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Abstract: This paper employs user equilibrium theory to develop deterministic queueing
models to evaluate the queueing phenomena at a single bottleneck under fixed, flexible,
and staggered working schedules. Compared with conventional fixed working hours, the
results have shown that traffic delay reduced by flexible working hours is in square
proportion to the ratio of flexible time duration to peak hour period. Whereas the delay
reduced by staggered working hours of uniform-type is linearly proportional to the ratio
of staggered time length to peak hour period. The maximum queue length reduced by
flexible/staggered working schedules is also linearly proportional to the ratio of flexible
or staggered time length to peak hour period. The staggered working hours of step-type
can yield even better performance if the number of commuters in each step is managed
at a rate equal to the staggered time multiplied by the bottleneck saturation flow rate.

1. INTRODUCTION

Traffic congestion caused by commuters during peak hours is a common nightmare
shared by most urban residents. As commuters have fixed starting and off working hours,
it inevitably leads to the over-concentration of using the transportation systems at the
same period of the day. In order to decentralize the high demand during peak hours,
there is an important strategy employed in transportation demand management, which can
be accomplished through the following means: (1) adopt flexible working hours; (2) shift
the starting/off working schedule (staggered working hours); and (3) levy congestion tolls
(Ferguson, 1990). A common goal of these three methods is to induce commuters to
change the commuters’ departure time from home and the office, thereby resulting in a
decentralization of peak hour demand on transportation systems.

Flexible working hour system has been widely implemented by private and governmental
organizations worldwide for nearly four decades. This system has yielded positive returns
to companies, employees and society at large. It reduces peak-hour traffic and congestion
in metropolitan areas, shortens travel times and encourages car pooling (O’Malley, 1975;
Jones et al., 1978; Nollen et al., 1978; TRB, 1980). Among its merits include reduced
transportation costs, lower air pollution levels, and a deferred demand for investment of
transportation infrastructures.

Some investigators have examined the effectiveness of congestion tolls during peak hour

(Arnott et al., 1990a, 1993; Laih, 1994; Lan et al., 1987; de Palma ef al., 1986; and Braid,
1989). Studying congestion tolls allows one to analyze the extent to which different toll
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schemes reduce traffic congestion. Vickrey (1969) first used user equilibrium to illustrate
the adoption of time-dependent toll, which can completely remove queueing associated
with the bottleneck.

Hendrickson et al. (1981) examined how schedule delay influences commuter departure
time and the formation of congestion. While applying a mathematical formula, Smith
(1984) attempted to verify the existence of equilibrium curve of arrivals at a single
bottleneck. Daganzo (1985) further confirmed the uniqueness of the equilibrium curve.
Newell (1987), Kuwahara (1990), Amott ef al. (1990b), Tabuchi (1993) then increased
the scope of above assumptions to examine the traffic congestion under different
conditions. Those investigations, however, did not address alternative work schedules.
The impact of flexible/staggered work schedules on traffic congestion has received
limited attention. Although Henderson (1981), D’Este (1985), and Jovanis (1981)
developed theoretical models or applied simulation techniques to explore the ability of
flexible/staggered work schedules to alleviate traffic congestion, their analytical
assumptions differ from those used in the above investigations on congestion tolls and
bottleneck equilibrium models. Consequently, their results cannot be easily compared.

To remedy the gaps of above investigations, this study compares the results obtained from
previous efforts to reduce traffic congestion by employing fixed, flexible, and staggered
working hours. Different types of work schedules are first defined and, then, a
deterministic queueing model is constructed for each work schedule. Measures of
effectiveness such as equilibrium travel cost, total queueing delay and maximum queue
length are also compared. Sensitivity analysis is also conducted on a given example to
discuss policy implications.

