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Abstract: This research presents an automated calibration framework coupled with SUMO 
microscopic traffic simulation software to calibrate model parameters related to car-following 
and lane-changing models in heterogeneous traffic conditions. The calibration framework is 
based on a stochastic approximation algorithm named Simultaneous Perturbation Stochastic 
Approximation (SPSA). The proposed method is implemented for a link on an urban corridor 
in Colombo, Sri Lanka, by calibrating one car following and four lane change model parameters. 
The calibrated parameters provide a good fit to observed traffic speed measurements. Due to 
its automated model creation and calibration process, the methods can be easily extended to 
create and calibrate larger networks to better represent Sri Lankan traffic conditions in traffic 
simulation models. 
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1. INTRODUCTION

Traffic congestion has been a significant problem in urban transportation for many years. To 
counter traffic congestion, it is essential to implement effective traffic management and control 
strategies. Microscopic traffic simulations play an important role by providing a testbed for 
decision-makers to understand the suitability of different traffic control approaches. To make 
accurate decisions from traffic simulations, they must be properly calibrated for the specific 
network, rather than using the default model parameters provided in the simulation software 
(Yu and Fan, 2017). However, in Sri Lankan context, as in many developing countries, traffic 
simulations' calibration needs to represent the heterogeneous traffic conditions, poor lane 
discipline, and aggressive driving behavior for better results.   

Model calibration is a process of adjusting the estimates of the different model parameters 
to better represent the actual traffic condition (Olstam and Tapani, 2011). This is an iterative 
process to be carried out until the difference between the observed and simulated traffic 
measurements is reduced to an agreed level. Due to the complex interdependencies between the 
model parameters and simulation outputs, the calibration of traffic simulation models is often 
considered as an optimization problem where the error between simulated and observed traffic 
measurements are minimized.  

The motivation behind this research is to introduce and use such automated traffic model 
calibration approaches as a solution for the traditional trial and error approaches. In this research, 
a Stochastic Approximation (SA) algorithm named Simultaneous Perturbation Stochastic 
Approximation (SPSA) proposed by Spall (1998) was used to automate the calibration process. 
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Its generic problem formulation enables the SPSA to use any actual traffic measurements 
available for calibration. The SPSA is also computationally efficient algorithm that requires 
only two objective functions to be evaluated at a given iteration to calculate new estimates, 
regardless of the total number of parameters being calibrated. Therefore, this research 
methodology could be also applicable for calibrating larger microscopic traffic models.  

The objectives of this research are twofold: 1) to develop a generic methodology of 
creating microscopic traffic simulation models with SUMO by taking advantage of the existing 
traffic data, 2) to develop a systematic and automated calibration procedure to calibrate such 
models using available true traffic measurements to estimate the model parameters to represent 
the actual traffic conditions closely.   
 

 
2. LITERATURE REVIEW 
 
The objective of traffic model calibration is to closely represent the simulation to the real-world 
data or ground truth. Balakrishna et al. (2007) argue that the direct use of the outputs of the 
simulation model helps to capture the nonlinear dependencies of the variables (model 
parameters) and the data (true measurements). For microscopic traffic model calibration, it 
would be ideal to have disaggregated data for the calibration. However, such data is costly and 
difficult to collect. Therefore, in practical applications, only aggregate traffic measurements 
will be available. A web-based survey conducted by Brackstone et al. (2012) reveals that some 
practitioners use personal experience in calibrating models where the simulation results of the 
initial estimates are used to modify the selected model parameters until a satisfactory calibration 
is reached. However, this approach is tedious and hard to replicate in a new model. Most 
importantly, it does not guarantee to achieve an optimal set of estimates.  

A list of previous calibration work conducted using microscopic traffic simulation models 
is summarized by Yu and Fan (2017). According to the summary, Genetic Algorithm (GA), 
SPSA are widely used in previous work. A case study comparing GA and SPSA for calibrating 
microscopic models is presented by Ma et al. (2007). The research shows that SPSA can obtain 
a good set of calibrated model parameters in much less time compared to GA, while GA 
produces more stable solutions in the numerical experiments. Therefore, the modeler must 
decide the tradeoff between calibration accuracy and computational cost when selecting a 
calibration algorithm. Kostic et al. (2017) also highlights convergence issues of SPSA at higher 
dimensional calibration problems and proposes techniques and approaches to improve the 
performance of SPSA. This problem, in relation to transport modeling, has been studied 
intensely in dynamic demand calibration. Solutions such as W-SPSA (Antoniou et al. 2015) 
and PC-SPSA (Qurashi et al. 2020) have been proposed to overcome some shortcomings of the 
basic form of SPSA for higher-dimensional problems. 

