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abstract: Genetic Algorithms(GA) includes generally three genetic operators, selection,

crossover and mutation. The lack of dependence on function gradients makes it more

suitable to such problems, like as discrete optimization design problem and optimization

design problems with non-convexities or disjointing in design space. GA is to be suitable as

a new approach tbr such problems. In this study, it has attempted to apply GA for an

optimization of airline-network scheduling and to compare it with enumeration method.

It is suggested that GA has an applicability tbr large calculation inherent in airline network

optimization problems and is more effective method for large size networks.

l.INTRODUCTION

Because of the internationalization of regional airports and the development of double or
triple tracking, the structure of airline networks has become complicated these days. This

complicated situation is compounded by the increase in the number of new airports. In

addition, airlines have to consider the most suitable network scheduling. Such schedules

are based on their previous experiences, because it is diflicult to forecasts the movement of
demands and to plan schedules tbr aircrall and crews. Although there have been many
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studies on scheduling, there have not been any practical ones concerning the dfficulty of
linding the best model.

At present, much interest is being tbcused on East Asia and South East Asia and their need

tbr adequate network systems. How these systems should be developed or restructured

remains a point tbr debate. Similarly, interest has also been tbcused to American's CRS

(Computer Reservation System). The focus is on how to make the most of this network
tbr the future. Europe's express Railroad Planning has also attracted interest, especially in

the area of rail and air linkage. Added to these concerns, Japan's problems with Narita
(New Tokyo International) and Haneda (Tokyo International) Airports which are operated
at full capacity and as the placement of an Asia Hub in Japan have sparked interest and

further debates.

As a result, research into airline networks has been paid an attention in Japan. The
research has expanded to other areas as well, such as the demands of international
sightseeing tours, airline company marketing, and air tratEc controllers. However, little
of the research has tbcused on the development of airline network optimization. Of the

research on an optimization, U.S.'s NASA and MIT are leading in this field, although their
research has yet much to do tbr production of good results.

Robert W.Simpson(1969) developed the computer-based model for the mathematical
method or scheduling. He was followed by such researchers as Y.Chan(1972),
S.E.Eriksen(1978) and others, who produced the model tbr the dynamic planning method,
after regulations were relaxed in 1978 in America. However, Iittle new wits produced

there after 1978. In Japan researchers produced models which included trequency or
displacement time[Tamura, T. and Inano, 5.(1987)] or relation of frequency and

demand[Sugai, Y. and Hirata, H.(1990); Tokunaga, K. and Inamura, H.(1992)]. During
these periods, European companies involved lheir researchers and managers in producing
models tbr the decision support system.

Today, research on the development of airline optimization is taced with the tbllowing
problems:1) l,arge airline network calculation, 2) Market competition and calculation, and

3) Multi transit network calculation. It is tbund that the mathematical method of
scheduling involving large calculations is inellicient usage [Etschmaier, M. M. and

Mthaisel, D. F. X.(1985); Tokunaga, K and Inamura, H.(1992)). Therefor, it is needed

to search a new optimization method. To optimize the airline-networks coping with
these problems, it seems to be suitable tbr application of Genetic Algorithms (GA) as a

new optimization method because it is said to be suitable tbr discrete optimum design, and

recently has gained much attention.

In lhis study it has attempt to apply GA tbr an optimization of airline-network scheduling.
The objective is to examine an applicability and an efficiency of GA by comparison with
the enumeration method through a case study. The results suggest that GA has an

applicability tbr the large calculation inherent in airline network optimization problems and

is more eftbctive method for large size networks.
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2. FORMI.]LATION OFAIRLINE NETWORK OPTIMIZATION PROBLEMS BY GA

2.1 Characteristic of GA

GA unlike many conventional search algorithms, can be viewed in the two points:

(1) In conventional optimization methods, for example, the step-wise method, a single
point is considered based on some decision rules. Even GA is a step-wise method, in that
it considers many points in the searched space simultaneously, and in that evolution of
nature is applied to the optimum design[Sugai, Y. and Hirata, H..(1990)].
(2) The main problem in combinatorial optimization is the convergence of a local

optimum solution. GA intends to avoid this problem by using the probability rules to
guide its search, i.e. the individuals with low fitness are also allowed to survive the next
generation in it probability. This is somewhat similar to the simulated annealing

method[Kobayashi, S. (1993,{)]. Although there have been some studies in which the

optimum search can be cloned efficiently by GA there has been less progress on research

concerning the theory in the behavior of GA[Kobayashi, S.(1993B)].

