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Abstract: We consider a city with several facilities that compete with each other for
customers of different classes. The transportation system of the city is a highly dense road
network. The customers are distributed continuously in the city, and each chooses a facility
based on his or her transportation cost to the facility and the in-situ cost at the facility. We
assume that different classes of users perceive costs differently, and hence are subject to
different transportation cost functions and market externalities. An equivalent mathematical
model is formulated and proved to satisfy the user equilibrium conditions. The resultant
problem is solved by the finite element method. Numerical examples for both cases of fixed
and elastic demand are given to illustrate the effectiveness of the proposed methodology.
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1. INTRODUCTION

For the equilibrium prediction and solution algorithm of the flow in a transportation system,
there are, in general, two approaches in the literature: discrete modeling and continuous
modeling. In the discrete approach, different zones are treated as centroids, and roads are
considered as nodes and links that join these centroids to form a discrete network. In the
continuous approach, the major assumption is that the variation in the nearby areas is
relatively small when compared to the entire system. Thus, the characteristics of the
transportation system, such as flow and cost, can be represented by smooth mathematical
functions (Vaughan, 1987).

Traditionally, traffic equilibrium problems are studied with the discrete modeling approach.
However, much attention has recently been paid to the continuous modeling approach to cope
with the deficiencies of the discrete approach. First, for the strategic planning of a very dense
transportation system, the discrete approach involves a large number of unknowns that are
generally difficult to solve in an efficient manner. Second, it has to assume that the demand is
concentrated at a centroid, which is unrealistic because the demand is distributed over the
region. Thus, the continuous approach can model these aspects in a more effective manner.
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A sizeable literature focuses on the continuous modeling approach. In some of the early
studies, such as those of Buckley (1979), Dafermos (1980), D’Este (1987), and Wong (1994),
the continuous models for cities were formulated with specific shapes (such as circular or
rectangular), which was not adequate to model real life situations. Some other studies
considered an arbitrary shape for the city configuration (Beckmann, 1952; Zitron, 1974;
Williams and Ortuzar, 1976). Sasaki et al. (1990) further extended the idea of continuous
modeling for a city with arbitrary shape and used the finite element method to solve the
resultant problems. Wong et al. (1998) developed a more robust finite element procedure to
solve the problem. Based on this framework, a number of extensions were made to apply the
continuous modeling approach to traffic equilibrium problems, which include the estimation
of market areas (Wong and Yang, 1999; Yang and Wong, 2000), and simultaneous discrete
and continuous modeling (Yang et al., 1994; Wong et al., 2002a). For practical applications,
Ho et al. (2002) has successfully applied the continuum model for the airport coordination
problem in the Pearl River Delta region in China.

All of the above continuum models for arbitrary city shapes were for single user classes,
which is unrealistic because, in practical terms, networks are shared by different types of
users whose perceived travel cost and congestion externality can be very different. A single
user class cannot closely model the real situation. Hence, it is necessary to consider multiple
user classes in the continuous modeling method (Wong, 1998; Wong and Sun, 2001; Wong et
al., 2002b). The present research is inspired by that of Vliet et al. (1986), which was
developed for the discrete network that models how different classes of users interact with
each other.

We develop a continuous equilibrium model with multiple user classes, in which each class
of users has a distinct cost function. The cases of elastic demand and market externality are
also considered. In Section 2, the modeled city with competitive facilities, together with the
customer’s behavioral assumptions, are introduced. The formulation of a multi-class user
equilibrium problem as an equivalent mathematical program is given in Section 3. Section 4
derives a finite element solution algorithm to solve the resultant problem. Section 5 presents
two numerical examples to illustrate the effectiveness of the proposed methodology.

