TRANSPORT MODELLING IN ASIAN DEVELOPING COUNTRIES

Dr Karl-L. Bang President Transport Research & Eng. Ltd (TRE) Jl Sukabumi 3, Bandung 40271 Indonesia Fax +62-22-708421 email bang@server.indo.net.id Mr Robert M. McLean Technical Director TRE Ltd Jl Sukabumi 3, Bandung 40271 Indonesia Fax +62-22-708421 email tre@server.indo.net.id

abstract: The fast growing traffic demand in many developing Asian countries has lead to an increasing need for planning methods capable of evaluating the effects of road network expansion schemes. Conventional methods to obtain O-D trip information from home or roadside interviews tend to be too costly, and rapid land use shorten the 'shelf life' of data. A low-cost method was therefore developed based on a first estimate trip matrix obtained using standardised trip parameters, which was updated with maximum entropy estimation from traffic flow count data. Assignment of road traffic to links in a network is normally based upon the travel time estimates using speed-flow-capacity relations for links only. For the purpose of detailed planning in urban environment development of better methods including intersection delay based on local driver behaviour and traffic characteristics is needed.

1. INTRODUCTION

The fast growing traffic demand in many developing Asian countries has lead to an increasing demand for transport planning, since the capacity expansion needs can no longer simply be satisfied by widening of the roads. The road networks now need to be expanded with new links and improved public transport services. Evaluation of transport schemes where there is a choice between different routes and modes of transport must include all network elements whose traffic demand and performance may be affected by the proposed change. Such analysis requires development of origin-destination (O-D) trip matrixes and traffic assignment modelling with capacity restraint such as is available in international, licensed software products. However, in order to apply such methods successfully in developing countries they have to be calibrated or modified to represent actual conditions regarding travel and traffic characteristics such as trip rates, modal split, route choice and traffic performance as a function of road design and other site conditions. A study of these issues was undertaken for Directorate General of Highways in Indonesia (Bang et al 1997). The study primarily focused on two issues:

- 1) Low-cost methods and software for development of Origin-Destination trip matrix data from different types of information (e.g. traffic flow counts, roadside interviews, household interviews).
- 2) Traffic assignment with capacity restraint using traffic performance software developed within the Indonesian Highway Capacity Manual project (IHCM) (Bang et al 1997).

795

A broad overview of the needs in Indonesia for transportation models and network analysis software was obtained through interviews with government agencies and consultants engaged in physical planning and transportation development on different levels. Reports from 27 previous transportation planning projects were also reviewed.

The inventory showed that comprehensive transport planning and modelling is commissioned primarily by central government agencies (Bappenas, Ministry of Communications, Ministry of Public Works) and carried out by consultants and a number of universities acting as consultants. In the last few years most studies have been performed by local firms without support from an international partner.

A variety of data sources, methods and software were used, with TRANPLAN and MOTORS dominating as software tools. Only a few applications had been made with software for planning of urban street networks with detailed modelling of intersection performance, e.g. SATURN, although a growing need for such studies was reported. All studies involve traffic flow counts, and roadside interviews are also common. Detailed studies of trip generation and attraction such as home interviews were comparatively rare. Data tended not to be kept in an organised way for use on subsequent or related studies.

The O-D trip matrix data was normally obtained from basic land use and population data for each zone, and pre-knowledge of typical trip generation and attraction rates. Estimation of the O-D matrix from traffic flow counts using maximum entropy techniques was also common. The choice of transport mode was usually analysed based on simple vehicle composition (%) and diversion curve models, e.g. non-motorised, public transport and motorcycle modes related to trip purposes, income group and trip length for different modes of travel.

Traffic assignment was normally performed as all-or-nothing or equilibrium assignment with capacity restraint, usually with default speed-flow models for links available in the commercial software. In a few cases attempts had been made to calibrate the models using traffic performance and capacity data from IHCM. Attempts to calibrate the willingness to pay toll charges were also made, in spite of the difficulties due to the different scales of economics between developing countries in Asia and the countries from which the transport models originate.