2.2 Genetic Process of GA

There are three essential genetic processes in GA: namely, reproduction (selection),
crossover and mutation. The basic principle and procedure are explained briefly as

tbllowings:

At the outset, there must be a code or scheme that allows for a bit string representation of
possible solutions to the problem. This coding of the string is the equivalent or a

'chromosome' in nature, i.e. the string that has the intbrmation of optimization just as the

chromosome or a living being carried by genetic intbrmation.

The optimization process starts by random selection of an initial population of strings,
where a string means an individual, or a possible solution.

The next process is reproduction (selection). First, the fitness ofeach string in the initial
population is calculated. In GA the value of fitness is used to decide which strings will
survive (reproduction) in the tbllowing generation, and which strings will die (selection).
High fitness value means that the string is litter to the environment, and thus produces

more children in the tbllowing generation. Here, the evaluation of fitness tbr each string
is accomplished by the value of fitness function of that string. The fitness function of the
unconstrained problems can be obtained simply by transforming the objective function.
The transformation methods are concerned with how to prevent the solution liom being a

local optimum which has been a main problem in combinatorial optimization. The
transtbrmation in this paper will be explained later. The point here is that the strings with
the higher fitness have greater probability of leaving more children in the tbllowing
generation, and at the same time, the strings with less fitness die away in il at high
probability, because normally the population is kept unchanged. The crossover process

allows the characteristics between two strings to be exchanged to create two new strings.
It starts from selecting two parent strings at random from the mating pool, which is made
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by the reproduction process, and then a random location along the string is chosen. The

strings are then separated at this point, and recombined by exchanging the parts behind this

point to tbrm two new strings.

Mutation is the third step in these genetic processes, and is one that safeguard the process

hom a complete premature loss of valuable genetic materials during the reproduction and

crossover. Mutation is applied with a low probability to the strings, determined by a

random location on the strings, and the switching of the 0 or 1 at that location.

The processes described above are repeated until a convergent condition is satislied.

There are normally tluee conditions to satisff convergence. One is that the value of
fitness function has not been updated after some generations. The second is that the

percentage of the strings with the highest fitness in the population is getting large. Finally,

the maximum iterative generation.

2.3 Optimization of airline network

The optimum is calculated by giving the simple aiiline network schedule optimization

problem to the test data. The result by GA is compared with the result by enumeration.

Next, the optimum is calculated tbr more complicated network.

A hub-and-spoke type of airline network (Figure 1) is considered as a subject. The

design function for optimization is basically the maximization of the tare income of the

airline. Here, the tare tbr each air route is assumed to be unitbrm and the maximization

of the number of passengers per day as the design function is estimated.

The details of each condition is determined as follows:

1. For the number of aircraft, the calculation tbr two, three, and tbur aircraft is done.

2. The number of seats is assumed to be nineteen (19).

3. The time which the aircraft is operable is assumed to be nine hours between 8:00 a.m.

and 5:00 p.m.. L-anding after 5:00 p.m. is allowed but departing after that time is not.

4. The travel time between airports shown in the figure includes the time fbr maintenance.

5. The airport No.l in Figure 1 is the airport trom which all the aircraft depart at the

beginning ofthe day and return to the end ofthe day.

6. It is assumed that an aircraft is in service with passengers on board.

In designing a t)ight schedule, the differences in departure times poise a large problem.

Specifically, the problem is to find the aircraft departure times closest to the times when

passengers wish to depart. In this study, data from a 1986 survey of passengers at

Okadama airport was used to construct a graph showing the relation between time of
departure and demand. The number of passengers wils based on the tbllowing two

assumptions:

1. Each unit of time equals 30 minutes and if departure approximates to the time which

the passengers wish to leave, all passengers take the flight.

