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Abstract: Dynamic traffic assignmen(DTA) has been a topic of substantial research in the
last two decades and it has recently received growing attention, with the news that it will
utilize Advanced Traffic Information Systems(ATIS) applications. However DTA has many
mathematical difficulties in searching its solution due to the complexity of spatial and
temporal variables. Although many solution algorithms have been developed, conventional
methods cannot find a solution when al objective function or constraints is not convex. In this
paper, we provide a new method using a genetic algorithm(GA) to solve the DTA model. To
apply this new method, we formulated the DTA model based on Merchant-Nemhauser's
model (1978), which has a nonconvex constraint set. To handle the nonconvex constraint set,
the GENOCOP III system, r.r,hich is one of the GAs, is used in this study. Results for the
sample network have been compared with the results of conventional method.

Key Words: GENOCOP III system, Genetic Algorithm, Dynamic Traffic Assignmenr. D-v-,namic Sysrem
Optimal, Dynamic User Optimal

l.INTRODUCTION

We try to provide a new method using the GA to solve the DTA model. To apply this neu,
method, we formulaled the DTA model based on Merchant-Nemhauser's model (1978)(4).
Unfortunately original Merchant-Nemhauser's model cannot present dynamic user
optimal(DUo) state, since it only present dynamic system optimal(DSO) state. To formulate
the objective function for I)UO, we need to considerusers'travel time(10)(11).

Thus, we drove a travel time ftinction, which is monotonically nondecreasing and convex
with respect to density, using the modified Greenshied's speeddensity relationship( I )(3).
lJsing the above travel time function, we formulated the DTA model, which can present the
objective functions for DUO and DSO. However. the above model has nonconvex constraints
set, similar to the original model. Therefore we may not be able to find a global solution,
while many local solutions may be available(5).
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To overcome nonconvexiy, we used the GONOCOP III system, which is one of the

GAs(Genetic AlgorithrnsxTxS). GONOCOP III system can handle nonconvex constraints set,

It is based on concepts ofco-evolution and repair algorithm and avoids many disadvantages

of other GA systems. The results for the sample network have been compared with the results

of conventional method.

2. GONOCOP m Svsrrvr

2.1 Genetic Algorithm

GAs are search algorithms based on the mechanics of natural selection and natural genetics.

They combine survival of the fittest among string structures with a structured, yet randomized,
information exchange to form a search algorithm with some of the irurovative flair of human
search. In every generation, a new set of the artihcial creatwes(strings) is created using bits
and pieces of the fittest of the old. An occasional new part is tried for good measure.

Although effective, GAs can be quite simple in their application, they efficiently exploit
historical information to speculate on new search points u'ith expegted improved
performance(9).

GAs demonstrate several distinct advantages. First, they employ an efficient optimal soiution
searching technique, which can be described as multi-hill climbing. The global solutions can

be easily found for both linear and nonlinear formulations. Second, the optimal solution

searching process is independent of the form of the objective function. Unlike conventional
techniques, in which the algorithms usually rely on the structure of the formulation such as

the conditions for the decomposition algorithms. GA models can be implemented without
such considerations. Third, conventional algorithms are oftsn sensitive to the input patterns

such as the conditions set forth by Monte Carlo techniques-

2.2 GENOCOP [I System

Introduction

GAs have many distinct advantages as mentioned above, however, they have also some

problems such as inefficiency of computation process and constraints handling. So many
methods have been studied to handle constraints efficiently b.v.' GAs for numerical
optimization problems.

One of these methods is the GBNOCOP(for GEnetic algorithm for Numerical Optimization of
COnstrained Problems) system that can handle linear constraints only(6X9). In this paper rve

use GENOCOP III system, which is advanced version of GENOCOP system and able to
handle any set of constraints included nonlinear and nonconvex constraints.

This method doesn't need additional turning of severai parameters in contrast to other
mcthods so it has efficiency in computation. It can be applied to various optimizalion
problems because it is independent ofthe form ofthe constraints set.

In this paper we try to search the solution of DTA, u'hich has many spatial and temporal
variabies and constraints. Though it is possible to search the solution using exiting GAs, it is
very inefficiently and complicated. So we try to apply GENOCOP III system to DTA model.
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Process

The general nonlinear programming problem is to find X so as to

Optimize f(il, F =(r,,...,.r,,)eR"
s.t. XePc5

The set S e R defines the search space and the set FG S defines as feasible search space,
Usually, the search space S is defined as a n-dimensional rectangle in R :

l(i)<x <u(i),l<i3n

Whereas the feasible set F e S is defined by a set of additional m) 0 consrraints:

gj(X) <0, for 7= 1,...,q and, h,(X) = 0 for 7 = q +1,...,m

It is also convenient to divide all constraints into four subsets: linear equations LE, Iinear
inequalities LI, nonlinear equations NE, and nonlinear inequalities NI. of course. g, e LI u
NI and hi €LE U NE. In fact, rve need not consider linear equation LE. since lve can remove
them by expressing values of some l'ariables as linear functions of remaining yariables and
marking appropriate substitutions.

