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abstract: For transport and regional analysis with regression model, multicollinearity is one
of the most difficult problems. Many conventional counter-measures have been provided.
Among them are ridge regression and principal component regression which are the most
well-known ones. There has not been, however, a systematic comparative study in both
their theoretical and practical aspects.
This paper discusses the theoretical relationship between ridge and principal component
regression in the common framework of inverse analysis and gives a practical comparison
through the parameter estimation of land price function.

1. INTRODUCTION

For economic analysis of transport projects, regression models are widely used. It is rare,
however, that the data we have for estimating a regression model conform exactly to the
theory underlying the model. Multicollinearity is one of the most difficult problems and
many conventional counter-measures have been provided. Among them are ridge
regression and principal component regression which are the most well-known ones. There
has not been, however, a systematic comparative study in both their theoretical and
practical aspects.

This paper focuses on the multicollinearity problem and attempts to compare the
theoretical and practical characteristics between ridge regression and principal component
regression.

The next chapter gives the explanations of these two counter-measures. Chapter 3, which is
the distinguished part of the paper, discusses their theoretical relationship in the common
framework of the inverse analysis. In the following chapter, ridge regression and principal
components regression are applied to a common parameter estimation problem of land
price function and their practical characteristics are demonstrated.
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2. CONVENTIONAL COUNTER.MEASURES FOR MULTICOLLINEARITY

2.1 MulticollinearitY

Consider the standard model for multiple linear regression.

y=XF+z (l)

where y is an nX I vector of explained variable; X is an nXm matrix of non-stochastic

variables ofrank m(<n); p is anX I parameter vector; andu is ann X I vectorofresiduals

with
E(u) = g (2)

Var(u) = 6i1 (3)

Without essential loss of generality, let the X-variables be standardized, so that the

diagonal elements of X'X are all l. The Ordinary trast Squares (OLS) is to minimize the

sum of squares of residual

Tn o(F)=llv-xpll' @)

OLS estimator po is obtained by solving the normal equation

XXp = Xt, (5)

yielding
po = 1xX) 

rx'y (6)

E(Fo)=F- Q)

va.(Fd = Et(Fo -p. Xpo -g' )t = o2(x'x)-r (8)

where p- is the true value of P.

The mean squared length of fo is

E (F'oFo) = P*'P* + o2rr (x'x)-' (9)

=P"P' . "'i[+l'P"P' .+ (10)
i-=,\li ) A^,n

where.iTis eigenvalue of XX (Maddala (1988)).

Define P to be rhe orthogonal matrix which puts (XX) in diagonal form, that is,

Px'>rp = L=diag(1r,k;",1^);PP= PP= I (11)

Thus,

(xXfr = PA-|F (t{t= diag(*, '}, ) (12)
lt 4,,

The situation where the explanatory variables are highly interconelated is referred to as

multicollinearity.

OLS is a good estimation procedure if X'X is nearly a unit matrix. However, when

multicollinearity occurs, OLS estimator is too sensitive to errors in data. Vadqd and mean

squared length of po given by (8) and (9) are extremely large.

TLe obvious remedy for this problem is to drop variables suspected of causing the problem

from the regressions, which might be frequently used' Other approaches are suggested,

which we consider further.
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2.2 Ridge Regression

Ridge Regression (RR) (Hoerl and Kennard (1959) (1962)) is an estimation procedure

based upon
(XX+/<I)P=Yt,

yielding
pR=(XX+kI)-rX'y

= (xx + u)''x,xp.
where I is a unit matrix, and the scalar ,t ( > 0 ) is called ridge parameter which is chosen

arbitarily.
E(Fn ) = (X'X + kI)-rX'X E(po )

- (x'x + u;-rXXp'
Var\pp)= (XX+ftD 'XX Va49d {(x'x+kI) rx'x}'

= d (xX + u) I (x'x) (XX + /cI)-'

Ridge estimator is biased,

B(Fn) = E(Fn)- F.

= -& (xX + kl)-'p.
+0

However, each diagonal component of Var($fi is always less than that of Var(Fd .

Ridge regression is to be explained in some ways such as constrained least squares, and

Bayesian interpretation (Maddala ( 1988)).

Ridge estimator pn is the solution to the problem:

"iln llv - xpll'

,'.r. llpll' =" (const.)

Introducing the Lagrangian we find that the above problem is equivalent to

TI, llv-xFll' +t(lPll'? -c';
where ft is a Lagrange multiplier.