In the Sri Lankan context, Jayasooriya and Bandara (2018) used queue lengths to calibrate 
PTV Vissim model parameters. Eight parameters were considered in this study, and the error 
was minimized by changing parameter values manually. Vajeeran and Silva (2020) researched 
the effectiveness of the manual traffic control methods compared to the traffic signals. As a part 
of the study, the driver behavioral parameters were calibrated using a trial-and-error process. 
Simulated and observed queue lengths were used in the error minimization process. Therefore, 
in Sri Lanka, microscopic traffic simulation model calibration using automated methods has 
not been researched extensively. 
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3. METHODOLOGY 
 
This study formulates the calibration problem as a generalized optimization problem given 
below. 
 

   (1) 

   
with                      
  
subject to                      

 
where: 

 : Observed and simulated traffic measures 
 : Parameters being calibrated 
 : Traffic demand 
 : Network  
 : Goodness of fit function 
 

 
: Domain of allowable values for  
 

Where the best possible values for  are determined such that  is minimized by keeping  
static. 
 
3.1 SPSA Algorithm  
 
SPSA is generally used for large scale nonlinear problems with expensive objective function 
evaluations. In SPSA, the next set of estimates for the parameters are calculated as:  
 
  (2) 
   
Where  represents the estimated parameters through the evaluated gradient  at the 

 iteration by perturbing .  defines the minimization step size, predefined using the 
hyperparameters. Perturbation of  calculates two sets of intermediate estimates in the form 
of , used to obtain two measurements of the objective function. Here, 

 governs the magnitude of the perturbation and  is a Monte Carlo random vector with the 
dimensions of the number of parameters being calibrated. Each element of the  vector is 
independently generated from a zero-mean probability distribution. In SPSA, the variables are 
perturbed simultaneously, so the gradient can be approximated by using only two evaluations 
of the objective function regardless of the number of parameters to be estimated.  
 
 

 

 

(3) 

 and  are defined based on the guidance given in Spall (1998) by carefully selecting the 
values for hyperparameters  and . With  being the iteration number, the 
hyperparameters of the algorithm define the pattern of reductions in  and  for each 
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increment of the iterations.  
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Such that: 
 

  

 
, 

 
 

 ,  

 
3.2 SUMO Simulator 
 
In this study, the SUMO (Simulation of Urban Mobility) microscopic traffic simulator was used 
as the modelling software. SUMO is a free, open-source, portable, microscopic, and continuous 
multi-modal traffic simulation package designed to handle large networks. SUMO has various 
capabilities and n ( Lopez et al, 2018). 
  
3.3 Calibration Workflow 
 
Figure 1 describes the workflow of the calibration algorithm. The initial estimate used in the 
calibration can be set to the simulator's default values or an initial set of values based on 

dgement if no prior estimations are available for the model parameters in concern. 
The estimates from the previous iteration are perturbed at a given iteration, as mentioned in 
subsection 3.1. The perturbed estimates are passed to the SUMO simulator to get the speed 
outputs for each perturbed estimate set to evaluate the objective function. After the gradient 
approximation step and the estimation of new model parameters, the simulator runs again to 
evaluate the objective function with new estimates. Therefore, for a given iteration, three 
simulation runs are required. 
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Figure 1. Flowchart of SPSA 
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The simulated outputs are compared with the observed traffic measurements using a goodness 
of fit measure. The mean absolute percentage error (MAPE) is used in this study. 
  