(1)

(2)

(3)

Figure 1. A search space and its feasible parts

The GENOCOP III system incorporates the original GENOCOP system, but also extends it
b-v maintaining two separate populations, where a development in one population influences
evaluations ofindividuals in the other populations(6).

The first population consists of so-called search points from S, which satisS linear
constraints of the problem. The feasibility(in the sense of linear constraints) of these points is
maintained by specialized operators. The second population consists of so-called reference
points form F; these points are fully feasible, i.e.. they satis$ all constraints.

Reference points rR-, being feasible, are evaluated directly by the objective fi.rnction(i.e..
eval(R):,f(R-) ). On the other hand, unfeasible search points are 'repaired' for eva.luation
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and the repair process works as follows. Assume that there is a search points S € F . In such

a case the system selects one of the reference points, say R , and creates random poinA 7
from a segment between S and R by generating random number a from the range <0. 1>:

Z = aS +(1-a)ft-.

Once a fbasible Z is found, eval(S)=eval(Z)=.f(Z). Additionally.rf .fG) is better

than /(R), then the points Z replaces ,Q as a new reference point. AIso, 7 replaces S

with some probability of replacement { '

The GENOCOP ilI system avoids many disad.rantages of other GAs. It introduces ferv

additional parameters(the population size of reference points, probability of replace) only. It

alu,ays retums a feasible solution. A feasible search space F' is searched by making

references from the search points. The neighborhoods of better reference points are explored

more often. Some reference points are moved into the population of search-points, where they

undergo transformation by specialized operations, w'hich preserve linear constraints(6X7)-

Figure 2. Process of GENOCOP [l System

Gere,ating nexl potlulation

Evaluation
eval(x) = l{x)
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3. MODEL FORMULATION

We formulate the DTA model based on Merchant-Nemhauser's model. To present the
objective firnction of dynamic user optimal, we use the modified Greenshield's model(2)(3).
The summary of notation in this paper is follows.

set ofnods
set of links

t = time slices

xu: number of vehicles on link a at the beginning of the ufr period

g(r) = exit function

l" = length of link a

travel speed on link a at time t
il,,*: mfiimum havel speed on tint a at time t
u,in = minimum travel speed on link a at time t

kt -- jam density

To : tavel time on link a at time t

3.1 Link Travel Time Function

In our model, we propose to use a nrodified Greenshild's equation to derive the link travel
time function as shorvn below.

Modified Greenshild's Equation : u' =il,,n * (il.* - rr" Xl - 9)
lct

(4)

(s)Link Travel Time Function

This function is nonnegative,
travel eost on links.

3.2 Exit Function

r,,Q'")=
tzk

u*^,k/, -(L,.. - u.^)r',

nondecreasing, continuous, convex function and present the

The exit function represents a phy'sical phenomenon, it is assumed not to depend on rime. So
we assume that the exit function is equal to the tratfic volume on link. Using trafhc-tlorv
relationships, we can express the exit function as

8,,( x',) = u 
^^ t- (u*,. - r,,,,,)ff (6)

The above function depends on number of vehicles on linli only. \\hen first-oder condition is
OEo 

=O,exit flow is maximum. Thus maximum exit flolv is as follou,s.
dx,
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g,(x,).o =--n*k'' , (7)
4(uffi - llnh,

3.3 Objective Function

We make nvo objective functions. One is dynamic user optimal(DUo) and the other is

dynamic system optimal(DSo). In DUS we determine vehicle flow on each link at each time
resulting from drivers using minimal-time route under the currently prevailing travel times. In
DSO drivers act so as to minimize total travel cost at each time(I0)(l l)(12). These objective

functions can be expressed as follows.

DUo: $ ii r.(x\drL/ u&t- " '
a=l ,=l

DSo: iif x',r,(x'.)
l-/ att u u
d=l /=l

3.4 Constraints

The fundamental transformation equation known as state equation is

xi' = x'" - g,1x'"5 + d'., I=0,1,.'.'r-1

(8)

(e)

where decision variables dj, is the umber of vehicles that admitted onto link a during the U/r

time period.
We have the conservation equation as follows.