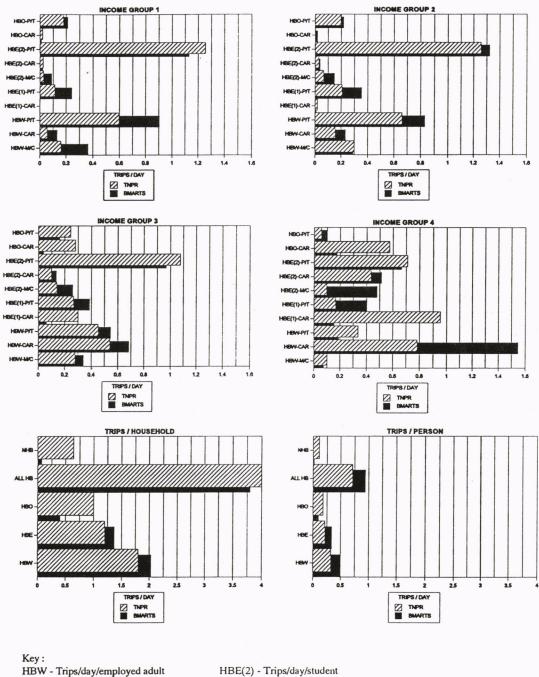
The conclusion from this review was that the explosive increase in transport demand in Indonesia will require improved and integrated transport planning in the future. The Indonesian government (GoI) should therefore take an active lead in the development and dissemination of standardised procedures and guidelines for transport network analysis, which would provide an invaluable means to promote, unify and advance progress on all these crucial issues. The Directorate General of Highways should also consider to establish a "Transport Modelling Unit" responsible for development and dissemination of transport planning methodologies on interurban, urban and municipal levels.

2. DEVELOPMENT OF O-D TRIP MATRICES

Conventional methods for collecting O-D information from home or roadside interviews tend to be costly, labour intensive and time disruptive to the trip makers. The problem is even more acute in developing countries like Indonesia, where rapid changes in land use and population shorten the 'shelf life' of data. The need for developing low-cost methods to estimate the present and future O-D matrices is apparent.

The use of traffic count data has received considerable attention in recent years, as traffic counts represent assigned traffic volumes resulting from the combination of a trip matrix and a route choice pattern. As such, they provide direct information about the sum of all O-D pairs which use the counted links. Traffic counts are very attractive as a data source because they are :

- non-disruptive to travellers;
- generally available;.
- relatively inexpensive to collect;
- automatic collection is well advanced.


Investigations in Indonesia on the use of the matrix estimation method using traffic flow counts confirmed that a reasonable first approximation to the O-D trip matrix is crucial to obtaining good accuracy for the estimated matrix. This conclusion is well documented in other research, but the important finding from the work done in Indonesia was that there is good potential to create the all important first estimate of the matrix using low cost methods.

A simplified modelling method using standardised trip generation and trip distribution parameters was proposed to replace the expensive and time consuming O-D surveys. Analysis of data from different urban areas showed that there was sufficient correspondence to support the development of standardised trip generation and trip distribution rates. Further work will be carried out concentrating on other town and city types and sizes and on the determination of suitable measures of land use activity and the derivation of attraction trip rates.

Trip generation rates are highly dependent on household income level and vehicle availability. Consequently some form of simplified classification of income and vehicle availability is needed and analysis showed that there were broadly similar vehicle availability distributions within different income groups and so only the number of households by income group are needed for each traffic zone under consideration.

Four income groups (low, low middle, upper middle and high) were chosen and, as zonal income data would not be available or appropriate for the matrix estimation method, a way of allocating households to income group was developed. House type was found to correlate well with household income level, and zonal assessments could be made systematically from records or survey of the numbers of different house types or by more subjective methods involving local knowledge, maps and photographs.

Trip rates from Jakarta and Bandung data, see Figure 1, showed that for many of the mode/purpose and income group combinations there is a reasonable correspondence.

HBW - Trips/day/employed adult HBE(1) - Trips/day/schoolchild

HBE(2) - Trips/day/student HBO - Trips/day/unemployed person

HBW = Home Based Work trip; HBE = Home Based Education Trip; HBO = Home based Other trip TNPR = Jakarta data; BMARTS = Bandung data

Figure 1: Comparison of trip rates from studies in Jakarta (9 M) and Bandung (3 M)

The high and low income groups exhibit some large differences particularly by mode of transport. However overall trip rates by purpose demonstrate good correspondence and it was concluded that standardised trip generation rates could be developed bearing in mind that the first estimate of the matrix is only required to be approximate.

A similar comparison between trip distribution functions was made for Jakarta and Bandung data. The deterrence functions calibrated for Jakarta and Bandung were applied to Bandung trip end data and the resulting trip length distributions compared, see Figure 2. All public transport distributions showed very close agreement. For private transport the Jakarta distribution was between or close to the Bandung car and motorcycle distributions for home based work and other purposes. The home based education trip distributions did not compare so well although it was thought that the Jakarta private transport distribution was anomalous.

