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Abstract: Dynamic traffic assignment(DTA) has been a topic of substantial research in the
last two decades and it has recently received growing attention, with the news that it will
utilize Advanced Traffic Information Systems(ATIS) applications. However DTA has many
mathematical difficulties in searching its solution due to the complexity of spatial and
temporal variables. Although many solution algorithms have been developed, conventional
methods cannot find a solution when an objective function or constraints is not convex. In this
paper, we provide a new method using a genetic algorithm(GA) to solve the DTA model. To
apply this new method, we formulated the DTA model based on Merchant-Nemhauser's
model (1978), which has a nonconvex constraint set. To handle the nonconvex constraint set,
the GENOCOP III system, which is one of the GAs, is used in this study. Results for the:
sample network have been compared with the results of conventional method.
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1. INTRODUCTION

We try to provide a new method using the GA to solve the DTA model. To apply this new
method, we formulated the DTA model based on Merchant-Nemhauser's model (1978)(4).
Unfortunately original Merchant-Nemhauser's model cannot present dynamic user
optimal(DUO) state, since it only present dynamic system optimal(DSO) state. To formulate
the objective function for DUO, we need to consider users' travel time(10)(11).

Thus, we drove a travel time function, which is monotonically nondecreasing and convex
with respect to density, using the modified Greenshied’s speed-density relationship(1)(3).
Using the above travel time function, we formulated the DTA model, which can present the
objective functions for DUO and DSO. However, the above model has nonconvex constraints
set, similar to the original model. Therefore we may not be able to find a global solution,
while many local solutions may be available(5).
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To overcome nonconvexiy, we used the GONOCOP III system, which is one of the
GAs(Genetic Algorithms)(7)(8). GONOCOP III system can handle nonconvex constraints set.
It is based on concepts of co-evolution and repair algorithm and avoids many disadvantages
of other GA systems. The results for the sample network have been compared with the results
of conventional method.

2. GONOCOP III SYSTEM
2.1 Genetic Algorithm

GAs are search algorithms based on the mechanics of natural selection and natural genetics.
They combine survival of the fittest among string structures with a structured, yet randomized,
information exchange to form a search algorithm with some of the innovative flair of human
search. In every generation, a new set of the artificial creatures(strings) is created using bits
and pieces of the fittest of the old. An occasional new part is tried for good measure.
Although effective, GAs can be quite simple in their application, they efficiently exploit
historical information to speculate on new search points with expegted improved
performance(9).

GAs demonstrate several distinct advantages. First, they employ an efficient optimal solution
searching technique, which can be described as multi-hill climbing. The global solutions can
be easily found for both linear and nonlinear formulations. Second, the optimal solution
searching process is independent of the form of the objective function. Unlike conventional
techniques, in which the algorithms usually rely on the structure of the formulation such as
the conditions for the decomposition algorithms. GA models can be implemented without
such considerations. Third, conventional algorithms are often sensitive to the input patterns
such as the conditions set forth by Monte Carlo techniques.

2.2 GENOCOP III System
Introduction

GAs have many distinct advantages as mentioned above, however, they have also some
problems such as inefficiency of computation process and constraints handling. So many
methods have been studied to handle constraints efficiently by GAs for numerical
optimization problems.

One of these methods is the GENOCOP(for GEnetic algorithm for Numerical Optimization of
COnstrained Problems) system that can handle linear constraints only(6)(9). In this paper we
use GENOCOP III system, which is advanced version of GENOCOP system and able to
handle any set of constraints included nonlinear and nonconvex constraints.

This method doesn’t need additional turning of several parameters in contrast to other
methods so it has efficiency in computation. It can be applied to various optimization
problems because it is independent of the form of the constraints set.

In this paper we try to search the solution of DTA, which has many spatial and temporal
variables and constraints. Though it is possible to search the solution using exiting GAs, it is
very inefficiently and complicated. So we try to apply GENOCOP III system to DTA model.
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Process

The general nonlinear programming problem is to find X so as to

Optimize f(%), )_(_=(x],...,x”)eR" (1)
st XEFSS

The set S & R defines the search space and the set FS 'S defines as feasible search space.
Usually, the search space S is defined as a n-dimensional rectangle in R :

() <x, <u(i), 1<i<n 2)
Whereas the feasible set F< S is defined by a set of additional m= 0 constraints:
g,(X)<0,for j=1,..q and h(X)=0 for j=g+1,.,m (3)

It is also convenient to divide all constraints into four subsets: linear equations LE, linear
inequalities LI, nonlinear equations NE, and nonlinear inequalities NI. Of course, g, ELIU
NI and A  €ELEUNE. In fact, we need not consider linear equation LE, since we can remove

them by expressing values of some variables as linear functions of remaining variables and
marking appropriate substitutions.

Search Space S
Feasible Space F

Figure 1. A search space and its feasible parts

The GENOCOP III system incorporates the original GENOCOP system, but also extends it
by maintaining two separate populations, where a development in one population influences
evaluations of individuals in the other populations(6).