Z a:=F'(n)+ \s,u'), t=0,1,...,7 -1, vreN-{n}

(1 0)

(l l)
ueA(n\ aeB(a\

Where l(r) is the set of links, which point out of node n and B(re) is the set of links

which point into node n. F'(n) denotes the extemal input at node n for the tr& time period.

Exit flow has to satisfu r\i'o constraints, which are nonnegatively constraints and maximum

flow constraints as shown.

o<d < ul'^k' (rz)
" 4(u^," - u^,")

'Ihe vehicles on link have upper bound. The maximum vehicles on link are equal to ftaffic
volume under jam density.

0<x,<k,xl,

3.5 Model

Considering all constraints, we make DTA model as fbllows.
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Objective Function
AI'

DUo: Z ZI,r,AW"
";, ,;,

DSo: zEl,.:rftt
s.t.

x',lt = x'u - g,(x'')+ d',,, =0,1,...,r-l

I d,=F'1n1+ fg,(xl), | =0,1,...,7 -t, yneiv-{r}
oeA(n) oeB(n)

2

o<d < uiuk,
" 4(ur"* - u.,n)

0<xo<k,xlu
xl = R"(given)

4. APPLICATION OF GONOCOP ilI SYSTEM

4.1 Sample Network

To demonstrate the application of GENOCOP III system to DTA model. we make the sample
network, which has 4-centroids, 9-nodes and 24-links given in Figure 3. We classifi links to
tlvo categories, which are highway and arterial roads.

Figure 3. Sample Network

1",

Proceedings of the Eastern Asia Society for Transportation Studies, Vol.3, No.2, October, 2001



64
Kyung Chul PARII Sung Mo RHEE, Kyung Soo CHON and In Wou LEE

The physical characteristics of each links are shown in Table 1.

Table 1. Physical Characteristics of Links

Length Num. Of Max. Veloci!Ltnk ulassttrcafion o.ril Lanes (km/hr)
Min. Velocity Jam Density Ma.x. Exit Vehicles

(km/h{ (veh/lane-km) (veh./lane-5min)

I Arterial 12 I 80 t52

Arterial

t5280t080t2

120

Aflerial

15280

Anerial

Arterial

120

120

Anerial 120

.Arterial 12 152

Highrvay l5 t00 r85

.l::l:::i
Highway

I5 r00 r85

l5 t00 r85

Ilighway t5 100 185

r5 Anerial t2 t52

I20

r20IOt7

12010l8

l9 I2 l0

l0

80

80

152

t20

120t02t

15280t2

12080

l0

l023 8

17

We assume that the vehicles, which enter a link at any time slice, can't traverse the link at thc
same time slice. So time slices have to satisfy below upper bound(10).

i'< min{ 
/" vai = 8k^ 

=o.l3hr= Smin'r.o,' 60kmlhr

Thus in our model, rvc decide that time periods are 5-min rvhich is smaller than S-min and

total time slices are lO(i.e. total analysis time is 50-min). In sample network, there are 3-
originations and l-destination, so all drivers travel toward node 4. For each time slices, OD
flows are shown in Table 2.

Initial link flows are assumed that highway links have vehicles at 40yo of maximum link
volunre and arterial links have vehicles at30oA.

l0
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Table 2. OD flows (veh/5min)

Interval Node I Node 2 Node 3

4.2 Solution Process

In sample network, we have z$-stale equations, l2-conservation equations, 24-maximum exit

flow inequalities. 48-nonnegatively inequalities and 24-marimum link flows inequalities. The

search space S is composed of 96-inequalities, the remains of constraints compose feasible

space F.

There are l2-decision variables, which are exit flows from link at each time periods. We can

express decision variables as follows for GENOCOP III system.

D = (d i, d :, d'5, d'6, d'?, d'i, d't6, d l, d'ts, d io, d L)

The GENOCOP III system process for solving our DTA model is summarized as follows.

Step 0: Find initial exit flow dj using given initial link flows.

Step l: Formulate constraints related with xi using state equations.

Step 2: Formulate constraihts related with di using conservation equations.

Step 3: Find search space and feasible space considering constraints.

Step 4: Generate search points and reference points(i.e initialize D ).

Step 5: Generate new population using search points by genetic operators'

Step 6: Repair unfeasible population of new population and make new ret'erence points and

search points.

Step 7: Select the best reference point and test convergence.