It was concluded that estimating O-D trip matrices through analysis of traffic count data is a very practical method which should be further developed and documented in the form of guidelines for dissemination to government and private traffic engineers and planners. The standardisation of trip generation and trip distribution parameters enables simplified modelling to be used to produce the all important first estimate of the O-D trip matrix, and the development of a software module for this purpose will make the method easy and straightforward to use. Alternatively such an estimate can be obtained from new O-D surveys or from previous trip matrices produced by other models as shown in Figure 3. The traffic counts on selected links are used to revise the first estimate of the O-D matrices using an matrix estimation programme (e.g. through maximum entrophy estimates ME-2). The proposed method shown in Figure 3 is compatible with commercially available transport planning and matrix estimation software and can be linked with the traffic assignment module to be developed for Indonesian conditions.

3. TRAFFIC ASSIGNMENT WITH CONSIDERATION TO INDONESIAN TRAFFIC CHARACTERISTICS

3.1 Introduction

Traffic assignment to the road network is the fourth and last step in the traditional four stage transport planning process. Assignment of traffic to links in a network is normally based upon the time and cost (generalised or real) to get from the origin to the destination via various possible routes/paths. Very simple assignment algorithms disregard both speed-flow-capacity relations and oversaturation. Such simple methods are often sufficient for rough, long-range planning. Detailed planning requires better assignment methods which account for traffic flow characteristics and capacity restraint. Software for traffic assignment normally needs link data for length, free-flow speed, capacity and toll fees (if any). The junction data used in a more detailed assignment process are the total delays for different turning movements.

A review was undertaken of different possibilities to perform traffic assignment with consideration to Indonesian traffic characteristics as modelled in the Indonesian Highway Capacity Manual (IHCM) and its software package KAJI (Kapasitas Jalan Indonesia).

799

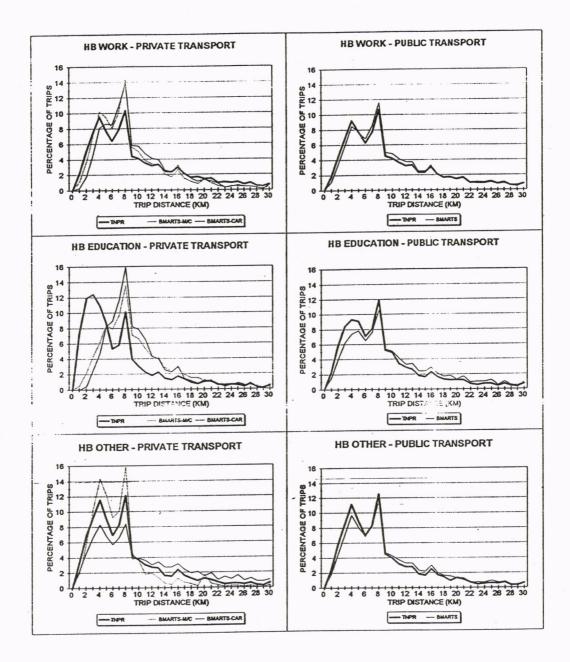


Figure 2: Comparison of trip length distributions from Jakarta and Bandung

Journal of the Eastern Asia Society for Transportation Studies, Vol. 2, No. 3, Autumn, 1997

800

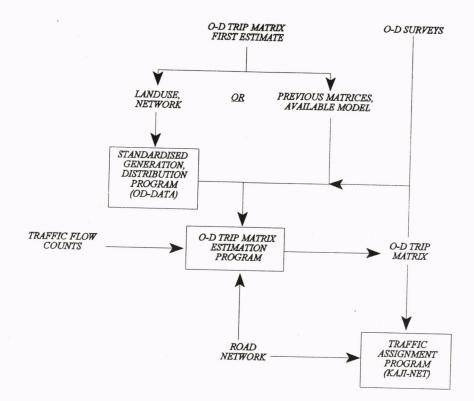


Figure 3: Overview of the recommended traffic modelling procedure

The main benefits would most likely be in short-term, detailed planning of urban street networks, where KAJI would give better estimates of consequences of improvements and traffic management schemes. Examples of such improvements are by-passes, circular roads, improvement of alternate roads etc. to alleviate city congestion or other measures like decrease of unmotorised traffic by offering separate facilities to such road users.

3.2 Review of software for traffic assignment

A number of commercially available software packages were tested in terms of traffic assignment modelling and calibration for Indonesian conditions. A preliminary prototype Indonesian assignment software without consideration to intersection delays was also

made for testing. In order to learn more about the characteristics of this prototype, and ways to calibrate and operate selected commercial traffic assignment software products, a comparative test was undertaken on a "synthetic" network with an assumed O-D trip matrix, see Figure 4.