2. Otherwise, each unit of time tarther fiom the desired flight produces a corresponding

decrease in passenger number.
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This concept is expressed in Figure 2. The block area shows the demands of departure
time t More detail explanations on the equation of time and demand, can be seen in the
paper by Tamura and Inano (1987).

Demand(s)

k Peparture time(s)

ligure 2. Departurr time(s) and demand(s)

2.4 Formulation of GA

For the tbrmulation of GA the following criteria would be discussed here:
a) coding of design variables
b) litness function and reproduction(selection)
c) crossover

d) mutation
e) convergence

a) Coding of design variables

Figure 1. Airline Network

Demands of departure time
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The route of aircraft can be represented by design variables. One design variable has 16

sub-variables trom 0 to L5, because it can express the 4 bits length of the binary scale.

Then, those 16 variables are applied to the 4 routes (Fig. 1) as follows:

route

1,-2-|
1-3-L
1-4-l
1-5-1

design variables

; 0,4,8,12
; 1, 5,9,13

; 2,6,10,74

; 3,7,1.1.,L5

For example, it string with the arrangement of numbers as { 2 8 5 41,6 3 7 } means that

theaircraftfliestheroute1-4-1(designvariableis2)first,andthenittliestherouteL-2
- 1 (designvariableis8), 1 -3 - 1,..., 1 -4- 1 and 1 - 5 - 1.

In this study, the use of 4 length variables was applied tbr binary scale, because it is

appropriate tbr efficient calculation. Furthermore, utilizing two lengths in the algorithm
will be limited in the cross-over stage. As such, the 4 length variables were employed

instead. This will provide more allowances in the iteration process. This, theretbre, will

leld ethcient computations of larger lengths (5, 6, etc.) that require much calculation.

The maximum length of the string is 160 figures in the binary scale (40 design variables) in
this study. More than 28 variables are enough, because a total of 4 aircrali with the limit
of 1 tlight route per day is being analyzed.

In this study, the design variable and.strings have to be arranged, because the calculations

include several aircratl and each aircraft has a dift'erent acquired actual time. Theretbre,
the string according to night time, route, number of aircraft, and acquired actual time are

also arranged. In addition, the maximum tlight, which is estimated tiom the flight time
zone, is given as a condition. The strings equivalent to conditions in the GA process can

be ananged. As this is a characteristic point of GA the tbrmulation of GA is considered
to be very important.

GA considers many strings simultaneously (the number of strings being called population
size), and in the beginning of optimization these strings are created by complete random
choices using a random generator.

b) Fitness function and reproduction (selection)

Since the objective is the maximization of passengers per day in this study, the objective

function can be used directly as a fitness function. However, in the early stage of
optimization, the titness values will present generally a larger dispersion, and on the

contrary, in the later stage of optimization the litness values of strings in a population may

be very close to each other. A large dispersion of fitness values may cause some strings
with low fitness to die easily, and this is undesirable at the start of GA runs. On the other
hand, the evolution may become more diflicult during the end of GA runs without the
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dispersion in fitness of strings. Therefore, it is necessary to transform the number
passengers into a fitness function by using the following equation (1).

4 (r) = max(a .O, (r) - b,0) (, = 1,N)

where / is the number ofgeneration, and coeflicient a, b are defined as Equation (2).

o,,, (c - 1)
a: -

@.", - o o,"

. Oo,r(c'Q*r-@.",)
o."r - oor"

where $",r, S^oate the average and maximum number of passengers in a given

generation, respectively.

Equation (1) is shown in Figure 3. The number of passengers (objective function) ranged

C.," to /.- will be transformed into the value of fitness function ranged 0 for the lowest

lo c' Q.o tbr the highest.