The first population consists of so-called search points from S, which satisfy linear
constraints of the problem. The feasibility(in the sense of linear constraints) of thesc points is
maintained by specialized operators. The second population consists of so-called reference
points form F ; these points are fully feasible, i.e., they satisfy all constraints.

Reference points R, being feasible, are evaluated directly by the objective function(i.e.,
eval(R)= f(R)). On the other hand, unfeasible search points are 'repaired’ for evaluation
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and the repair process works as follows. Assume that there is a search points S ¢ F.Insuch
a case the system selects one of the reference points, say R, and creates random points Z
from a segment between S and R by generating random number a from the range <0, 1>

Z=aS+(1-a)R.

Once a feasible Z is found, eval(S)=eval(Z)= f(Z). Additionally, if f(Z) is better
than f(R), then the points Z replaces R as a new reference point. Also, Z replaces S
with some probability of replacement P,.

The GENOCOP III system avoids many disadvantages of other GAs. It introduces few
additional parameters(the population size of reference points, probability of replace) only. It
always returns a feasible solution. A feasible search space F is searched by making
references from the search points. The neighborhoods of better reference points are explored
more often. Some reference points are moved into the population of search-points, where they
undergo transformation by specialized operations, which preserve linear constraints(6)(7).

Definition of
search and feasible space

Formulating
evaluation function
' ) |
[Genera!mg search poiﬂ Generaling reference point };

Genetic operator

rGenerating new population j

Evaluation
eval (X) = f(X)

Repair process lﬂ—

[ Generating
YES | new reference point

. Y
‘ Gererating next population ]4__———‘

Convergence
test

Figure 2. Process of GENOCOP III System
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3. MODEL FORMULATION

We formulate the DTA model based on Merchant-Nemhauser’s model. To present the
objective function of dynamic user optimal, we use the modified Greenshield's model(2)(3).
The summary of notation in this paper is follows.

set of nods

set of links

= time slices

x,= number of vehicles on link a at the beginning of the tr4 period

a

Il

n
a
t

g(x) = exit function
l, = length of link a

a

u = travel speed on link a at time t

u maximum travel speed on link a at time t

max

u minimum travel speed on link a at time t

min

= jam density

k/
T, = travel time on link a at time t

3.1 Link Travel Time Function

In our model, we propose to use a modified Greenshild’s equation to derive the link travel
time function as shown below.

Modified Greenshild's Equation :  u, =u_, + (u,,, —u.. )1~ %) 4)
4
; ! . Ik,
Link Travel Time Function i T(xl)= — (5)
ma\kjlu - (umax - umin )x::

This function is nonnegative, nondecreasing, continuous, convex function and present the
travel cost on links.

3.2 Exit Function

The exit function represents a physical phenomenon, it is assumed not to depend on time. So
we assume that the exit function is equal to the traffic volume on link. Using traffic-flow
relationships, we can express the exit function as

, x! ()" .
=u_ < —(u_ —u_ )=t 6
g(l (xll) max l ( max mmn ) 1‘_'_ k] ( )

a

The above function depends on number of vehicles on link only. When first-oder condition is
d . . . . . .
of: T 0, exit flow is maximum. Thus maximum exit flow is as follows.

dx,
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(x.) ok 7
P T e .
gl] u / max 4(u o umln ( )

3.3 Objective Function

We make two objective functions. One is dynamic user optimal(DUO) and the other is
dynamic system optimal(DSO). In DUS we determine vehicle flow on each link at each time
resulting from drivers using minimal-time route under the currently prevailing travel times. In
DSO drivers act so as to minimize total travel cost at each time(10)(11)(12). These objective
functions can be expressed as follows.

pUO: 3 i [ T(ax @®)

a

7 '
DSO : j; x!T,(x]) ‘ 9)

=1

b

a=

3.4 Constraints

The fundamental transformation equation known as state equation is

xM=x! —g (xl)+d,, ¢=0]1,..,T-1 (10)
where decision variables @’ is the umber of vehicles that admitted onto link a during the th

time period.
We have the conservation equation as follows.

> d,=F'(m)+ Y.g.(x,), t=0L..T-1, VneN-{n} (11)
acA(n) aeB(n)
Where A(n) is the set of links, which point out of node n and B(n) is the set of links

which point into node n. F'(n) denotes the external input at node n for the tzh time period.
Exit flow has to satisfy two constraints, which are nonnegatively constraints and maximum
flow constraints as shown.

ul k
0<d, <—=4 (12)
4(umax = umm)

The vehicles on link have upper bound. The maximum vehicles on link are equal to traffic
volume under jam density.