2. ASSUMPTIONS

Our analysis will refer to user equilibrium principle applied towards a single bottleneck
by following the similar assumptions made by previous studies (e.g. Arnott ef al., 1990a;
Laih, 1994). (i) All commuters must pass through a bottleneck section before reaching the
destination. When the traffic volume exceeds the capacity of bottleneck section, ,
congestion occurs in the bottleneck section, whereas the roads immediately adjacent to
the bottleneck that have sufficient capacity are not similarly congested. (ii) The system
contains only passenger cars and the occupancy rate remains fixed. (iii) All commuters
use the same working hour system. (iv) Each commuter chooses the departure time based
on minimum individual travel cost. (v) Commuters follow first-in-first-out principle at
the bottleneck section, and the total number of commuters per day is a fixed value. (vi)
Travel time between the origin to the bottleneck section and between the bottleneck to the
destination is a fixed value and, hence, should not affect the decision on departure time.
Therefore, the following discussion omits this factor.

This paper defines three different types of work schedules as follows. Fixed working
hours refer to the system where all the employees sign in and leave work at a fixed time,
e.g. work starts at 8:30 am to 5:30 pm with an hour lunch break. Staggered working hours
refer to a group of workers working in a schedule of fixed hours, and another group of
employees working in another schedule of fixed hours. Flexible working hours refer to
companies that designate a time range as the core hours where employees must be at work
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to facilitate communication and business contacts; however, employees can flexibly
choose the time to begin and finish work within a given range. Flexible working hour
systems are characterized by the notion that if all commuters arrive at work within the
length of flexible time, they are viewed as arriving on time. Commuters arriving at the
office before their flexible time period begins suffer from early schedule delay; if they
arrive after their flexible time period ends, they incur late costs. Commuters encounter the
same queueing delay if they arrive within a flexible time period.

We presume that the employees may not all arrive at work on time. They may be early or
late; the same applies to getting off work. As the analysis method resembles that of
getting to/off work, the discussion below only includes the situation for getting to work.
For simplicity, a linear cost function is used to measure the cost for early or late arrivals.
The length of early arrivals of commuter i (hj(t)) and the unit cost of time (B) determine
the early schedule delay cost. Vice versa, the cost of arriving late at work is calculated
from the length of lateness (pj(t)) multiplied by the unit cost of time (y), usually implying
that the employee is subject to penalty. When approaching infinity, the unit cost of time
lateness is interpreted as a situation where no lateness is allowed. Let t* denote starting
work time and e the length of flexible time. Figure 1 displays the relationship of schedule
delay and cost for early or late arrivals.

cost cost
Y— 00
p 4 B
- t C t
. t . t
(a) Fixed and staggered working hours (b) Fixed and staggered working hours

(Late arrivals allowed) (No late arrivals allowed)

cost cost

Y— oo
P B
t.'e t‘ t t‘_e t. t
(c) Flexible working hours (d) Flexible working hours
(Late arrivals allowed) (No late arrivals allowed)

Figure 1. Costs for early and late arrivals
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The above cost of early and late time plus the fixed cost of travel, p, and the cost of
queueing delay arj(t), equals the function of travel cost for commuter i.

Ui(t)=ptari(t)+Bhi(t)+ypi(t) (€))

As the fixed cost of travel does not influence the analysis results in equation (1), p can be
set to zero. According to Wardrop’s principle, assume that each commuter attempts to
reduce the travel cost to a minimum. A situation in which the travel cost is identical for
all commuters implies that the commuters’ choice of departure time could not reduce the
individual travel cost, thereby reaching the state of user equilibrium. By using user
equilibrium principle as a basis, the following discussion elaborates on how to perform
deterministic queueing analysis to calculate measures of effectiveness (MOE) including
equilibrium travel cost, total queueing delay, and maximum queue length in the
bottleneck system.

3. THE MODELS
3.1 Fixed Working Hours

In the fixed working hours case, we would follow the previous literature such as
Hendrickson ef al. (1981), Amott et al. (1990a), and Laih (1994) which have utilized user
equilibrium mostly under the premise of a fixed working hour system. The travel costs of
all commuters, under the condition of user equilibrium, are equal to G, in late arrivals
allowed situation.