Fitness function

c.O rin

@,,in

@.in @oq Oro

Objective function

Figure 3. The objective function transformed into the fitness function

In the process of reproduction, the selection of strings for the next generation is

accomplished by their fitness values calculated by Equation (1). At first, the average F_,

of /,(i:1,N) iscalculatedandthestringswithahigherfitnessthan F.,, willproduce

their children first. Equation (3) gives this number of children of i-th string left
preferentially in the following generation:

of

(1)

(2)

Joumal of the Eastem Asia Society for Transportation Studies, Vol. 2, No. 1., Autumn, 1997

225



226

f,i- (3)rNrlFt /F",,1

Koji URArA Keiiti SASAKI, trfiJ#gHJftil,iArro, Akira KAWAMURA

(, = 1,N)

where INT[. ] means to take the integer from the bracket [ ]. Fitness value { varies with

the value of c. As explained below, if c is assigned it large value, the string with the

highest litness will produce the most copies to the next generation.

Based on Equation (3), the number of each string left preferentially in the following
generation is decided, and generally the sum of these numbers is less than N (population

size). Therefore, the rest of the copies will be selected from the population in their own

probability. This probability is defined in the following equation:

4 - F, - il,.F",, (r: lil) (4)

C-orresponding to the value of 41; = f,  f l , the remaining strings are determined. In this

stage, the value of { ofthe string selected once is set to zero here.

New strings for the next generation are selected by the two steps explained above, and

then the procedure moves to the crossover.

c) Crossover

Once parents (paired strings) have been selected, the crossover operator is applied to all
parental pairs, which create the filial strings. Two crossover operators are considered in

this study.

A crossover site is selected at random, then the parental pairs are separated into two part

tiom this point. The longer parts are then received by the children pairs. The digits in
the shorter portion of the strings are taken by another parent. Then these digits become

the last digits ofthe succeeding children pairs.

The tbllowing example illustrates the procedure. In this particular case, the digits of the

ParenrA:2854ti.ioll
ParentB:74635ii.725

right (shorter) part of Parent A are taken by Parent B where the last digit of the tbrmer

became the first digit of the latter and the remaining digits (6 3) placed in the middle.

Similarly, if Parent B's string is considered, its right (shorter) part becomes the left portion

of Parent A's string. However, the order may not necessarily be the same. Finally, as

mentioned earlier, the parent's strings are received by the children pairs as shown in the

tbllowing example. The above sequential iteration is repeated tbr the whole crossover
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process.

ChildA 28541125
ChildB:7 4638637

In the crossover methods explained above, crossover is carried out with the same

probabilitypc(<l). When crossover is not carried out, two parental strings remained in the

following generation without any change.

d) Mutation operator

Mutation is performed in two ways in this paper. One way is to select two locations along

a string, and the bits between the two locations are reversed. The other way is by

selecting two bits along a string at random and exchange them.

Furthermore, if the objective function (number of passengers) is no longer improved after a

number of generations, the optimization may be convergent, or premature convergent may

occur. In this study, the probability of mutation is set as 0.001.

e) Convergence criterion

There must be some convergence criteria to stop GA runs before all strings become the

same, since it is not necessary to run GA until all strings become equal. Finally the best

result through the whole optimization history is used as the optimum. In the present

paper, the optimization procedure is stopped when one of the conditions shown below is

satisfied:

a) Maximum generation (l00th generation in this paper).

b) The number ofpassengers has not been updated through 20 consecutive generations.

3. CASESTUDY

3. I Comparison of GA and the enumeration method

Using the data from Figure l, GA and the enumeration method can be compared. The

program for the application of GA in this study was developed by the authors using

FORTRAN language. The results, shown in Table l, give the same optimum routes for 2

planes as for 3 planes. Table 2 shows the calculation time needed for 2,3, and 4 planes

using Fujitsu M-380 computers. It is clear that the calculations using GA take a short

time as compared with that using the enumeration method. The reason for the time lapse

in the enumeration method in each additional route is considered only after the preceding

route has been decided. In case of GA all data is considered simultaneously.

Likewise, when considering 4 planes and the 162 routes generated, the enumeration

method creates an overflow making calculation no longer possible. Gd however,

manages to complete the calculation in only 3 seconds.
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Table 1. The optimal solution (enumeration method and GA)

Routes Number of passengers

2aircrall
121215121

L51.3L4t41
295

3aircratl

t5t474L3L
L314L2121

t2t515t4l
381

Table 2. Comparison of calculation time (enumeration method and GA)

enumeration method
(second)

GA (second)

2airqatl 4 J

3aircraft 113 1

4aircraft 240 3

(2) Application

Using the network in Figure 4, the optimum routes, with the longer time frame of 5 a.m. -
11 p.m. can be calculated. The more complicated two-stop route tbr the application
example is employed. The increase in complexity of this route precludes the use of the
enumeration method. Therefore, GA is used.