0<x, sk, xi, 13)
3.5 Model

Considering all constraints, we make DTA model as follows.
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Objective Function

DUO : i i [T
a=1 (=1 ¢
DSO : ZA: i EAALAR

-~
[

St
x:"" =le; —ga(x;)+d;, t=0,1,.,7-1
Y d,=F'(m+ Yg,(x), 1=0L..T~1, VneN~{n}
aeA(n) aeB(n)
ul k

0<d <—22 4

‘ 4(umax - umin)
0<x, <k;xl,

x) =R, (given)

4. APPLICATION OF GONOCOP III SYSTEM
4.1 Sample Network
To demonstrate the application of GENOCOP III system to DTA model, we make the sample

network, which has 4-centroids, 9-nodes and 24-links given in Figure 3. We classify links to
two categories, which are highway and arterial roads.

D : Centroid
O  Node
o

¢ Link

Figure 3. Sample Network
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The physical characteristics of each links are shown in Table 1.

Table 1. Physical Characteristics of Links

ik Classification Length Num. Of Max. Velocity Min. Velocity Jam Density Max. Exit Vehicles

(km)  Lanes (km/hr) (km/hr) (veh/lane-km)  (veh/lane-Smin)

1 Arterial 12 1 80 10 80 152
T Aterial s " S 0 0 10
Ty Anerial 2 1 - .80 0. 1 0 152
T4 Atterial - s T 0 s 0
s Ateral 8 1 e 1w s 120
6 Atterial 21 s
7 Arterial ¢ g
Ty Arterial | . T )

24 Artcrial 12 1 80 10 80 152

We assume that the vehicles, which enter a link at any time slice, can't traverse the link at the
same time slice. So time slices have to satisfy below upper bound(10).

8km

=———=0.13Ar =8min
60km / hr

T< min{—[L, Va}
u

max

Thus in our model, we decide that time periods are 5-min which is smaller than 8-min and
total time slices are 10(i.e. total analysis time is 50-min). In sample network, there are 3-
originations and 1-destination, so all drivers travel toward node 4. For each time slices, OD
flows are shown in Table 2.

Initial link flows are assumed that highway links have vehicles at 40% of maximum link
volume and arterial links have vehicles at 30%.
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Table 2. OD flows (veh/5min)

Interval Node 1 Node 2 Node 3
1 120 390 100
"""""" TR0 TS0 IS0
""""" I T T T 1/ R > R
""""" &30 TR0 IS0
""""" 5T TTTTTTTTTTS60 T80
"""""" 6 TR0 500 40T
"""""" 2 V) R S kT R
""""" g T T e20 T IS0
"""""" o T 3y T T 500 T T 30
"""""" IO V- T 1) B VT R

4.2 Solution Process

In sample network, we have 24-state equations, 12-conservation equations, 24-maximum exit
flow inequalities, 48-nonnegatively inequalities and 24-maximum link flows inequalities. The
search space S is composed of 96-inequalities, the remains of constraints compose feasible
space F .

There are 12-decision variables, which are exit flows from link at each time periods. We can
express decision variables as follows for GENOCOP III system.

D= (dl"dé’d;d(’x’d:/’dlll’d1’6’dll7?d118’d£0’d‘33)
The GENOCOP III system process for solving our DTA model is summarized as follows.

Step 0: Find initial exit flow d_ using given initial link flows.
Step 1: Formulate constraints related with x, using state equations.

Step 2: Formulate constraints related with d; using conservation equations.
Step 3: Find search space and feasible space considering constraints.

Step 4: Generate search points and reference points(i.e. initialize D).

Step 5: Generate new population using search points by genetic operators.

Step 6: Repair unfeasible population of new population and make new reference points and
search points.

Step 7: Select the best reference point and test convergence.

4.3 Results
As the results for the sample network, the solutions for two objective functions converge(see
Table 3). In particular, the results for DSO satisfy user equilibrium state: i.e. used routes have

equal travel time in each interval.

To demonstrate the performance of GENOCOP III system, we compared the results with
those of Quasi-Newton method, which is a conventional method to solve NLP. In the
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comparative analysis, we found that both algorithms have the same objective function values.
However, we found that the GENOCOP III system is more efficient in terms of execution
time results(see Table 4 and 5).

Table 3. Exit Flow From Link (Unit: vehicle)

Time Periods

Table 4. Results for DUO

; ; Objective Function Value Execute Time
Classification (hr) (sec)
GENOCOP Il 16,390.22 10.2
____________________ S R ORRC S VI S i SN SN S
Quasi-Newton Fistexecute i T e
Method Second execute 16,389.76 46.2
Table 5. Results for DSO
: : Objective Function Value Execute Time
Classification (hr) (sec)
GENOCOP II 19,511.94 9.4
____________________ 3 oo R S ST T TP T
Quasi-Newton Fist execute 19,501.52 1729
Method Second execute 19,512.91 59.7
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5. CONCLUSIONS

In this paper the GENOCOP III system is presented as the new solution algorithm for the
DTA model. As the results for the sample network, we found that GENOCOP III system can
be applied to the part of DTA.

Also we have demonstrated the performance and efficiency of the GENOCOP III system
compared with conventional method. In the comparative analysis, GENOCOP III system

showed more efficient than conventional method. Those results are evident that we will be
able to expand the GENOCOP III system to other transportation parts.
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