 

  (4) 

 
where, 
 

 : simulated value 
 : observed value 
 : is ranging from the number of measurements captured   

 
3.4 Using the Traffic Counts with SUMO 
 
The traffic data need to be processed into a SUMO readable .xml file format to run the 
simulations, as illustrated in Figure 2. 
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collector 
(add.xml)

 
Figure 2. Workflow to create SUMO Simulation 

The workflow begins with the road network in the interested study area downloaded using 
'Open Street Map (OSM) Web Wizard', a built-in tool in SUMO installation. The network is 
edited to represent the actual number of lanes per direction, connection between edges. The 
network is then used as an input to 'randomTrips.py' to generate candidate routes for the 
vehicles. The candidate routes and the traffic counts are then used as an input to 
'routeSampler.py', which produce a route file that matches the vehicle counts and the time 
intervals. This output file is then edited via a Python script to represent the classified counts for 
the given intervals. After that, the dimensions of different vehicle types and corresponding 
acceleration and deceleration values were changed if necessary. This finalized route file and 
road network are then used as inputs in the SUMO simulator. An edge-based state dump is also 
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defined as an additional file (add.xml) to collect the required simulation outputs. 
4. CASE STUDY 
 
A three-lane, one-way traffic road segment of a 2 km section of the Duplication road corridor 
in Colombo, Sri Lanka, was selected as the case study area, as shown in Figure 3.  
 

 
Figure 3. Case study area 

 The selected section was used to test the proposed simulation framework to calibrate selected 
car-following and lane-changing model parameters. The number of vehicles enters/exit from 
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the three by-lanes are neglected due to their low volumes. Therefore, the simulation was set up 
such that all the vehicles enter the network from the topmost edge of the network and leaves 
the network from one of the two exit edges. In addition, the disturbances for the traffic flow 
from other factors (e.g., pedestrian movement, on-street parking) were observed to be minimum 
from the site visits and the video recordings (Figure 3 (c) ). Therefore, in this study, the impact 
of such disturbances on traffic flow is considered insignificant. 
 
4.1 Data Collection and Preparation 
 
4.1.1 Traffic counts 
 
A video recording of the vehicles passing a count location near Muslim Ladies College, as 
shown in Figure 3, was used to obtain a classified count for each 5-minute interval. Two-hour 
data from 07:00 am to 09:00 am were extracted from the video footage collected on 20th August 
2020 for model creation and calibration. Altogether 4,387 vehicles were counted in these two 
hours. The vehicle composition for the period of data collection is given in Table 1. 
 
4.1.2 Speed data 
 
Google Apps Script was used to capture the average speed of the selected road segment on the 
same day and same period for validation purposes. Speeds were captured every 5 mins, 
providing 24 measurements for two hours. Within a simulation, the first five minutes was 
considered as a warm-up period. Therefore, the observed and simulated measurements during 
that interval were not considered for the calibration. Similarly, the last two measurements were 
not considered in the calibration due to the lack of interaction between vehicles as the vehicles 
gradually start to leave the simulation towards the latter part of the simulation. Therefore, a 
total of 21 actual measurements were compared against the simulated traffic speeds for the 
calibration. 
 
4.1.3 Characteristics of vehicle types 
 
The length and width of each of the vehicle categories found on Sri Lankan roads were 
measured as shown in Table 1.  
 

Table 1. Vehicle composition and dimensions 

Vehicle Type SUMO 
Vehicle Class 

Composition (%) Length (m) Width (m) 

Motorcycle Moped 21.6 2.0 0.9 
Three-wheeler - 35.9 2.5 1.5 
Cars Passenger 31.4 4.3 1.8 
Van Passenger 3.3 5.3 2.1 
Minibus Bus 1.2 7.0 2.4 
Large bus Bus 4.9 10.8 2.9 
Light goods Truck 0.8 3.7 1.8 
Medium goods Truck 0.6 6.2 2.3 
Heavy goods Truck 0.2 8.5 3.0 

 
In most situations, default values for each vehicle classes were used, including the acceleration 
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and deceleration values except for three-wheelers, taken from Bokare and Maurya (2017). 
4.2 Experimental Setup 
 
4.2.1 Model parameter selection 
 
Car following and lane changing manoeuvres can be considered as the most common driving 
behaviour on urban roads. Car following models describe the longitudinal movement of the 
vehicles, whereas the lane changing models describe lateral movements of the vehicles. 