Ui)=ptor®)+Bhi)+ypi) =G, Vi @

Figure 2 depicts the curve of cumulative arrivals A(t) at the bottleneck. At the earliest
departure time, t; commuters experience the longest early schedule delay. While at the
latest departure time t;°, commuters incur the largest late penalties; however, at neither
point does waiting time in queue exist. At departure time tj, although commuters suffer
maximum queueing delay, there is no early time or late time. According to user
equilibrium, the following simultaneous equations are obtained:

B(x1+ x2)= Gp
axy= Gp
Yx3=Gp

(X1+ XoF X3)pu=N

and the solutions are: x; = (1-B/c) [y/(B+y)J(IN/p); x2= (B/o)[y/(B+y)I(IN/p);
x3= [B/(BHNIN/p).

Equilibrium travel cost is G,=[By/(B+y)](N/n). The slope of the curve of cumulative early
arrivals at the bottleneck is m(t) = [o/(a-B)]y; whereas the slope of arriving late is
my(t)=[c/(a+y)]p. The maximum queue length occurs at tj=tg+{(1-B/o)[y/(B+y)J(IN/p)}.
The area bounded by cumulative arrival and departure curves in Figure 2 is expressed as

total queueing delay:
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Wy = (1/2){ (B [a(B+1)]} N/ A3)

Maximum queue length is:

Qp ={(BY)/[a(B+V)]}N. “4)

Total queueing delay and maximum queue length are proportional to (B/c)[y/(B+y)],
which are exactly the same as in previous literature (e.g. Hendrickson et al., 1981; Arnott
et al., 1990a; Laih, 1994).

With no late arrivals allowed, all commuters must arrive at the office before starting work
hour t". By using the same method, we can easily obtain G, =B(N/p), W, =
(1/2)(B/a)(N*/p), and Q, = (B/a)N that are the same as Hendrickson e al. (1981).

3.2 Flexible Working Hours

Figure 3 displays the curve A(t) of cumulative arrivals at the bottleneck. Applying the
same method of fixed working hours allows us to obtain the simultaneous equations.
Notably, equilibrium travel cost is G=[By/(B+y)][(N/n)-¢]. The number of commuters
arriving at the office before flexible time period is [y/(B+y)](N-ep); arriving within
flexible time period is ep; and lateness is [B/(B+y)](N-ep). The slope of the curve of
cumulative early arrivals at the bottleneck is m;(t) =[o/(a-B)]p, while the similar curve
for late arrivals can be expressed as m; (t) = [o/(a+y)]u. These arrivals are identical to the
model of fixed working hours. The area in Figure 3 bounded by the cumulative arrival
and departure curves is expressed as total queueing delay:

Wi =(1/2){(By)/[a(B+1)]} [(N/p)-e](N+ep). 6))

Maximum queue length is

Qe ={(BY)/[a(B+1)]} (N-ep). O)

The measures of effectiveness for situations with no late arrivals allowed can be easily
obtained: Gt =B[(N/p)-e], Wr = (1/2)(B/o)[(N/p)-e](N+ep), and Qr = (B/a)(N-ep).
Therefore, a longer length of flexible time period implies a larger reduction of total
queueing delay as well as maximum queue length in the system. If the length of flexible
time period is greater than or equal to peak hour period (S=N/p), then the queues are
eliminated completely.

Comparing the results of fixed and flexible working hours system allows us to reduce
total queueing delay in ratio:

(Wp- W)/ W, = [e/(N/p))=(e/S)? @)

On the other hand, equilibrium travel cost or maximum queue length of system reduces in
ratio as (e/S).
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3.3 Staggered Working Hours

Two types of staggered working hour systems, step-staggered and uniform-staggered, are
discussed herein. When approaching infinity, the number of stages of step-staggered
working hours becomes uniform-staggered.

