possibility distngution of an inferred fuzzy linguistic value set
(Jang et al, 1997).

Table 2. Fuzzy inference rules

Perceived highway travel time
Short Moderate Long
Perceived Short M PL HPL
local way  Moderate PH M PL
travel time Long HPH PH M

4. EMPIRICAL STDUY
4.1 The Data

In 1996, the survey was conducted at two intercity roads, Honam highway and No.22 local
way among driving commuters from Sunchon city to Kwangju metropolitan with an objective
to examine perceived levels of travel time on the alternative routes and ordinary choice route.
The number of 504 sheets was totally distributed at the both roadsides and collected by
examiner. The available response rate was 56.35%(284/504). To survey the perceived levels
of travel time, the questionnaire was designed to ask three perceived lévels of travel time of
each alternative route. For instance, “How long travel time does the route takes, if the route
takes a short time, a moderate time, and a long time?”

Note that the survey had been conducted during the construct period for road widening in
Honam highway. The construction of Honam highway could cause making the driver’s
perception on travel time more vague travel time of driver’s perception since the travel time
of Honam highway might be unstably increased due to the construction. Therefore, this
situation of the alternative route gives an opportunity to estimate the vagueness of drivers in
-our case study.

The ordinary choice rates of each alternative routes was 45%(129/284) and 55%(155/284) at
highway and local way, respectively. The reason is regarded that the respondents couldn’t get
enough compensation for their toll due to the construction of Honam highway. The variations
of ordinary choice rates of highway are displayed in Figure 3. As the difference of perceived
levels of travel time is bigger, the choice pattern is more distinct. The result supports that
route choice behaviors of drivers in this case study are mainly influenced by their perceived
levels of travel time. '

-
— ¢ — Short travel time —— Moderate travel time - - & - -Long travel time ,

o
o

@
o

@
o

N
o

n
o

Rates of highway choice (%)

"r
|

>20 -20 ~10" 0 "10 "20 20<
Highway travel time-Local way travel time (min.)

Figure 3. Variations of choice rate considering the perceived levels of travel time
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4.2 Latent Class Clustering Estimation

Latent class clustering approach is applied to classify a heterogeneous population of sample
data into finite homogeneous subpopulations, and travel choice behavior models are estimated
by using each homogeneous subpopulation. For latent class clustering, it is assumed that if the
difference of perceived levels of travel time is big, the driver’s choice behavior is based on
randomness uncertainty so that random utility models are appropriate to analyze his/her route
choice behavior. In the other hand, if the difference of perceived levels is small, the driver’s
chojlceblbehavior is based on vagueness uncertainty. Therefore, fuzzy reasoning models are
available.

Table 3 shows BIC values for the estimated one to four latent ciass clustering, and one latent
class model corresponds to no heterogeneity of the data. The 2-latent class model has the
lowest BIC value, which indicates slightly lower than the 3-latent class model. Therefore, the
classification results of 2-latent classes are employed in this study.

Table 3. Latent class clustering

Num. Of Class Num. OF parameters BIC

1-Latent class 6 3081.9
2-Latent classes 13 2614.7
3-Latent classes 20 2808.2
4-Latent classes 27 7732.9

The estimated parameters of the 2-latent classes model are reported in Table 4. The latent
class 1 has much higher means and variances than those of the latent class 2, and the result
represents that the drivers of latent class 1 have more distinct perceived levels of travel time
on the alternative routes than the drivers of latent class 2. Therefore, it is assumed that the
route choice behaviors of drivers in latent class 1 are based on randomness uncertainty, while
the route choice behaviors of drivers in latent class 2 are based on vagueness uncertainty.