The following speed-flow relationships were used

- 1. The IHCM/KAJI Traffic Assignment Program (called KAJI-NET) and TRANPLAN used the speed-flow curves (converted into Speed/Free flow speed Degree of saturation curves) according to the Indonesian Highway Capacity Manual.
- 2. SATURN has a different type of speed-flow curve which could not be exactly modelled to resemble the relationships used in IHCM/KAJI. SATURN uses the following equation:

 $t = t0 + A * Q^n$

where t travel time

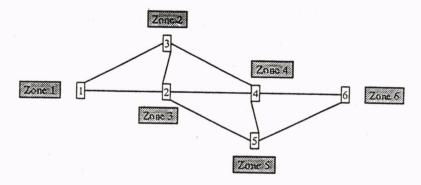
- t0 travel time under free-flow conditions
- q traffic flow
- n power to be estimated
- A coeff. calculated by the program for Q=C and t=tc for a particular estimated power n
- 3. CORFLO uses the FHWA impedance function (or the modified Davidson's queuing function. The travel time on a path-link includes the time required to traverse the geometric link and the time required, at its downstream intersections, to perform the desired turning movement.

The FHWA formula is :

 $T = T_0 \times \left[1 + a \times \left(\frac{Q}{C} \right) b \right]$

(2)

(1)


where T = mean travel time on the path-link, T₀ = free flow (zero volume) travel time on the path-link, Q = volume on the path-link, C = capacity of the path-link, a,b = parameters to be specified, default are as follows : FHWA: a = 0.60, b = 4 (coded as 60 and 40)

4. MOTORS uses an impedance function similar to CORFLO.

802

Journal of the Eastern Asia Society for Transportation Studies, Vol. 2, No. 3, Autumn, 1997

A small network.

1) Assign the traffic between zones on the links in the network.

O/D matrix (pcu/h)

		to zone														
from zone	1	2	3	4	5	6	Σ									
1	0	500	1000	1500	250	750	4000									
2	150	0	300	350	50	250	1100									
3	150	100	0	200	100	150	700									
4	200	200	250	0	150	200	1000									
5	100	50	700	750	0	150	1750									
6	500	100	750	1000	250	0	2600									
	1100	950	3000	3800	800	1500	11150									

	Length(m)	Туре	Width(m) Ca	p(2-d)	FFV.LV
Link characteristics:	1-2500 4/2	D 2×6.76	2×3042pcu/h	54.9kph	
(all links 2-directional)	2-4500 4/2	D 2×6.76	2×3042	54.9	
	4-6500 4/2	D 2×6.76	2×3042	54.9	
	1-3700 4/2	UD 2×6.46	5340	49.8	
	2-3200 2/2	UD 7.86	2989	44.7	
	3-4700 4/2	UD 2×6.46	5340	49.8	
	2-5600 4/2	D 2×6.13	2×2321	41.8	
	4-5100 2/2	UD 7.86	2989	44.7	
	5-6600 4/2	D 2×6.13	2×2321	41.8	

Capacity and free-flow speed calculated using KAJI, Urban roads with no other input than road type and width, except links 2-5 and 5-6 (city size 0.3, very high side friction).

Node characteristics:

2 and 4: signal controlled 1, 3, 5 and 6: no control

Figure 4: Network and input assumptions for tests with assignment software

Journal of the Eastern Asia Society for Transportation Studies, Vol. 2, No. 3, Autumn, 1997

The results in terms of assigned traffic flows and resulting travel speeds in Table 1 show that the TRANPLAN and the IHCM/KAJI equilibrium assignments produced very similar results except for a few links. The resulting overall travel time spent in the network was also very similar (TRANPLAN: 207, IHCM/KAJI 209 veh.hours/hour). SATURN and the other programmes which could not be calibrated to closely represent the IHCM speed-flow relationships showed larger differences in assigned link flows and speeds. The result of the tests cannot be used to evaluate the different assignment programmes, this can only be done if real traffic data are available as explained above. The test however indicated the following:

- It was possible with a very limited effort to create a preliminary IHCM/KAJI traffic assignment prototype software (KAJI-NET) for road links without nodes which functioned properly compared to commercial software.
 - TRANPLAN, which could be calibrated to closely resemble the IHCM speed flow relationships for the links in the test example, produced very similar results as the IHCM/KAJI prototype.