(1) Step type

Two-step staggered working hours are initially discussed and, then, extended to multi-
steps. Let one group of workers (vN) choose their starting work hours at t'-k, and the
other group of employees (1-v)N at t". The length of staggered time between these two
groups is k. Under conditions of user equilibrium and k<[y/(B+2y)]S , Figure 4 displays
the curve of cumulative arrivals A(t) at the bottleneck. By utilizing the same method of
fixed working hours, the simultaneous equations are obtained. Commuter’s travel costs of
two groups are the same as Gs=[By/(B+y)][(N/w)-k]. The slope of the curve of cumulative
commuters of first group arriving early at the bottleneck is m(t)=my(t)=[o/(a-B)]p.
Meanwhile, the similar curve for the last group of late arrivals is given by ms(t) =
[o/(o+y)]p. These arrivals are identical to the model of fixed working hours. Compared
with fixed working hours, the benefits of reduced queueing delay can be calculated from
the shadowed area in Figure 4.

AW, = W, - Wy = (B/a) {[y/(B+y)-VINK+{B/(B+Y)Ik’p}. ®
As generally known, AW, increases when v decreases and AW, reaches maximum when
x3=0. Let x3=0, that is (B/o)[(vN/p)-k]=0, we obtain v=(kw/N) implying that we can
obtain the maximum reduction in queueing delay, if the commuters of first group are kp

and the others are N-kp when k is given. Total queueing delay under such optimal two-
step staggered working hours is

W' = (1/2)(B/o) {Kp+y/(B+)IN/p-k) p} ©)

Maximum queue length occurs at t - By/[a(B+y)]} [(N/p)-k,
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Q" ={By/[a(B+N]} N-kp). (10)

If no late arrivals are allowed, when k<S/2, we can get optimal situation if the commuters
of first group are kp and last group N-kp. The measures of effectiveness in the system
Ge=B[(N/w)K], Ws'=(1/2)(B/o)[(N*/p)-2(N-kp)k], Qs'=(B/cx)(N-kp) can be obtained
easily.

Comparing the results of fixed and optimal two-steps staggered working hours system
allows us to reduce the total queueing delay in ratio:

(Wp - W) W, =[1+(B)I(K/SY+[1-(k/S)T. (11)

On the other hand, equilibrium travel cost or maximum queue length of system reduces in
ratio as (k/S). If k changes, we set first order condition of equation (11) equal zero and get
k= [y/(B+27)]S. (If y—>o, we obtain k=S/2). This implies that maximum benefits can be
obtained from two-step staggered working hours when k=[y/(B+2y)]S. If k is over
[Y/(B+2y)]S, some commuters of the first group are late and the total queueing delay is
reduced. If k is over S/2, the two groups do not interact with each other and idle time
occurs during two peak periods.

Applying the same approach allows us to obtain maximum benefits in three-step
staggered working hours if the commuters of first group are k;p, second group kpp and
last group N-(k;+k;)p. If we extend to multiple-step staggered working hours, the group
commuters should be arranged by k;p. Consequently, the optimal situation is obtained.

(2) Uniform type

For uniform type staggered system, commuters accumulating by starting work time are
arranged as a line with the slope o(w>p). The first commuter starting work time is to and
the last starting work t". The time length between them is d= t"-ty=N/o. Figure 5 depicts
the curve A(t) of cumulative arrivals at the bottleneck. At the earliest departure time, t
commuters have the longest early schedule delay. Meanwhile, at the latest departure time,
ty , commuters incur the largest late penalties; however, at both points, no queueing
delays exist. Applying the same method allows us to obtain the simultaneous equations.
Equilibrium travel cost is G, = [By/(B+y)](N/p)(1-W/w). The slope of the curve of
cumulative early arrivals at the bottleneck is m;(t)=p/[1-(B/a)(1-ww)] ; similarly for late
arrivals my(t)=p/[1+(y/a)(1-w/ )], both slopes are smaller than those of fixed working

hours. The number of early arrivals are [y/(B+y)]N and late arrivals are [B/(B+y)]N. The
area in Figure 5 bounded by the cumulative arrival and departure curves is expressed as

total queueing delay:

W=(1/2){(B1)/[0(B+)]} N/p)(1-pw). (12)

Maximum queue length :

Qu={(BY)/[o(B+NIIN(1-Ww). (13)
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According to above equations, total queueing delay and maximum queue length are lower
when o gets smaller, or equivalently, when the length of staggered hours (d=N/o) is
larger. With no late arrivals allowed, measures of effectiveness G, =p(N/p)(1-wo), W, =
(1/2)(B/a)(N*/p)(1-ww), and Q, =(B/a)N(1-p/w) are obtained. If the length of staggered
hours is longer than the length of peak period, queueing delay vanishes completely as
well.