2. THE MODELLED CITY

Consider a city in a two-dimensional plane as illustrated in Figure 1, in which the road
network is approximated as a continuum. In this city, there are N facilities (such as shopping
centers, industrial centers, or public transportation terminals) competing with each other to
attract customers of M different classes whose home locations are spread over the whole city.
The dense transportation network is approximated as a continuum. The detailed treatment of
the relationship and conversion between the dense discrete network and the approximated
continuum can be found in Sasaki et al. (1990). The customers travel from their home
locations through the continuum to patronise any one of the facilities. Denote the city as �,
the boundary of the study region as �, and the location of the nth facility as nO .

The distribution of demand for class m customers over the city, �, is assumed to be
continuous and represented by a non-negative, heterogeneous density function qm(x,y), where
qm(x,y) is the total demand per unit area, from location (x,y)��, to patronize any one of the
facilities. For the case of elastic demand, the traffic demand of a particular class of customers
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at any point within the city is directly related to their total transportation cost from that point
to their chosen facility plus the in-situ cost at the facility. The demand function can be
specified as

� � � �� �yxuyxDyxq mmm ,,,, � (1)

where um(x,y) is the total transportation and in-situ cost for class m customers from the point
(x,y)�� to the chosen facility, and the demand function Dm(.) is assumed to be a monotonic
decreasing function with respect to the total cost at that point. Denote

� �� �Mmyxqm ,,2,1,, ���q . The transportation cost for each class of customers in the
region is assumed to be dependent on the total local flow intensity and road configuration, but
not upon direction of any class of users (an isotopic case),

� � � � � � � ��
�

��

M

l
lmlmm yxyxbyxayxc

1
,,,,, ff (2)

where � �� �Mmyxm ,,2,1,, ��� ff , cm(x,y,f) is the transportation cost of class m customers
to travel a unit distance at co-ordinate (x,y)��, am(x,y) and bml(x,y) are strictly positive scalar
functions, )),(),,((),( yxfyxfyx mymxm �f  is a vector that represents the flow state of
customer class m in the city, ),( yxfmx  and ),( yxfmy  are respectively the flow flux in the x
and y directions, and

22 ),(),(),( yxfyxfyx mymxm ��f (3)

is the norm of the flow vector for class m customers at (x,y). For the cost function, the first
term represents the free flow (zero-flow) transportation cost per unit distance, and the second
term reflects the effects of congestion. The explicit dependence of the cost function cm(x,y,f)
on location (x,y) reflects the possibility that the density and capacity of the transportation
system may vary from point to point. Here, we consider a symmetric case where lmml bb � ,

lm,� .

Inside the domain of the city �, the flow vector and customers’ demand must satisfy the flow
conservation condition, and this can be specified by

Mmyxqmm ,,1,),(,0 ���������f  (4)

Assuming that no flow crosses the boundary of the city, we have

Mmyxm ,,1,),(,0 �������f (5)

Note that it is straightforward to extend the model to deal with the case of � �yxgmm ,��nf
on the boundary �, where n is the normal vector on the boundary and gm is a function that
represents the given demand distribution of class m customers entering or leaving the city
through the boundary. To avoid singularity at the facilities, we assume that each of the
facilities are of a finite size enclosed by a clockwise boundary segment �cn, n = 1, 2,…,N.
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Denote �mn as the market area of facility n for class m customers, and the number of class m
customers that will be attracted to facility n becomes

� � NnMmyxqQ
mn

mmn ,,2,1,,,2,1,d, �� ���� ���  (6)

From the flow conservation principle at the peripheral of facility n we have

NnMmQmnm
cn

,,2,1,,,2,1,0d �� �������� nf (7)

Within the city with more than one facility, customers’ choice of facility is not only based on
their transportation cost to each of the facility, but also on the in-situ costs at the facilities.
The definition of in-situ cost varies for different types of facilities, such as the average prices
of consumers’ products in shopping centers, parking costs at airports, etc. Customers make
their choices of facility as well as the routes taken to maximize their utilities. Therefore, we
define a generalized cost function to represent the total cost perceived by a customer of class
m to patronize a facility as a function of the relevant attributes of the in-situ costs at the
facility and transportation cost to that facility,