Differentiating this expression (19) with respect to p equating the derivation zero, we get

the equation (13) and Fn as a constrained least squares estimator. pa is also called damped

squares solution (Menke(1989)). However, it is rare that we have a prior information of
norm ofp. Constrained least squares shall be discussed in chapter 3 again.

If we assume that the prior information is of the form tnat p - lU1O,oltl, the Bayesian

approach also leads ridge estimator (Maddala (1988)).

Generalization of RR estimator is able to be considered, which is called shrinkage

estimator (Chatterjee and Price (1977)).But we don't mention it in this paper. Shrinkage

estimator is discussed in the paper of Goldstein and Smith (1973) in detail.

The most essential and difficult problem of ridge regression is how to determine ridge
parameter /c, which shall be discussed in section 3.5.

( l3)

(t4)

( 1s)

(16)

( 17)

( l8)

( le)
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2.3 Principal Component Regression

Another remedy suggested and used for the multicollinearity problem is the Principal

Component Regression (PCR). We consider linear functions of variables,

z=xP (20)

where Z is a principal comPonent nxm matrix.
Suppose that we use / (<m) principal components of the m columns of 2,. Thus, we regress

y o; X P1, where P1 is a r x/ matrix containing / characteristic vectors of X'X .

y =Zta Ql)
The estimator is

oL= 7Z7tZ7)'t ZTty (22)

Obviously the estimator given by principal components regression is

p.=P1C
- Pr (PL'X'XP1; rPl'X'y Q3)

PCR estimator is also a biased estimator

E(F,) = Pr(x'X + kI)-' PLtx'xF.
+ p' (24)

However, each diagonal component of Var(p.) is also always less than that of Va(Fd .

va(F,) =dPAr-'Pr' (25)

There are some problems with PCR as well (Maddala ( 1988)).

3. THEORETICAL COMPARISON

3.1 Properties of Diagonal Matrices

Lrt XX have eingevalues that is grouped qualitatively into two types - substantially greater

than zero ( 4 Q<j<r)), slightly greater than zero().1Q+l<i€m)\.

In ridge regression, the matrix (X'X + &I)-' is to be diagonalized below (Marquart (1970)).

(XX + /rI) r= p1n + ftf1-rP= P(r\nr)'rP 
g L=l 

^- 
oo 'o " 

(26)

where py is characteristic vector of X'X correspondin glo 4.
And in principal component regression

(X'rsrXrs)-r = p(&sr)-rP =flo,, i Q7)

P and Fwork as linear operators that do not change the scale or Euclidian norm of vectors.

The sensitivity of estimator depends upon the diagonal matrices A-',r\r, -',4r1'. fig.t
helps us to understand it intuitively.

Even when liQ+lSjSm) is precisely zero, generalized inverse of X'X is to be defined

(X'X)-MP=PA-P =I.lr,r,' (28)
41,""

where A-is generalized inverse matrix of A
!t= diag(h,12,"',L,0, "',0) (29)
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Fig.2 Comparison among OLS, RR, and PCR.

3.2r-k estimator

Ridge regression and principal component regression can be combined. Baye and Parker
(1984) proposed r-& class estimator for p, which includes the OLS estimator, RR estimaror
and PCR estimator as special cases. This estimator is given as

E,(t) = P,(PX'XP+ tD-'P,'x'y (30)

Special cases of the r-l< class estimators are as follows (Sarkar ( 1989)):
(i) p.(0) = 1X'X; 'x'y = p, (3t)
(ii) p,(&) = (X'X + tl)-rX'y = pa G2)
(iii) p(0) = Pr (Pr'X'XP1;-rP1'X'y = p, (33)

3.3 Inverse and tll-posed Problem

We have until now discussed from the chiefly statistical point of view. It is interesting and
helpful to discuss from another viewpoint.

Again consider the standard model below.
y=xp e4)
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When we treat this model as a direct problem, estimating parameter p is an inverse

problem. The problem (34) is said to be correct, correctly posed or well-posed if the

following two conditions hold:

(a) for each y the equation has a unique solution

(b) rhe solution of (i+) is stable, i.e. the operator X-r is defined on all of the space

which Y belongs and is continuous'

Otherwise, the problem (3a) is said to be incorrectly posed or ill-posed' As the number of

data n is greatir than that of parameter ,rr, we are not able to solve this equation and

determine p generally. Thus, parameter estimation is a typical example of an ill-posed

problem.