, the default car-following model of SUMO, is used for this study. Krauss 
model has six parameters, and four of them (minGap, accel, decel, emergencyDecel) are vehicle 
class specific. For those parameters, the default values given for each vehicle class were used. 

 and default value of 
1 second was 
behaviou
random number. This parameter was considered for the calibration as it can be used to model 
the imperfectness of driving. 
1. For this study, the possible value range was further restricted to accept values 
between 0.25 and 1, so that randomness due to driver imperfection is guaranteed throughout 
the simulation runs. 

The lane-changing model in SUMO is based on four different motivations (strategic, 
cooperative, tactical, and regulatory) for lane changing (Erdmann, 2015). From the video 
recordings, it was clear that certain vehicle types do sharp manoeuvres to gain speed. Therefore, 
model parameters that represent willingness to change lanes to gain speed and 2) 
willingness to encroach laterally on other drivers was considered as two model parameters. Two 
other lane-changing parameters were selected to represent the strategic and cooperative lane 
changing behaviours.  

Brief definitions for the selected model parameters, their acceptable value range for the 
simulator, and the initial guess assigned for the model parameters for each vehicle type are 
given in Table 2.  
 

Table 2. SUMO model parameters used in the calibration (DLR, 2021)  

Model 
parameter 

Definition Value 
range 

Default 
value 

Initial guess*  

sigma The driver imperfection (0 denotes 
perfect driving) 

[0-1] 0.5 0.9 

lcSpeedGain The eagerness for performing lane 
changing to gain speed (higher values 
result in more lane changing) 

[0-inf) 1.0 1.0 

lcPushy Willingness to encroach laterally on 
other drivers 

[0-1] 0 0.5 

lcStrategic The eagerness for performing strategic 
lane change  higher values result in 
earlier lane-changing 

[0-inf) 1.0 0.5 

lcCooperative The willingness to perform cooperative 
lane changing. Lower values result in 
reduced cooperation 

[0-1] 1.0 0.5 

* Authors initial guesses 
 

The sub-lane model in the SUMO simulator was activated to simulate the lack of lane discipline 
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as suggested by Sashank et al. (2020) for calibrating model parameters for Indian 'lane-less' 
traffic conditions. The sub-lane model accepts one parameter called 'lateral-resolution' that 
divides the regular lanes into sub-lanes with a minimum value of the given lateral resolution. 
In this study, the parameter's value was fixed at 1.0 meters, which is based on the width of the 
vehicle type that has the least width (motorcycle) with a small buffer. 
 
4.2.2 Stochastic aspects of the experiment 
 
Stochasticity in microscopic traffic simulations is an important aspect of reproducing reality 
(DLR, 2021). Microscopic traffic simulation models have higher computational complexity 
compared to both mesoscopic or macroscopic traffic models. Therefore, ensuring the stochastic 
aspects of the simulation and the calibration while keeping the computational time to a 
manageable level is important. The following steps were followed in this study to ensure the 
stochastic aspects of the experiment: 
 
1. For a given simulation run, each vehicle enters the simulation from the least occupied lane 

with a maximum possible speed. This behaviour and a value for sigma always greater than 
zero will ensure the randomness for each simulation run.  

 
2. Once the error is reduced to a certain acceptable level, SPSA is restarted with different 

random seeds to ensure that the error reduction is consistent regardless of the random seed 
chosen in SPSA. Once a set of feasible solutions are identified, multiple simulations are run 
for the same set of estimates using different random seeds of the simulator to identify the 
best set of estimates. 

 
4.2.3 Hardware and software 
 
The calibration procedure was implemented in Windows 10 platform with an AMD Ryzen 5  
processor and 8GB RAM. The scripts were implemented in python 3.9. The execution time for 
150 iterations was about 8 hours and 25 mins. 
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5. VALIDATION OF RESULTS 
 
5.1 Convergence 
 
In comparing the goodness of fit value (MAPE) with the number of iterations, the model 
parameter estimates that provided the lowest MAPE or the highest goodness of fit have been 
identified as a feasible solution for the next step of the experiment. The error reduction using 
the SPSA algorithm was done in stages and the results are given in Figure 4. 
 