� �� � � �� � � �� �nmmnnm

K

k
mnkmknm OyxHCuOyxHCpwOyxHG ,,,,,,

1
�����

�

(8)

where � �� �nm OyxHG ,,  is the generalized cost for class m customers from their home location

H(x,y) to patronize facility n (n = 1, 2, …, N). �
�

�

K
k mnkmkmn pwu 1  represents the total in-

situ cost at the facility n, where K attribute measures mnkp  for k =1,...,K are considered for
the facility n, each with an associated weight mkw  perceived by class m customers.

� �� �nm OyxHC ,,  is the minimum transportation cost for class m customers to travel from
home location H(x,y) to their chosen facility n. In our model, the weights and the attribute
measures are exogenous inputs and their values are given, whereas the equilibrium
transportation cost are determined from user-equilibrium conditions.

As discussed previously, the customers patronize the facility with the lowest generalized cost
in a deterministic manner. The individual class m customer from home location H(x,y) will
choose to patronize facility n, so that the following equation is satisfied:

� �� � � �� � NlOyxHGOyxHG lmnm ,,2,1,,,, ���� (9)

Furthermore, with the chosen facility, customers will make their routing decision over the
continuum city space in a user-optimal manner, so that the total path cost is minimized:

 � �� � � �� � pOyxHCOyxHC nmp
p

nm �� ,,min,, (10)

where � �� � � ���

p mnmp yxcOyxHC ds,,,, F  is the transportation cost from H(x,y) to On, via

path p in the continuum space.
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3. PROBLEM FORMULATION

The problem of a multi-class customer spatial choice equilibrium with elastic demand can be
formulated as the following minimization problem.

� ��� �������
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�

� ��� �
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�
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aQuz fff
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(11a)
subject to

0��� mm qf , Mmyx ,,1,),( ������ (11b)
0�mf , ��� ),( yx , Mm ,,1 ��� (11c)

0d ���� ��cn
mmnQ nf , cnyx ��� ),( , MmNn ,,1,,,1 �� ���� (11d)

Consider the following Lagrangian function:
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where mu , � �mymxm ww ,�w , and mn�  are the Lagrangian multipliers associated with
equations (11b), (11c), and (11d), respectively. Applying variational principle to the
Lagrangian function, we can show that
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As � � Mmuuu mmmmmm ,,1,δδδ �������� fff , and by the divergence theorem, we have

� � ��������
� �

�
�

�
�

�
��������

M

m
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m
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1 111
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Substituting equation (14) into equation (13), we can show that
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Because mfδ  vanishes on �  and mnuδ  vanishes on cn� , mfδ , mqδ , and muδ  are arbitrary
functions in � , mwδ  is an arbitrary function on � , and mfδ , mnQδ , and mn�δ  are arbitrary
functions on cn� , we can easily show that for the stationary point of the Lagrangian 0δ �� ,

0����
�
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�
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� m

m

m
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nmnm uba

f
f

f , Mmyx ,,1,),( ����� (16)

� � 01
��

�

mmm qDu , Mmyx ,,1,),( ����� (17)
0��� mm qf , Mmyx ,,1,),( ����� (18)

0�mf , Mmyx ,,1,),( ����� (19)

0d ���� ��cn
mmnQ nf , MmNnyx cn ,,1,,,1,),( �� ����� (20)

0��� mnmnu , MmNnyx ,,1,,,1,),( �� ����� (21)
0��� mnmu , MmNnyx cn ,,1,,,1,),( �� ����� (22)

From (16), we have mm u�//f , where “//” means that the vectors are parallel, and

m

M

l
lmlmm cbau ���� �

�1
f (23)

Therefore, mu�  can be interpreted as the transportation cost per unit distance for class m
customers. From (21) and (22), we have

mnm uu � , MmNnyx cn ,,1,,,1,),( �� �����  (24)