By comparing the results of fixed and uniform-type staggered working hours, total
queueing delay reduces in ratio:

(Wp- W)/ W, = o= (N/o)/(N/p) = d/S. (14
Equilibrium travel cost or maximum queue length of system reduces in ratio also as (d/S).

Table 1 summarizes the final results of alternative work schedules. Table 2 lists the
benefits of flexible and staggered working hours, compared with fixed working hours.

N N
Number of Number of
commuters commuters
VN
Time tq e ty’ Time
Figure 4. Equilibrium arrival pattern of staggered Figure 5. Equilibrium arrival pattern of staggered
working hours of two-step type working hours of uniform type

Table 1. Measures of effectiveness under alternative work schedules

Work schedules Travel cost Total queueing delay Max. queue length
- Fixed working hours | [BY/(BfIMN/W)  |(1722){(By)/ [aB+NBN7)  [{(BY)/[a(B+NIIN

- Flexible working hours | [BY/(B+NI[AV/w)-e] (12){BYV[aB+NBIAVW- | {(B/ BN N-

e](N+ep) ep)
+ Uniform staggered [BY/(B+IN/W(1-  [(12){BY)[oB+NIIINp)x [ {(By) [ B+NIIN(I-
working hours Wo) (1-Ww) Wo)
- Optimal two-step [BY/(B+II(N/)-K] (1/2)(B/;1){k2u+[y/(ﬁ+y)]x {By/[o(B+¥)]} (N-kp)
staggered working (N/p-k)"u}

hours
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Table 2. Benefits of flexible and staggered compared with fixed working hours

Work schedules Travel f:ost Total queuei.ng delay Max. queue length
reduction reduction reduction
« Flexible working hours /S (e/S)? e/S
« Uniform staggered
working hours a8 a/s d/s
« Optimal two-step 2 L
staggered working k/S [1 + E] —+ (1 = _) k/S
h v]s? S
ours
4. DISCUSSIONS

4.1 Multi-Step versus Uniform Staggered Working Hours

In two identical steps staggered working system, the number of commuters in first and
last groups equals N/2. The time length between two steps is k. Figure 6 depicts the curve
of cumulative arrivals at the bottleneck. According to the results of 3.3, equilibrium travel
cost is P[(N/w)-k] and total queueing delay is (1/2)([3/(1)[(N2/p)-kN]. Since k=N/o,
equilibrium travel cost and total queueing delay can be expressed as P[(N/p)-k] and
(1/2)(B/a)(N2/p)(l-p/(o), which are the same as those of staggered working hours of
uniform type.

In three identical steps, the number of commuters in first, second and last group equal N/3;
each time segment between groups equals k/2. By employing the same method,
equilibrium travel cost is B[(N/p)-k] and total queueing delay is (1/2)(B/a)(N2/p)(1-p/m).
In multiple identical steps, the number of commuters in each group is N/n and each time
segment between groups equals k/(n-1). Under equilibrium conditions, travel cost and
total queueing delay are all independent of n, which are the same as those of staggered
working hours of uniform type. Namely, if n—, the type of staggered working hours of
multiple identical steps becomes uniform type.