One way to get an approximate solution is least squares

of squared residuals

nln llv-xfil'
Equating its first derivatives with respect to p to zero yields normal equations

XXP=X'Y
If X'X is not singular, the solution is

F=(X,X)-rX,Y
Thus 1X'X;-'X' is an inverse operator, which is called least squares generalized inverse of

X. However, if X'X is singular or neru singular, inverse problem (34) is again ill-posed.

There are two typical ways to improve the ill-posedness:

(i) to change the solution space introducing some constrained conditions

(ii) to change the operator and solve the related problem

Constrained least squares method discussed in section 2.2 is interpreted as type (i).

There are also some methods in type (ii). Truncated Singular Value Decomposition

(TSVD) is one of tradirional methods in numerical analysis (Groetsch ( 1993)). As singular

value of square matrix is called eigenvalue, principal component regression is equivalent to

TSVD.
Another method in type (ii) is to solve the problem of minimizing a smoothing function'

which is called Tikhonov regularization'

3.4 Tikhonov Regularization

The idea of Tikhonov regularization is given by

Tn o'(P)=llv-xFll' +y i(9) (38)

instead of the problem (35), where /(p) a smoothing function and 7 is a regularization

parameter. Tikhonov regularization is applicable to many situations, for it is an abstract

iheory generalized to the discussion in Hilbert space. For example, lrvenberg-Marquardt

methoA in oprimizarion theory is interpreted as Tikhonov regularization (Groetsch (1993)).

If we assume that

/(p)=llpll',,=k (3e)

the problem (39) is equivalent to ridge regression as we consider section 2.3.
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The form 1XX+t! rX' in RR estimator has a property that it leads an approximate Moore-

Penrose generalized inverse X*
Xup = |,rttx'x+6l)-rx' (40)

M-P g-inverse is a solution of the problem

x,p =".e{f:2llp'll' = ll*-rll'r
(41)

s = 1x-19'= x-y),p' e r = {010 = arg{mrnlly- xFll' t

Using normal equation, the estimator with M-P g-inverse is given by

Tn llpll'

r.r. X'xp = x',
equivalently

t1X llPll'?+r<'(x'xP - x'v)

k ', l-agrange multiplier vector
This equation (40) is also interpreted as Tikhonov regularization(Groetsch C. W. (1993)).

If XX is singular and t is small enough, the ridge estimator is an approximate solution
with M-P g-inverse (Marquart (1970)).

3.5 Choosing a Good Regularization Parameter

Regularization for ill-posed problem is a kind of compromise, it is necessary to introduce
some criteria for the choice of better altemative. As the estimation error is generally

unavoidable, our hope is that, by accepting some bias, we can achieve a larger reduction in
variance and an overall reduction in mean square error (MSE)

MSE(F) : Et(F -p.)tF -p.)l
= tr Iva(F)] + B',(p) B (p)

= variance + (bias) 2

The variance term in MSE(p) is a monotonic decreasing function of t. The bias term in
MSE(P) is a monotonic increasing function of t. Thus, as & increases away from zero, the

variance decreased, and the bias increases. Hoerl and Kennard (19'70 a),(1970 b) show that
there always exists a constant k>0 such that

MSE(pR) = rrlo2X'X + tl)-rx'x (x'x + tI)-rl + t2p-'1x'x + rl)'2p-
< MSE(po) (4s)

However, the parameter k which minimizes MSE or any other nontrivial quadratic loss

function depends on 02 and unknown p.

Among several proposed methods for determination of a value of t that gives a better p,

ridge trace (Hoerl and Kennard (1970a)) has been commonly used. Ridge trace is a plot of
the ft(k) shown in Fig.2. Hoerl and Kennard suggested that the best strategy is the choice of
a value of k that stabilizes ridge trace. As Minotani( 1992) points out, however, this method
is extremely subjective and the choice of & that stabilizes ridge trace may bear large bias.

(42)

(43)

(44)
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Fig.2 Ridge Trace.

Another criterion is the Prediction Sum of Squares (PRESS). Allen's PRESS estimate of &

(Allen (1974)) is an ordinary cross-validation estimate, which is the minimizer of

(46)

where p(')1/c; is a ridge estimate of p with the ith data yi omitted, tx F"'(t)l 1is the ith

component of X p(i)1f;. Although the idea of PRESS is intuitively appealing, it would not

do very well in the case where X (X'X + fI) rX' is near diagonal (Golub et al.(1979)).