This implies that the cost potential mu  at the periphery of facility n has the same value as the
in-situ cost as perceived by class m customers at that facility. For any used path p of class m
customers from home location (H) to facility n, the generalized cost is

� �HuuuuucuG mp mmnp mmcp mmnp ���������� ��� dsdsds (25)

For any unused path p~ of class m customers from H to facility n, the generalized cost is

� �HuuuuucuG mp mmnp mmnp mmnp ���������� ��� ~~~~ dsds ds (26)
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From the above two equations, the generalized costs of all the used paths for class m
customers are equal, and are less than or equal to those of the unused paths. In the city with
more than one facility, we can interpret this as customers choosing the facility for which the
total cost for them to travel and use is the minimum. Moreover, for the same chosen facility,
customers will choose the path of least transportation cost. Thus, this model ensures that the
customers of any class, who have perfect information about the transportation system, make
rational decisions in a user-optimal manner (Wardrop, 1952).

4. SOLUTION ALGORITHM

We use the finite element method (Zienkiewicz and Taylor, 1989) to solve the minimization
problem (11). The whole city is first discretized into a set of triangular finite elements
(Cheung et al., 1996), as shown in Figure 2. Although the continuum city region is divided
into smaller sub-regions via the discretization process during the solution stage, the
continuum method is still superior than the discrete network approach at least at a global
level of modeling, as the size of each element is flexible and each element may already
represent thousands of street sections. Moreover, as the traffic demand generated from the
housing or other developments is largely continuously distributed within the city, the local
variation of demand on a two-dimensional space can be more realistically modeled by piece-
wise continuous functions within each element, and the global variation of demand can then
be represented by a number of individual elements joining up to form the city region. This
contrasts with the discrete modeling approach where the continuous traffic demand has to be
modeled by assuming that the demand in a zone is concentrated at a point called centroid and
they are assigned to the network through some pre-specified centroid connectors.

The Lagrangian of the minimization problem is now modified as follows:
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d (27)

where �e is the sub-domain of an element e, am and bml, l = 1, …, M, are the coefficients of
the cost-flow relationship for class m customers that are assumed to be constant within the
element. mf  and um are respectively the flow vector and cost potential for the class m
customers. ����cn and ���� indicate the elements that contain, respectively, the boundary
of the facilities and the outer bound of the modeled city. w and � are, respectively, the
Lagrange multipliers along � and �cn. The solution of the minimization problem in equation
(11) can be found by locating the stationary point of the Lagrangian in equation (27). For the
second term of equation (27), because there is no traffic flow along the boundary � it can be
replaced by a much stronger and convenient expression,
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where NO is the number of nodes along �, fmxi and fmyi are, respectively, the flow flux in the x
and y directions at node i for class m, and wmxi and wmyi are the corresponding Lagrange
multipliers. The zero boundary flow condition can be guaranteed by forcing fmxi = fmyi = 0 for
all nodes along �. As the third term of that equation (27) represents the sum of the total
customer costs of using each of the facilities, it can be replaced by a much more convenient
expression,
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where Sn is the number of line segments on the boundary of facility n, Li , and in  are,
respectively, the length and the unit normal vector of the line segment i around the boundary
of the facility n, and mjf , and mkf  are, respectively, the flow vector of the initial and end
nodes of the line segment i. Similarly, as it is proved that the cost potential at the boundary of
the facility is equal to the total attribute measure of that facility, the last term of equation (27)
can be replaced by the following expression,
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where Nn is the number of nodes on the boundary of facility n, umi is the cost potential of
class m at node i, and �i is its Lagrange multiplier at node i. The conditions of equation (30)
can be ensured by forcing 0�� mcmi uu  for all nodes along the boundaries of facilities. With
all of the above modifications, equation (27) can be modified as follows,
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The three-node linear triangular element is used to approximate the functions of the variables
over the solution space. The value of the flow vectors and the cost potential within the
element are expressed as follows,