We are interested in multi-step staggered working hours system when the number of steps
approaches infinity under optimal situation in which total queueing delay is a minimum.
From the results of 3.3 for optimal two steps, equilibrium travel cost is B[(N/p)-k] and
total queueing delay is (1/2)([3/a)[(Nz/p)-(ZNk-2k2p)]. In optimal three steps, each time
segment between groups equals k/2. The number of commuters in first and second groups
are equal, with (1/2)(kp), and last group is N-kp. Although equilibrium travel cost is also
BI(N/p)-k], total queueing delay is reduced as (1/2)(B/o) {(N*/p)-[2Nk-(3/2)k’p]}. In
optimal multiple steps case, each time segment between groups equals k/(n-1) and the
number of first n-1 groups are equal, with [1/(n-1)](kp), and last group being N-kp.
Equilibrium travel cost and total queueing delay are B[(N/p)-k] and (1/2)(B/a){(N2/p)-
[2Nk-(n/(n-1)k*u]}. If n—>oo, total queueing delay is (1/2)(B/o)[(N?/p)-2Nk+k’p] and
the curve of cumulative arrivals at the bottleneck is shown in Figure7. In this case, the
group of commuters kp must be arranged with a slope p, complying with the saturation
rate of the bottleneck section. Meanwhile, starting work of the other group of commuters
N-kp is arranged at time t*. Thus, it can be viewed as N-kp commuters passing through
the bottleneck.
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Figure 6. Equilibrium arrival pattern of staggered ~ Figure 7. Equilibrium arrival pattern of staggered
working hours of two identical steps working hours of optimal multiple steps (n—)

4.2 Relationship Among Alternative Work Schedules

Figure 8 presents an overall framework of alternative work schedules. It depicts that
staggered working hours of step type and flexible working hours are two fundamental
types, and the other systems should be viewed as special cases. The case of no late
arrivals allowed is discussed, for simplicity, as follows:

(1) Staggered working hours of step type

Multiple identical steps is one of staggered working hours of step type where the number
of commuters in each step is equal to each other. When the number of steps, 7,
approaches infinity, total queueing delay is (172)(B/o)[(N*/p)-kN] which is independent
of 1. When n=2, it is two identical-step type. When n—o, it becoraes uniform type in
which total queueing delay is (1/2)(B/a)(N2/p)(1-p/m) because k=N/w. When o—>0,
cumulative rate of starting work is near vertical which becomes fixed working hours with
total queueing delay being (1/2)(B/a)(N2/ W.

If the number of steps remains constant in staggered working hours of step type, total
queueing delay of optimal multiple steps should be minimum. Total queueing delay is
(1/2)(B/o) {(N*/p)-[2Nk-(n/(n-1))k*u]}. If n=2, it is optimal two steps type in which total
queueing delay is (172)(B/o)[(N*/1)-2k(N-kp)]. Furthermore if k=0, a fixed working
hours case is obtained with total queueing delay (1/2)(B/c)(N*/p).

(2) Flexible working hours
In flexible working hours case, all commuters arrive on time if each arrives at work

within the length of flexible time, e. Total queueing delay is (1/2)(B/a)[(N/p)-e](N+ep).
When e=0, it becomes a fixed working hours case in which total queueing delay is

(172)(Bla)(N/p).
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Optimal two
steps e=0
Flexible working
hours

Figure 8. The relationship among alternative work schedules

5. SENSITIVITY ANALYSIS

We use the study of Small (1982) and Lan ef al. (1998) with 0=$6.4/hr, B=$3.9/hr and
y=$15.21/hr. Assume that N=1800 commuters, each commuter drives a car and passes
through a bottleneck to reach his/her destination. The capacity of the bottleneck is p= 900
vehicles per hour. Under these conditions, the peak hour period is S = 2 hours. Under
fixed working hours, all commuters start work at 9:00, under flexible and uniform
staggered working hours between 8:30 and 9:00, and under staggered working hours of
optimal two-step at 8:30 and 9:00. While applying our models, Table 3 summarizes those
results. Commuters choose their departure times according to queue evolution as shown
in Figure 9. The chart depicts the changes in peak traffic flow through the bottleneck at
any moment throughout the morning rush hours, as well as the size of maximum queue
length under various working hour systems.