From this could be concluded that the need for a special Indonesian software for traffic assignment in interurban road networks is small if the transport planner is successful in calibrating the commercial model. For an urban network the assignment results would probably show larger differences because of the different levels of detail with which the delays at intersections can be treated. It would therefore primarily be in urban areas that KAJI-NET would be needed. None of the commercial models can be calibrated to represent Indonesian intersection traffic performance characteristics as modelled in the IHCM. The main problems in this context are as follows:

- The traffic composition, vehicle types and passenger car equivalents (passenger car equivalents (pce) developed for Indonesia are very different from western conditions. Indonesian cities typically have a 25-50 % motorcycle ratio and high rates of paratransit and un-motorised vehicles.
- The driver behaviour in crossing conflicts in roundabouts, unsignalized intersections and opposed approaches in signalised intersections which is entirely different, since no right-of-way rules are applied in Indonesia.
- The high degree of "side friction" slowing down the traffic in Indonesian cities, including pedestrians, unmotorized vehicles and stops by paratransit vehicles.

3.3 Methods to incorporate IHCM/KAJI in the assignment process

The methods for prediction of traffic performance developed in IHCM and implemented in the KAJI software are based on a large amount of survey data (285 sites) representing Indonesian traffic characteristics and driver behaviour. Use of this information would