 
Figure 4. Change of MAPE with the iterations 

Figure 4 (a) shows how the error has been reduced starting from the initial guess. For all these 
experiments, the random seeds used in the SPSA algorithm and the simulator were fixed. The 
initial guess produced a MAPE of 0.87. Over the iterations of the first run, the algorithm was 
able to reduce the MAPE to 0.62. The error reduction has been plateaued after the 120th iteration. 
Therefore, it was decided to limit the number of iteration to 150 for a given calibration. The 
parameter estimates that provided the best results (lowest MAPE) from the previous calibration 
was used as the initial guess for the next calibration run. This feedback method, named as 
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, helps improve the convergence of SPSA and avoid local minima (Kostic et 
al. 2017). Three algorithm restarts were performed and each restart was able to reduce the error 
compared to the previous run, as shown in Figure 4 (a). Algorithm restart 3 produced the lowest 
error with a MAPE value of 0.13, annotated in Figure 4 (a). 

Figure 4 (b) shows the result of algorithm restart 4. The best results from algorithm restart 
3 was used as the initial guess for restart 4. In addition, restart 4 was repeated three times using 
three different random seeds while keeping the random seed of the SUMO simulator unchanged. 
Though the error reduction in restart 4 was minimum, it was able to reduce the MAPE further. 
Three sets of experiments belong to three different seeds at iteration 92, 47 and 88, respectively 
(as shown in Figure 4 (b)) produced their lowest values as shown in Table 3 and considered the 
candidate solutions from the calibration. 
 

Table 3. Candidate estimates for calibrated model parameters 

Model parameter Calibrated estimates 
Set 1 Set 2 Set 3 

sigma 0.84032494 0.79383816 0.76949289 
lcSpeedGain 6.02258474 5.22275400 6.84867586 
lcPushy 0.92484981 0.79390518 0.94947069 
lcStrategic 5.69255636 5.91387018 7.63341656 
lcCooperative 0.99917092 0.99917092 0.99729995 
MAPE 0.0986 0.1006 0.0981 

 
5.2 Selection of Best Estimates 
 
The candidate solutions were then tested by changing the random seed of the simulator. Each 
candidate solution was tested with 200 random seeds, and the resulting MAPE values were 
calculated and given in Figure 5. 
 

 
Figure 5. Statistical comparison of the error distribution 

The histogram for error distribution is shown in Figure 5 (a), and the empirical cumulative 
distribution function (ECDF) is shown in Figure 5 (b). Since the distributions are not symmetric, 
median values are used as an appropriate central tendency measure. It can be seen that the 
lowest MAPE values got in from the calibration (Table 3) are largely different from the median 
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MAPE values when the simulation is performed using multiple different random seeds. From 
the ECDF plot in Figure 5 (b), and the overall statistical summary provided in Table 5, it is clear 
that estimate set 2 is consistent in producing lower MAPE values than the other two sets of 
estimates.  
 

Table 4. Statistical comparison of candidate estimates 

Calibrated estimates Mean Median Standard deviation 
Set 1 0.1680 0.1644 0.0294 
Set 2 0.1581 0.1560 0.0278 
Set 3 0.2005 0.1923 0.0446 

 
Therefore, set 2 was considered as the best set of estimates for the model parameters to describe 
the traffic scenario used for this case study.  
 
5.3 Comparison with Observed Traffic Measurements 
 
The scatter plots in Figure 6 (a) and (b) shows the 
traffic counts compared to their observed counterparts. The diagonal line represents the case of 
perfect calibration. In Figure 6, a fair scenario is considered where the MAPE for the speeds is 
closer to the median MAPE, summarized in Table 4. 
 

 
Figure 6. Calibrated model  Goodness of Fit 

 
Figures 6 (a) and (b) show that the simulated values match well with the observed data. Speed 
values show more symmetry over the diagonal line, indicating that the calibration is successful. 
However, the scatter plot for traffic counts shows some data points with higher observed values. 
The main reason for this is that 278 vehicles (3.72% of total flow) have left the simulation after 
the planned simulation time of the simulation. In the experiment, the traffic counts were 
matched only once, and the calibration was done using the speed values for the objective 
function evaluation. However, according to the results, it is clear that it is important to consider 
traffic counts also in the calibration process to improve the overall accuracy of the calibration. 
A similar comparison of the simulated traffic measures is made with their observed values, 
including their respective time intervals in Figure 7. 
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Figure 7. The calibrated model compared with the observed data over times intervals 

Figure 7 (a) clearly shows that the simulated speeds obtained with the calibrated model 
parameters compare well with the observed speeds. The measurements from interval 2 to 22 
were considered to evaluate the objective functions. The simulated speeds closely follow the 
observed speeds, especially from interval 3 to 21. However, the simulated traffic counts match 
well with the observed values from interval 7 onwards. This suggests that the calibrated model 
closely follows the reality for around 1 hour of the total simulation period. 
 