Golub et al (1979) suggested that General Cross Validation (GCV) for obtaining a good

estimate of regularization parameter. The GCV estimate of & is the minimizer of

1;;1r-arrlvll'
v(k) = (47)

PREss(r) = *i([*u,"rri], -.r,)'

l)r*,,u- A(r))]

where
A(k)=x(X'X + tI) rX' (48)

The GCV is a extension of Allen's PRESS. It can be shown that the GCV estimate of /< in
the ridge regression is given by

GCV =
ssER

(49)

{.[*.,l[+)]]'
where SSEp is sum of squared error in ridge regression (Minotani (1992)).

Although it is needless to say that even GCV is not an absolute criierion for choosing

regularization par:rmeter, this estimate does not require an estimate of o2 ,and thus may be

used for ill-posed problem such as multicollinearity.

4. APPLICATION

4.1 Data Set for Comparison between Counter-Measures

We simulate and compare the counter-measures for multicollinearity with a simple land
price function below.
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F,



A Comparative Study on Counter-Measures for Multicollinearity in Regression Analysis

6

Yi = fo+Z|ixi (50)
j=l

where suffix i shows point number from I to 130, j shows category number of explanatory
variables from I to 6, x1 is explanatory variables shown in Table.2, Y; is land price

I thousand yen / m2 l, and fi,p,(i=1,...,6) are unknown parameters.

Although the result is shown with no standardized form, practical application was done
under the condition that r; was standardized so that XX has the form of a correlation
matrix.

Study area is a part of Chiba Prefecture of Tokyo Metropolitan Area, locating from about
25 to 45 minutes from Ueno, near Tokyo Station, by Joban Line. For estimation of the
function we use officially assessed land price data set (1995) of National tand Agency.

4.2. Detection of Multicollinearity

Results of Regression Diagnostics (Minotani (1992)) is below.

(i) condition index Kj
1

K,=? (i=1,"',m;LP?.aZ"'Ztu^) (51)
'lj

Condition index (. is what is called condition number in numerical analysis. The result in
our example is shown in Table l.

Table l. Condition Index K;. TableZ.Variance Inflation Factor.

1899

Fiesnralrc2, Ki

1r=224 Kr= 1.0

At=l.D Kt=l.U

1t=l.Ol K*22
At=0.0 Kt=Z8l
1s=0.8 Ks=3.21

la=O(E Ke=&7

x vlF i

xr i Width of Front Road (m) vlFt- l.l2
x2 i Sewer System (dummy) VIFt= l.l1
x3 i Use Zoning (dummy) VlF,= 1.ll
x4 i Time Distance to Ueno (min) VIF'= 1.16

x.s I Distance to Nearest Station (&rn) VIF s= l0.l
.16 i Distance to Nearest Shopping

Center (tn)
VIF 6= ).)[

(s2)

(ii) Variance Inflation Factor (VIF)

vtF, =-) .' l_ R;

where Ri2 is the squared multiple correlation coefficient between x; and the other
explanatory variables x t, x2; ", x1-t, xi+ri ".The result is shown in Table 2.

Table l. shows K6 Ghlk) is very high and there is a possibility that multicollinearity
occurs and the result of parameter estimation is unstable. Table 2. shows that VIFs , VIFa is
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high and -r5 , x6 tta correlated.

4.3 Application of Ridge Regression

Ridge trace and GCV are shown in Fig.3 and Fig.4. As is shown in Fig.4, GCV is least at

k=O.O662,where rhe ridge traces of Ps,P6 is not stable (Fig.3). Fig.l and Fig.2 show that it

is not a good way to choose such k that makes the ridge trace stable. Because the larger t is ,

the more biased estimator is. So if we use ridge trace for determination of &, mean square

error of ridge regression might be larger than that of k=0.

-t5

.F,
t. 

aooaoofta.-.a
-otlrarrrrrro

a.gu
a

a

8.46

8.45

8.44

8.43

8.42

8.41

8.40

8.39

8.38

0 0.05 0.1 0.15

Fig.3 Ridge Trace for &nd 0u.

ttaaaa-oaaooo

0 0.05 0.1 0.15

Fig.4 GCV in Ridge Regression.