	MOTORS	-++- ROIIT_	TTATTM	(2)	++-	2586	2586	2586 2 1414 2 950	2586 2414 250 250 250 250 250 250 250 250 250 250	2586 1414 950 126 2146	2586 1414 950 2146 2146 2146 62	2586 1414 950 950 126 126 62 62 150	2586 1414 950 126 2146 150 150 480	2586 1414 950 126 2146 62 150 1409	2586 1414 950 126 2146 62 150 1409 1409 2003	2586 1414 950 950 126 126 126 126 126 126 126 120 1400 1409 1409 1409 349 349 349 349 349 1401 1402 1402 1402 1403 140	2586 1414 950 950 950 950 126 126 126 126 150 1409 150 1409 1409 349 349 349 349 349 521 5	2586 1414 950 126 126 126 150 150 1409 349 521 1484 1484	2586 1414 950 126 126 126 150 1409 2403 349 521 1484 1484 1484 1484 1484 516	2586 1414 950 126 126 150 150 1409 240 1409 241 241 1484 516 516 516	2586 1414 1414 950 950 126 126 126 126 1409 150 150 2003 349 521 1484 521 1484 521 1484 521 1257 16 1257 16 16 16 16 16 16 16 1	2586 1414 950 126 126 146 1409 1409 349 349 521 1484 1484 1484 1484 1257 2344 2344
s -	CORFLO	+	TTRRTIM	(9)		3350	3350	3350 650 950	3350 650 950 325	3350 650 950 325 2185	3350 650 950 325 2185 1155	3350 650 950 325 325 2185 1155 150	3350 650 650 950 325 325 1155 1155 1155 690	3350 650 650 325 325 325 325 1155 1155 1155 150 690	3350 650 650 325 325 325 1155 1155 1155 690 690 2320	3350 650 650 325 325 1155 1155 690 690 2320 275	3350 650 650 325 325 1155 1155 690 690 690 2320 275 980	3350 650 650 325 325 1155 1155 690 690 690 2320 275 275 275 275	3350 650 650 325 325 325 325 690 690 690 690 2320 275 980 1230 555 555	3350 650 650 325 325 1155 1155 690 690 690 690 275 275 275 275 275 275 275 275 275 275	3350 650 650 325 325 1155 1155 690 690 690 690 690 1232 275 275 275 275 275 275 275 275 275 27	3350 650 650 325 325 325 1155 1155 1155 690 690 690 690 1232 275 560 2320 275 555 1230 275 555 275 275 275 275 275 275 275 275
FLOW	SATURN	FOUT-	I.TRRTIIM	(5)	3101		899	899 1048	899 1048 244	899 1048 244 2503	899 1048 244 2503 74	899 1048 244 2503 74 52	899 1048 244 2503 74 52 604	899 1048 244 2503 74 52 604 929	899 1048 244 2503 74 52 604 929 2247 2247	899 1048 2544 2503 744 652 652 2243 2243	899 1048 244 2503 744 74 74 652 9293 2243 2293 6453	1048 1048 244 2503 744 652 929 2247 2247 2247 1493	1048 1048 244 2503 744 652 9297 9294 1493 2293 2083 2083	899 1048 244 244 2503 744 652 929 929 1493 1498 1498	899 1048 244 244 2503 744 652 929 929 1493 1493 1498 1498 1498 151	1048 899 2544 2544 2544 603 2447 2247 2247 2247 247 247 247 247 293 247 293 258 258 258 258 258
LINK	TRANPLAN	EOUI -	LIBRIUM	(4)	3497	503		951	951 105	951 105 2600	951 105 2600 348	951 105 348 149	951 105 348 149 304	951 951 105 2600 348 149 304 304 652	951 105 2600 348 149 149 304 652 1706	951 105 348 348 149 304 652 1706 1706 348	951 105 348 149 149 1706 334 1706 348 1706 348 451	951 105 348 348 149 1706 334 1706 341 1500 150	951 105 2600 348 149 149 304 1706 341 341 1500 1501	951 105 105 348 149 1706 1706 1706 1706 1706 1706 1706 1706	951 105 105 348 348 149 1706 1706 1706 1706 1706 796 796 796	951 105 105 348 348 149 1706 1706 1706 1500 1500 756 2599
-	PROGRAM	EOUI-	LIBRIUM	(3)	3494	506		951	951	951 103 2692	951 103 2692 254	951 103 2692 254 149	951 103 2692 254 149 303	951 103 2692 254 149 303 656	951 103 2692 254 149 303 2238 2238	951 103 2692 264 149 303 2238 349 349	951 103 2692 2692 1499 1499 3498 3498 3498 3498 3498 3498 3498 3	951 103 2692 264 149 303 303 303 310 510 1500	951 103 2692 2692 2694 303 303 510 1500 263 263	951 103 2692 2692 2692 303 5149 303 510 1500 1500 1487	951 103 2692 254 149 303 510 1500 1500 1487 0	951 103 103 2692 2692 149 149 149 349 2388 2388 2349 12500 1500 1500 12500 12500 2564 2564
+	IC ASSGMNT	succ.	AVERAGE	(2)	3306	694		968	968 194	968 194 2577	968 194 2577 194	968 194 2577 194 133	968 194 2577 194 133 389	968 194 194 133 389 828	968 194 194 133 133 828 2184	968 194 194 133 133 389 828 2184 312	968 194 194 133 312 312 522 522	968 194 194 133 133 133 312 312 312 312 1501	968 194 194 133 133 133 333 312 312 1501 356 356	968 194 194 133 133 133 333 312 312 1501 1395 1395	968 194 194 133 133 339 312 312 312 312 312 312 312 312 312 356 1395 1395 0	968 194 194 133 133 133 312 312 312 312 312 312 1395 1395 1395 1395 1395 2516