Figure 4. Airline Network (2)

In the previous network, tbur sub-routes were possible, while in this network the sub-
routes increase to six. Although only two sub-routes have been added, the calculation
has increased significantly by the squaring of the sub-routes. Table 3 shows the network
data tbr OD, demand, and actual time. Actual time includes maintenance time and
transt'er time. The aircrall used can accommodate 100 passengers. The distribution of
demand data has been extrapolated trom the data of the previous network. The origin of
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the aircraft each day is indicated by 1. GA's probability is again set at 0.001.

Table 3. OD-Demands and Flight time

OD
Demand

(person)
Flight times

(minutes)

l-2, 2-l
1.-3, 3-1
"1.-4, 4-L
4-s, 5-4

880

820
370
200

90

90
40
60

Because the aircrafl must always end at 1, the 16 variables have been applied to the 6
routes as follows:

route design variables
l-2-l ; 5,11
1-3-1 ; 0,6,72
7-4-7 ; 7,7,13
4-5-4 i 2,8,'14
7-4-5-4 ; 3,9,75
l-4 ; 4,70

The enumeration method deals will with continuous routes only but has difliculty with
non-continuous routes and with directing all aircraft back to 1 as the final destination. On
the other han4 GA has no such problems. The calculations of airplane 2, 3, and 4 are
presented in Table 4. Because of the size of the calculations, no results can be given in
this table tbr the enumeration method. Several points concerning GA are evident.

1. GA makes calculations of the new routes within 10 seconds.
2. The longer calculation time of GA reflects the increase in the length of the strings.

In addition the rate of meeting all the demands of the passengers increases with the
addition of aircraft number as follows:

aircraft number demand increased

two planes 56Vo

tluee planes 78%
four planes 967o

Finally, although the complexity of the calculations was increased though the use of a
ditrbrent network, GA was tbund to have no problem making the calculations elliciently.
Future studies should be made using even more complex networks and calculations to
ensure the tbasibility of GA in scheduling.

229
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Tabte 4. Routes and calculation time

Number of
aircraft

Roules
Number of passengers

(Person)

Calculation time
(seconds)

2
t4l4l3l2l312l2l
12t21454131314141,

2520 2.9

3

14737413121414131,

t2l4l4l454L272L3r
t2145412137454741

3877 4.3

4

12t2t2t2l2l3l4t
t454121312L414541

t4t3l473t45413l2r
t454t3t454l4l2L3l

4331 9.0

4. CONCLUSION

In this paper, the GA was applied to problems of airline-network scheduling and the

findings indicated that its elliciency was proven. The comparison of the GA method to

enumeration method showed that the tbrmer is more eflicient than the latter in airline

network scheduling.

The tbrmulation of GA was tried tbr airline-network problem and the computer program

was developed by using FORTRAN language. Although the results in the case study

showed the same optimum routes for 2 planes as tbr 3 planes, the calculations using GA

took very short time as compared with that using the enumeration method. It is the reason

that in case of GA all data can be treated simultaneously.

As a result, it was shown in this paper that the specific features of GA were put into

practical application, such as a) application of data of aircraft to a string; and b) use of

aircraft's routes as design variables.

It is shown that GA will provide a signiticant capability tbr complex combination

optimization problems. However, the paper does not show the complexity of GA

adequately. Further research is needed to give the full range of possible applications of

GA io optimization problems on the complete airline network, and other networks such as

express railroads combined with airlines.

Further research should also design GA's environment to include more specitic

characteristics, such as demand structure prediction, aircraft consolidation and crew

placement. However, it was shown by this paper that GA is suitable tbr problems with

iough conditions rather than clear and analytic problems, hom the viewpoint of this

process.
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