4.4 Application of Principal Component Regression

The smallest eigenvalue corresponded with the 6th principal components is 0.051 and its

contribution rate is only 0.97o.
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able 'alue and Contribution Rate.

eigenvalue h=2.24 1z= 1.22 h= l.0l & = 0.80 Ls=0.68 2r = 0.05

contribution rate 37.3Vo 20.3?o t6.9Vo t3.3Vo I I .4.Vo 0.9Vo

able 4. nts Analysis of Variables

vr."...--BIts--- lu znd
ard
J 4'h 5th 6rh

X1 0.46 0.21 -0.49 0.70 -0.082 -0.0080

X2 0.37 -0.50 -0.57 -0.24 0.48 0.0033

X.q -0.43 -0.45 0.44 0.50 -0.41 0.00 r2

Xt -0.058 0.85 0.065 -0.052 0.52 0.008 r

Xs 0.93 -0.u2 0.33 -0.0048 -0.013 0. t6

X6 0.92 0.o24 0.36 0.034 0.057 -0. r6

We drop the 6th components for principal regression, because
(i) the eigenvalue of 6th principal components is extremely small

and
(ii) the share ofx5 , x6 is relatively large.

4.5 Comparison among Ordinary Least Squares, Ridge Regression, and Principal
Component Regression

Table 5. shows the comparison among ordinary least squares, ridge regression, and
principal regression.
Although the correlation coefficient is almost the same, the estimates to the parameter are

different and the standard errors of the parameters in RR and RPC are improved compared

to OLS. It is important to note that the difference among the estimated 0s ,Fo affects
transport project evaluation.

Table 5. The Results of OLS, RR. PCR.

Estimated of Prameters Standard Errors

Explanatory Variables OLS RR PCR. OLS RR PCR

x':Width of Front Road (m) I 1.6 10.4 il.2 2.86 2.64 2.83

.r?:Sewer System (0,1) 22.1 20.7 22.4 6.40 5.95 6.39

xr:Use Zonine (0. l) 22.0 20.9 22.2 6.5"1 6. l0 6.56

r4:Time to Ueno Station (min) -r.89 1.75 l.8 t 0.60 0.55 0.s8

rs:Distance to Nearest Station (km) -20.3 -16.3 -14.1 7.13 3.28 1.19

-r6:Distance to Nearest Shoppine Area (km) -12.1 -16.0 -20.5 9.69 4.48 L.69

Constant 295.7 294.7 296.0 27.4
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ontinued

It is reasonable that a slightly biased predictor with a very small prediction error variance

can be better in terms of MSE that an unbiased prediction with a large prediction error
variance. However, as we have no way to determine ridge parameter k directly as discussed

in section 3.5, both ofthe figures are expected to be shown for the analysis ofthe project.

5. CONCLUSION

We discussed the counter-measures for multicollinearity in regression anaylysis, especially

ridge regression and principal component regression among many ones.

In chapter 3, we explained the theoretical comparison between ridge regression and

principal component regression in the framework of the inverse and ill-posed problem.

Two typical ways are known to improve the ill-posedness: (i) to change the solution space

introducing some constrained conditions, (ii) to change the operator and solve the related
problem. By regarding the parameter estimation procedure as an inverse problem, we find
that principal component regression is equivalent to Truncated Singular Value
Decomposition and classified as type (ii). By using singular value decomposition, ridge
regression is also classified as type (ii). On the other hand, ridge regression can be

classified as type (i), if we interpreter ridge regression as a Tikhonov regularization. We
confirmed that the concept of inverse analysis is very useful for us to understand the

relationships among some counter-measures in statistical problems.

We also compared ridge regression and principal component regression practically by
applying them to a common parameter estimation problem of land price function and

demonstrated the performance of ridge regression and principal component regression in
chapter 4.

For the choice of ridge pilameter, we used the General Cross Validation (GCV), which has

been scarcely used in econometrics. It is noted that although Ridge Trace has been

commonly used as criterion for determination of ridge parameter, it does not work well in
term of mean square error of the parameters, compared with GCV. Needless to say, as the

researchers in econometrics have little experience in application of GCV. more
experiments of GCV are required for ridge regression.
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able 5. (C

t-value Corre lation Coefficient

Explanatory Variables OLS RR PCR. OLS RR PCR

r 4.06 3.92 3.97 0.783 0.78 r 0.78 r

X2 3.45 3.48 3.51

ih 3.36 3.38 3.43

l4 -3.t7 -3.07 3.19

-I5 -2.85 I 1.9 4.96

X6 -t.25 -12.2 -3.57

Constant 10.7
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