4.3 Results

As the results for the sample netrvork, the solutions for t'*'o objective functions converge(see

Table 3). In particular, tlre results for DSO satisfy user equilibrium state: i.e. used routes have

equal travel time in each interval.

To demonstrate the performance of GENOCOP III system, u'e compared the results with
those of Quasi-Newton method, which is a conventional method to solve NLP. ln the
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comparative analysis, we found that both algorithms have the same objective firnction values.
However, we found that the GENOCOP III system is more efficient in terms of execution
time results(see Table 4 and f).

Table 3. Exit FIow From Link (Unit: vehicle)

Time Periods
Classification t-

dt 125 109 108 116 114 u5

D
U
o

d5""-""'07' tdi' ' iiT--- '-iir"-'-1-i1""'-i1i rir""]Ti ii-i ""-iii'- ae "---'i0 -"l-di--- "ii5-----'ioil----'i2?--'---iil iie . i40 -"i15"" -'iie
.47' ---'ii7 -"']-dt ""'ibr'""-'iott' -"'ei "---'ir" "r0i'" ' 'iljj" " ibi"'-'-iot-
Ait ' izo 

-' -l)0'-'."iio---"-iiii'--- "ire"""ilA" 'ri4 ""'i-ii' 'ilr-'----iir"

324 312
54 55 56- 

" '-"i6
D17 107 104 'ti""--'ei--""-tt--'----bzi
Dii'-'-'---iio -' '\io'- 'iro-'--"ti7" --ib-i' "'ibi '

b)0"""--"i0 ' "i6" '50 'i1--- ---5i.' ' --55.'

n 1"' 
- " - -ilii' "' " 

1-2-d" 
" - - 

iid 
" " "'08" " - - idi' " "bl "

80 76

.. r :I.
'15 73

i4jj'
,8' 86 '

89 85

56 -i6'

1e 
-' 'i4

D
Q

o

dl 125 112 l l8 l 16 l t4 u4 u6 l t8 r20 tzl--' 
ai--'-- --irit - 'llo-"-.'iro ""'::ii"" "ilZ ' '-'ila 'iot" "'1di iil-----'ii1'
.i5- 

" -' 
f07' ' 'l'di' ' ii i iib--"'-i i0 --ibe" 

ioe 
- '-idi-" ib?"' --i07-

'-'ae"-""'-5tt- ."idi'---'-i]i"""'0b----'-ii6""'-i1i -'-"iie ""iao"- -iii -""r'ib'-

ai i4 iiii - 'ei-'-----0t-----"8t' '--'-eii "' '-sI '-'s4" "' 
e-6' 

"" iii
At' -"" iio i r0" "ii i "'---f it "---' li"-'--il)-' r ii i Ii" iid----'-iiat'' 'rtii' ' "'ii(i -"iii---' -rsd ---r6t-----3bl--'--3ri"""iiT "'l4d---"'3Ii--"'ii1'-

- -Dits-----'---64 """ i'"--'--ni' "-"-44"'-' -43'-"-"in' "46""'-'4i"' 
48----"-ait- -Dil "'-"-'i67'-'"'ibl"'-"-ei'- ---'se '--'--si'------bd-'-"--id-'-'-'ii-- "'--7T"--"?e'

' Die""'-"iiti'-"'i'ii"--'-il-d-' ' iio " ib; ' '.iba"- ""et " "ei ' -ire-------8t
-"ifid"'--"-oi-"" '4t"-" {i ' 'a,i"----aj ""-'4.i'-"' i6' 

.."'ii'-.---'48"' -'-.iil-
' bii""'-"iio' - \io-"-. tio i00 "- io4 " b,i 

" "t,i." "di ie"'-"'it

Table 4. Results for DUO

Classification
Objective Function Value

(hr)
Execute Time

(sec)

Quasi-Neuton
Method

Fist execute r6.385.41 178.9

Second execute 16,389.76 46.2

Table 5. Results for DSO

Classification
Objective Function Value

(hr)
Execute Time

(sec)

19,5 0 I .52

9.4

t72.9Quasi-Neu'ton Fist execute

Method S..onJ..*..ui. it.tii.ei 59.7
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5. CONCLUSIONS

In this paper the GENOCOP III system is presented as the new solution algorithm for the

DTA model. As the results for the sample network, we found that GENOCOP III qystem can

be applied to the part of DTA.

Also we have demonstrated the performance and efficiency of the GENOCOP III system

compared with conventional method. In the comparative analysis, GENOCOP III system

showed more effrcient than conventional method. Those results are evident that w-e will be

able to expand the GENOCOP lll system to other transportation parts.
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