Table 3. The results from examples

Teana Fixed working Flexible working Uniform Optimal two step

hours hours staggered staggered working
) working hours hours

Starting work hour 9:00 8:30~9:00 8:30~9:00 8:30 ; 9:00

Departure time of first arrival 7:25 7:18 7:18 7:18

Departure time of in time arrivals 8:02 7:46~8:16 8:10 8:16

Departure time of last arrivals 9:25 9:18 9:18 9:18

Max. queueing delay (min.) 58 44 44 44

Travel cost ($) 6.2 4.7 4.7 4.7

Total queueing delay (veh-hr.) 873 819 654 559

Max. queue length (veh.) 873 654 654 654
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Queue

length 900 -
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600+ Flexible work hour

Optimal two step
staglgered work hour .
L t t t t y T Time
7:00  7:15 7:30 7:45 8:00  8:15 8:30 8:45 9:00 9:15  9:30

Figure 9. Time dependent queues under alternative work schedules

Data from the above example are used for sensitivity analysis to demonstrate how system
parameters affect total queueing delay under alternative work schedules. Figure 10
summarizes the results of varying e, d and k. Under flexible working hours, 6W¢ /de= -
(B/o)[y/(B+y)]ep, implying that as the flexible time length increases, the reduction in total
queueing delay is larger. Under staggered working hours of uniform type, 6W,/0d=-
(172)(B/o)[y/(B+y)IN, which is independent of d, representing a situation in which total
queueing delay is linearly proportional to staggered time length. When the length of
flexible or staggered time is longer than the length of peak period, total queueing delay
drops to zero. Under staggered working hours of optimal two steps, a situation in which
k<[y/(B+2y)]1S, 6W;/8k=-([3/a)[l/(B+y)] [YN-(B+2y)kp] suggests that as the staggered
time length increases its effect on reducing total queueing delay becomes smaller. If k >
S/2, the first and last group of commuters do not interact with each other; total queueing
delay is constant and independent of k. When the length of flexible and staggered time are
equal and less than half length of congestion period (e=d=k<S/2), total queueing delay
ranks as W>W, >Ws‘. When e=k=8, total queueing delay drops to zero.

Bottleneck capacity, p , has an impact on the length of peak period, S , under a fixed
number of commuters. Assume that the capacity is reduced because of road construction
or increased due to widened, the bottleneck capacity varies from 600 vph to 1200 vph,
with the duration of peak traffic flow from 3 hours to 1.5 hours, respectively. By setting
the length of flexible/staggered working hours to 30 minutes, the effects on total queueing
delay are summarized in Figure 11. Figure 11 ranks the total queueing delay as W,>Wj
>W,>W".

Comparing the flexible and fixed work hour systems reveals that the difference of total
queueing delay is small when the capacity is low because commuters have limited room
to choose departure time under flexible working hours; however, the difference becomes
larger when the capacity increases. In addition, comparing the uniform and staggered
working hours of optimal two steps under the same length of staggered time reveals that
the difference of total queueing delay is large when the capacity is low. This is attributed
to that commuters should orderly pass through the bottleneck under uniform staggered
working hours; however, the difference becomes smaller when the capacity increases.
Total queueing delay of staggered working hours is lower than that of flexible working
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hours through out the range of capacity.

In general, rich commuters are less willing to spend time in traffic; in contrast, poor
commuters are more willing to tolerate traffic congestion (Arnott et al., 1989). Figure 12
summarizes the effects of changes in the ratio of unit cost of schedule delay to queueing
delay (B/a) on total queueing delay, in which all other variables remained constant.
Obviously, total queueing delay rises in direct proportion to the value of (B/a). Figure 13
depicts the sensitivity of total queueing delay to variations in he ratio of unit cost of
schedule delay to lateness (B/y) when all other variables are held constant. This figure
clearly indicates that total queueing delay and their difference under alternative work
schedules decrease as (B/y) increases. Therefore, a situation in which the unit cost of
lateness reduces will help resolve traffic congestion. In addition, the difference of total
queueing delay among alternative work schedules would be smaller.