+	IHCM TRAFFIC	INCR.	LOADING	(1)	3426	576	10761	0707	355	355 355 2851	1026 355 2851 71	1020 355 2851 71 76	2851 355 2851 71 76 76 76	1020 355 355 71 76 570 684	1020 355 71 71 570 684 247	1020 355 71 71 570 684 246 246	1020 355 71 71 570 684 2467 2467 2467 2266	1020 355 71 71 684 684 2467 2467 2467 1504	1020 355 71 71 684 684 2467 2467 2467 1504 1504 160	1020 2851 71 2851 76 570 684 284 286 1504 1503 160 1503	2851 2851 71 76 284 76 570 570 570 246 1504 1504 1503 1503 1503 0	1020 2851 71 76 76 684 684 246 1504 1504 1503 1503 1503 2589 0
∔ 	<u> </u>	+ —		CAP	3042	2670	3042		1495	3042	3042 2321	2670 2670	1495 3042 2321 2670 1495	2670 2670 2670 2670 2670 2670 2670	1495 3042 2321 2670 1495 2670 3042	1495 3042 2321 2670 1495 2670 3042 3042 2670	14955 30425 30425 2321 2670 2670 3042 3042 2670	1495 3042 2321 2670 1495 1495 2670 3042 3042 1495 1495 1495 3042	1495 3042 2670 2670 2670 2670 2670 3042 2670 3042 3042 3042 3042 3042 3042 3042	1495 3042 2670 2670 1495 2670 3042 3042 3042 3042 1495 3042 1495	1495 3042 3042 2670 2670 1495 3042 3042 3042 3042 1495 1495 1495 3321 2321 2321	1495 30495 30495 2670 2670 2670 3042 2670 2670 3042 1495 3321 1495 2321 2321 2321 2321 2321 2321 2321 232
			Length	E	500	700	500		200	200	200 500 600	200 500 600 700	200 200 700 200	200 500 700 700 700	200 500 600 700 700 700	2000 500 700 700 700 700 700	200 500 600 700 700 700 700 100	200 200 200 200 200 200 200 200 200 200	200 200 200 200 200 200 200 200 200 200	200 500 500 700 700 700 700 700 700 700 7	200 500 500 500 500 500 500 500 500 500	200 500 500 500 500 500 500 500 500 500
	0 0 1 1	Flow	Time	sec	33	51	33		16	16 33	16 33 52	16 33 52 51	16 33 52 16 16	16 33 52 16 16 51	16 33 52 16 33 33 33	16 52 51 51 51 51 51 51	16 16 16 16 16 16 16 16 16 16 16 16 16 1	16 16 16 16 16 16 16 16 16 16 16 16 16 1	16 33 51 51 16 16 16 52 51 51 52 52 52 52 52 52 52 52 52 52 52 52 52	16 33 51 51 8 8 8 8 8 8 8	16 52 52 52 53 53 54 54 54 54 54 54 54 54 54 54 54 54 54	16 16 16 16 16 16 16 16 16 16 16 16 16 1
	00 4	Flow	Speed	km/h	54.91	49.82	54.91		44.71	44.71 54.91	44.71 54.91 41.8	44.71 54.91 41.8 49.82	44.71 54.91 41.8 49.82 44.71	44.71 54.91 41.8 41.8 42.71 44.71 49.82	44.71 54.91 41.8 49.82 44.71 49.82 54.91	44.71 54.91 41.8 49.82 44.71 49.82 54.91 54.91 54.91	44.71 54.91 41.8 49.82 44.71 49.82 54.91 54.91 49.82	44.71 54.91 54.91 41.8 42.82 44.71 49.82 49.82 49.82 49.82 49.82 49.82 44.71 54.91 54.91 54.91	44.71 54.91 41.8 49.82 49.82 44.71 49.82 54.91 44.71 44.71 44.71 44.71 44.71 44.71 44.71 44.71 44.71 44.71 44.71	44.71 54.91 41.8 42.8 49.82 44.71 44.71 54.91 54.91 44.71 54.91 64.71 54.91 64.71 54.91 84.71 54.91 84.71	44.71 44.71 41.8 42.82 44.71 44.71 44.71 44.71 44.71 54.91 54.91 54.91 64.71 54.91 41.8 41.8 41.8	44.71 54.91 41.8 42.8 49.82 44.71 44.71 44.71 54.91 54.91 54.91 54.91 64.71 54.91 41.8 41.8 41.8 41.8
			Node	To	2	m			m	ω 4	€ 4 Ω	м 4 гΩ H	0 H U F 0	う す ら 1 <i>ი</i> す	うすら する する	м 4 10 H 01 4 10 W	ოფი <u>ლი</u> ოკიკი ი ოფილი ი	M 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ี พ ซ พ ศ พ ซ พ ค พ พ พ พ ซ พ ศ พ ซ พ ศ พ พ พ พ	それらよこようすうでのよう	うすらしのするのののです。	ろはらしのはころのののです。
			Node	From		1	2		7	0 0	000	0 0 0 M	0 0 0 m m	N N N N M M	N N N M M M 4	0 0 0 m m m m m m	0000000444	0 0 0 m m m m m m m m	0 0 0 m m m m m m m m m m m m m m m m m	0 0 0 m m m m m m m m m m m m m m m m m	N N N M M M M M M M M M M M M M M M M M	
				Link#	1	5	m		4	4 0	4 0 0	4 5 9 7	4 5 9 7 8	4500200	4 S O C S O C	1 1 0 8 7 9 1 1 1 0 8 7 9 1	4 2 2 2 2 2 2 4 7 2 4 7 1 1 1 1 0 0 8 7 2 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	4 2 2 2 2 2 2 2 4 7 2 4 7 2 4 7 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	4 0 0 7 0 0 7 7 4 7 0 0 0 0 7 0 0 7 7 7 7 7 7 7 7 7 7 7 7	4 9 9 7 9 8 7 9 8 7 9 8 7 9 9 8 7 9 9 9 9	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	4 2 2 2 2 2 2 2 2 2