5.4 Discussion 
 
Using SPSA based calibration procedure, the study reduced the MAPE between simulated and 
observed speeds up to 0.15. The calibration of the car-following and lane-changing model 
parameters could be further improved, for example, using different variants of SPSA, better 
selection of model parameters, using more true measurements, and using different objective 
functions.  
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Table 5. Comparison of default and calibrated model parameters 

Model parameter Default Calibrated 
sigma 0.5 0.7938 
lcSpeedGain 1.0 5.2227 
lcPushy 0.0 0.7939 
lcStrategic 1.0 5.9138 
lcCooperative 1.0 0.9991 

 
According to the summary given in Table 5, most of the calibrated parameter estimates 

are largely different from the simulator's default values. The car-following model parameter 
than the default value. It indicates that a higher driver 

imperfectness can simulate the traffic flow closely.  
The calibrated estimates for lane change model parameters are also different to the default 

values. The drivers are more eager to do a lane change to gain speed than the default settings 
of the simulator. Also, drivers are more willing to encroach laterally on other drivers. The video 
recordings used for traffic counts justify higher values fo
certain vehicle types (e.g., motorcycles, three wheelers, and cars) do quick lane change 
manoeuvres to gain speed by avoiding a slow leading vehicle. A higher value for strategic lane 
changing suggests that drivers are more eager to perform a strategic lane change. The calibrated 
value for corporate lane changing is similar to the default value of the model parameter, 
suggesting that it is reasonable to use the default estimate of the parameter. 
 
 
6. SUMMARY AND CONCLUSION 
 
Calibration of microscopic traffic simulations is a complex problem that requires an 
optimization algorithm based automated calibration procedure that provides significant 
advantages compared to trial-and-error methods. This study aims to understand the possibility 
of calibrating the SUMO simulator to match traffic conditions in Sri Lanka. An automated 
calibration procedure based on SPSA was used. Simulated and observed speeds were used to 
evaluate the objective function. The developed methodology is tested in a smaller urban 
corridor in Colombo, Sri Lanka, where actual traffic data were available. 

The simulator-based case study proves that SPSA based automated calibration procedure 
can calibrate the model parameters to match the observed speed measurements. The 
corresponding set of estimates that produced the error distribution with the lowest median value 
(MAPE: 0.1560) considered as the calibrated estimates for one car-following and four lane-
changing model parameters. The calibrated estimates well explained the traffic conditions 
compared to the observed speed and flow data. For the case study used in this research, results 

random speed variatons are 
to change lanes in order to gain speed and as well as their willingness to encroach laterally on 
other drivers were also found to be higher. 

One important future work is to test out the calibration procedure for a larger network 
with more traffic measurements at multiple locations. In the current study, the model parameters 
were calibrated such that the estimate of a particular model parameter is common for all vehicle 
types. For a larger network, this can be extended such that each model parameter is calibrated 
separately for different vehicle types, preferably by using variants of SPSA.  

It is also important to look at how different model parameters change at different traffic 
conditions (e.g., peak/off-peak, urban road/expressway) so that these calibrated model 
parameters can be used for model creation and as a set of initial guesses for further calibration. 
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It is also argued that simulating heterogeneous traffic conditions with weaker lane discipline is 
difficult using conventional models (Papathanasopoulou and Antoniou 2018). The development 
of technology and the availability of high-quality traffic data enables the development of 
advanced data-driven microscopic traffic simulation models. The data-driven models help to 
easily include additional variables rather than relying on fixed formulas used in conventional 
microscopic simulation models. Therefore, it is important to incorporate such methods and 
compare the results between conventional models and data-driven methods. 
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