= @ = Flexible
Total 1000 working hours
Queue
-ing  goo ——#&—Uniform
delay staggered
Veh-
fxr)e - h ] ——(, i mal two
steps staggered
0 x
200 .
0
0 20 40 60 80 100 120
Figure 10. Flexible and staggered time length on total
queueing delay
Total !
Queue-
ing 1200
delay
(Veh- '®°
hr)
800
600
= wfl® =Fixbeworking
400 hours
« = =& = = +Uniform saggered
20 e @sm— () yral MO 5P s
smggral

0.5 0.6 0.7

08 0.9

Figure 12. Unit cost of early schedule and queueing
delay on total queueing delay

—
(Vph)

Bly

1600
== Fixed working
Total 1400 hours
Queue- = @ = Flexible working
g 1200 hous
delay = = A= = Uniform staggered
S”eh- 1000 e @um—()ptimal two steps
) 800
600
400
Time 200
length
(Min.) 0
600 700 800 900 1000 1100 1200
Figure 11. Bottleneck capacity on total queueing delay
Total
Queue
-ing b - ..
delay A "A--.‘__A
(Ve g0 AL T
hr)
e —Fiixed working hours
200 = 4 = Flexible working hours
= = 4= = Uniform staggered
200
*Ou"ml two steps staggered
Bla
005 o1 015 02 025 03 035 04

Figure 13. Unit cost of early and late schedule
delay on total queueing delay

Journal of the Eastern Asia Society for Transportation Studies, Vol.3, No.6, September, 1999



324
Lawrence W. LAN and Tien-Tsyh CHEN

6. POLICY IMPLICATIONS AND CONCLUSIONS

Organizations worldwide have adopted flexible working hours for a few decades,
resulting in positive benefits to companies, employees and sociality. Although some
problems involving implementation in some companies still persist, it is not difficult to
resolve (Nollen et al, 1978). In staggered working hours system, employees once
choosing the starting hours must abide by them for a certain period, thus, this system is
less flexible.

While uniform staggered working hours are difficult to implement in practice, staggered
working hours of step-type can be more easily implemented in a large company. A
company determines some time slots of starting work, then assigns an appropriate number
of employees to each slot or opens these slots chosen by employees. For instance,
students and teachers of primary schools in Taipei, Taiwan start work at 7:30 am;
employees and workers start work at 8:30 am; stock markets open at 9:00 am. Such
measures effectively reduce traffic congestion. If one intends to introduce alternative
work schedules to alleviate areawide traffic congestion, concentration of commuters’
starting work times should be surveyed comprehensively.

Compared with fixed working hours, traffic delay reduced by the adoption of flexible
working hours is in square proportion to the ratio of flexible time period to the length of
peak period, (e/S)z. The delay reduced by staggered working hours of uniform-type is
linearly proportional to the ratio of staggered time length to the length of peak period,
(d/S). The staggered working hours of step-type can yield even better performance, when
the steps are optimized in such a way that the number of commuters in each step is
managed at a rate equal to the staggered time multiplied by the saturation flow rate of the
bottleneck.

Schedule delay is an important factor affecting the commuter’s departure time. A
reduction in the unit cost of early schedule delay (8) would be helpful in reducing traffic
delays. Flexible working hours can reduce the commuter’s schedule delay because
commuters have no schedule delays if they arrive at work within a given length of
flexible time, thereby reducing traffic congestion.

Flexible/staggered work schedules can reduce queueing delay. If the length of flexible or
staggered time (e, k) exceeds the length of peak period (S), the traffic congestion can be
completely removed. Under the same length of flexible and staggered time (e=k),
although equilibrium travel costs of such two working hour systems are equal, total
queueing delay for flexible working hours is higher than staggered ones. Total schedule
delay for flexible working hours, however, is lower than staggered working hours.
Although commuters may experience the same satisfaction with equal travel cost,
staggered working hours should be considered as a priority strategy from the perspective
of reducing traffic delays and social costs.
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