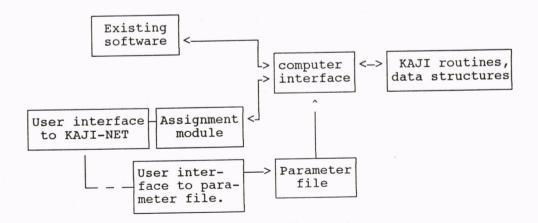
Transport Modelling in Asian Developing Countries

805

Table 1: Assignment of traffic flows (q) on the links

Journal of the Eastern Asia Society for Transportation Studies, Vol. 2, No. 3, Autumn, 1997

undoubtedly improve the accuracy of the traffic assignment process compared to the currently common application of default values in western traffic planning models. The magnitude of the benefits would vary depending upon the purpose for which traffic assignment was applied, but would be highest in urban environment. The following different ways in which IHCM/KAJI information or software could be used to improve the traffic assignment process were identified:


Method A:.

Use of general IHCM values and KAJI results for capacity, speed-flow relationship, delay, capacity etc. for standard road types and intersections as input parameters if possible for calibration of the transport planning software used. This alternative applies mainly to long-range planning, and only requires that the user has the IHCM manual. Such calibration can be performed for road links in a simple way for some software products, but is generally not possible for intersections. This approach should be encouraged as the minimum effort required in any Indonesian transport planning project.

Method B:.

Interface and/or integration of KAJI with the transport planning software used if possible. This method requires usage of a specially designed KAJI version to get better link and junction traffic performance estimates by added input variables. It could also mean to use KAJI to operate on and modify intermediate files created during the (usually) iterative assignment procedure

This method requires a considerable effort and skill in interfacing a specially revised KAJI module with a suitably adapted existing transport planning software. The source code for both KAJI and the transport planning software in question must be available, as well as possible permits to perform the actual modifications from the licensing bodies. KAJI integrated with some existing software would be suitable for long-range planning and/or large networks, where there is less detail known about the network parts. The configuration of the combined software would be as follows:

Although method B is possible to carry out on some of the studied software products (e.g. TRANPLAN, SATURN and MOTORS), it would involve the following types of problems:

- The combined transport planning software + KAJI package would be more complicated to run than the original software, and require careful consideration of input data describing the links and the nodes in the network.
- The combined package will need to be updated whenever KAJI and the transport planning software is revised, for which there will be no external support available from any of the licensing bodies.

The recommendation to the Indonesian government was therefore **not** to embark on this path, but to leave this to the private sector (e.g. individual consultant's and universities) to do on their own if they so wish.

Method C:

Extension of the KAJI software with a traffic assignment submodule, so that it becomes an "Indonesian Network Traffic Assignment Package" (KAJI-NET). This software would call the original KAJI software in much the same way as in "B", and would have the following possible types of use:

- .1 As replacement for the highway traffic assignment step in a commercial transport planning software package.
- .2 As a planning tool on its own for short-range planning of improvements in small or medium-sized networks or road corridors (e.g. toll road + existing road; bypass of small city and old through road) where the O-D trip matrix can be obtained without the use of a full-scale transport planning software.
- .3 As a method to produce traffic flow inputs to simulation packages (e.g. TRAF-NETSIM, CORSIM and SATURN micro) for detailed analysis of urban traffic management schemes.
- .4 As a sub-module in road management systems.

The input O-D trip matrix data in case 2 and 3 could also be obtained from the trip distribution output of a standard transport planning software package, or be constructed manually from roadside interviews or similar available data.

The magnitude of the benefits would vary depending upon the purpose for which the traffic assignment was applied, with the major benefits obtained in assignments in road networks where the intersections contribute to a large share of the overall travel time.

ACKNOWLEDGEMENTS

The authors acknowledge the support from the Directorate General Highways of Indonesia, Mr Gandhi Harahap, and the World Bank, Mr William Paterson, without whose help this study would never have been accomplished.

REFERENCES

Bang, K-L (1997 Indonesian Highway Capacity Manual. IHCM Project, Bandung. **Directorate General of Highways Indonesia**, Jakarta February 1997.

Bang, K-L, Carlsson A, Palgunadi. Development of Speed-flow Relationships for Indonesian Rural Roads using Empirical Data and Simulation. **Transportation Research Record 1484**, Transportation Research Board, National Academy Press, Washington D.C July 1995.

Bang, K-L. Lindberg, G; Harahap, Gandhi. Development of life cycle cost based guidelines replacing the level of service concept in capacity analysis. Paper presented at **Transportation Research Board** Annual Meeting Conference in Washington D.C. January 1997 (not yet published).

Bang, K-L. Highway capacity manuals for Asian conditions. Proceedings of **EASTS'95** Conference, Manilla, Philippines, September 28-30 1995

Bang, K-L, Lindberg G. Development of capacity analysis software and traffic engineering guidelines. Technical Report Part A. Indonesian Highway Capacity Manual Project, Bandung. Directorate General of Highways Indonesia April 1996.

Bang, K-L; McLean, R; Schandersson, R. Network capacity analysis. Indonesian Highway Capacity Manual Project, Bandung. Directorate General of Highways Indonesia February 1997.

Hoban, C.J. and Archondo-Callao. Highway Design and Maintenance Model HDM-III with Congestion Analysis Capabilities. Infrastructure & Urban Development Department, The World Bank, Washington, D.C. USA 1994