Table 4. 2-latent classes clustering

Latent class Latent class 1 (49.2%) Latent class 2 (50.8%)
Variables H g, M, o, i
Short travel time 3.143 1.912 1.595 0.525
Moderate travel time <4 3,179 1.451 1.449 0.523
Long travel time _ 3.930 1.629 1.569 0.527

4.3 Route Choice Behavior Models

Table 5 contains the estimated results of random utility models based on each latent class and
whole data. For the travel time variable of random utility models, the average value of three
perceived levels of travel time is employed due to the multicollinearity of the model. Age (if
more than 34 years old is 1, otherwise 0) and wiliingness to switch by traffic situations (if
switch is 1, otherwise 0) are added for the logit model. The highest estimation result in
random utility models is outputted in the latent class 1 (randomness class), while the lowest
result is in the latent class 2 (vagueness class). Moreover, the coefficient value of willingness
to switch variable shows that respondents of the randomness class are more sensitive to traffic
situations than respondents of the vagueness class. The opposite estimation results are in the
fuzzy reasoning models, that is, the goodness of fit of latent class 2 is much higher than that
of latent class 1 and little higher than that of whole data. Moreover, the goodness of fit of
latent class 2 is highly improved by employing the fuzzy reasoning model (from 62.76% to
63.45%). The “d” index in Table Gy shows the level of vagueness uncertainty, and the most
vagueness class is the latent class 2. These results represent that the vagueness of uncertainty
is well considered in the fuzzy reasoning model than the random utilify model. In the other
hand, the random utility model is more applicable to treat the randomness of uncertainty than
the fuzzy reasoning model. Eventually, all results in table 5 and 6 support that the two
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modeling methodologies can dealt the uncertainty of travel time with a certain amount of
reliability. However, the accuracy of route choice behavior model can be reduced, if the
heterogeneity of sample data is not considered for modeling In addition the necessity of a
combined model of random utility mode! and fuzzy reasoning model is emphasized from the
results. Concerning on the combined model, the latent class clustering (or latent class model)
may be the core of the methodological strategies since the expected probability to include the
each latent class can be obtained in the analysis, Equation (5).

Table 5. Random utility models

Whole data { Latent class 1 | Latent class 2
Variables Coefficient (t-value)
Travel time -0.044 (-4.32) ** -0.045 (-3.95) ** -0.055 (-2.01) *
Age (>35) -0.024(-2.59) ** -0.021(-1.51) -0.025(-1.97) *
Switch 0.640(2.42) * 0.714(1.77) 0.570(1.62)
# Of sample 284 139 145
L(0)-L(p) -16.414 -11.816 -5.599
o’ 0.083 0.123 0.056
Adjusted o 0.068 0.092 0.026
Goodness of fit 64.79% 66.91% 62.76%

Note)**: Significant at the 0.01 confidence level, *: Significant at the 0.05 confidence level

Table 6. Fuzzy reasoning models

T: T2 T3 T‘ Trave! time{min)
Whole Data
Variables T, T, Ts Ty d | Goodness of fit
Short . 0 30 42 49
Highway | Moderate 45 54 66 75
Long 71 79 150 150
Short 0 30 80 i e
Local way | Moderate 72 84 96 108
Long 102 120 i50 150
Latent Class 1
Short 0 30 30 48
Highway | Moderate 41 59 61 79
Long 72 90 150 150
Short 0 30 57 Tl b
Local way | Moderate 69 84 86 101
Long 98 113 150 150
Latent Class 2
Short 0 30 40 49
Highway | Moderate 41 50 70 79
Long 71 80 150 150
Short 0 30 70 79 = Gasa87
Local way | Moderate 71 80 100 109
Long 101 110 150 150
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5 CONCLUSIONS

The main purposes of the paper are to consider the heterogeneity of driver perceptions in
sample data by using the latent class clustering approach, to estimate random utility models
and fuzzy reasoning models considering the heterogeneity, and to find an appropriate model
by the types of uncertainty. The results are summarized as follows: Firstly, the heterogeneous
data in our case study can be classified into finite homogeneous data by employing the latent
class clustering approach. Secondly, the estimation results of random utility models and fuzzy
reasoning models show that if the travel choice behavior models are developed without
considering the type of uncertainty, the accuracy of models may be deteriorated. Finally, the
necessity of a combined mode! considering the randomness and the vagueness uncertainty
simultaneously is emphasized as a future work.

The goodness-of-fit indices of random utility model were not sufficient in this study, because
of the limitation of data availability on perceived travel time. A more efficient survey method
collecting individual’s perceptions on travel attributes must be developed in the following
studies.
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