fmx(x,y) = Ni(x,y)fmxi + Nj(x,y)fmxj + Nk(x,y)fmxk (32)
fmy(x,y) = Ni(x,y)fmyi + Nj(x,y)fmyj + Nk(x,y)fmyk (33)
um(x,y) = Ni(x,y)umi + Nj(x,y)umj + Nk(x,y)umk (34)
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where the subscripts i, j, and k represent the three nodes of the triangular element, and the
variables with such subscripts are their values at the nodal point. Ni, Nj, and Nk are the linear
interpolation functions of the element, and are expressed as follows,

Ni(x,y) 
�

�
2
1 (�i � �ix � 	iy ) (35)

Nj(x,y) 
�

�
2
1 (�j � �jx � 	jy ) (36)

Nk(x,y) 
�

�
2
1 (�k � �kx � 	ky ) (37)

The values of �, �, 	, and 
 are explicitly related to the nodal co-ordinates (xi , yi), (xj , yj),
and (xk , yk) at nodes i, j, and k, respectively, of the triangular element. The explicit forms of
�, �, 	, and 
 are �i = xjyk � xkyj, �i = yj � yk, 	i = xk � xj, and 
 = (�i	j � �j	i)/2. The
variations of the flow vector and cost potential over the problem domain are expressed as
nodal values of the generated triangular elements and the interpolation functions.
Substituting Equations (32) to (37) into equation (31) and taking integration, the Lagrangian
can now be expressed as a function of all nodal variables, that is � �Ψ� , where

� �σwufΨ ,,,Col�  and

� �Nmyimxi MiMmff ,,2,1,,,2,1,,Col �� ���f (38)
� �Nmi MiMmw ,,2,1,,,2,1,Col �� ���u (39)
� �Omi NiMmw ,,2,1,,,2,1,Col �� ���w (40)
� �Cmi MiMm ,,2,1,,,2,1,Col �� ����σ (41)

where MN, NO, and MC are, respectively, the total number of node, number of node on the city
boundary and the number of nodes on the facilities’ boundary. “Col” represents a column
vector. To solve the problem, the stationary point of the Lagrangian should be considered,
and is found by the Newtonian algorithm as follows. Let 0Ψ be an approximate solution to
the problem and by means of Taylor’s expansion around the point 0Ψ , and we have

� � � � � � � � � �0000
2
1 ΨΨJΨΨΨΨRΨΨ ��������

TT (42)

where � �0ΨR ���  is the residual vector of the first derivatives evaluate at 0Ψ , and

� �02 ΨJ ���  is the Jacobian matrix evaluate at 0Ψ . For the stationary point the derivatives
of �with respect to all variables vanish. Therefore,

� � 00
������ ΨΨJR (43)

After rearranging, a better solution can be obtained by

RJΨΨ 10 �

�� (44)

Therefore, an iterative procedure can be derived as follows.
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Solution Procedure:
Step 1: Find an initial solution � �0Ψ . Set k = 0.
Step 2: Evaluate � �� �kΨR  and � �� �kΨJ .

Step 3: If � �� � ��
kΨR , and an acceptable error, then stop and � �kΨ is the solution

Step 4: Otherwise, find � � � � � �� � � �� �kkkk ΨRΨJΨΨ
11 �

�
�� .

Step 5: Replace � �kΨ  by � �1�kΨ . Set k = k + 1 and go to Step 2.

The total cost consumed by each class of customers in the city, which is a useful performance
measures of the system, can be determined by

� ��
��

�
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e
mmmm

e
uDuT d)( , m = 1, …, M (45)

For the case of elastic demand, another performance measure known as the social welfare (or
net economic benefit) can also be evaluated by
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DS (46)

5. NUMERICAL EXAMPLES

5.1 Example 1: Fixed Demand

In this paper, we present two hypothetical examples to demonstrate the methodology. In
Example 1, we consider a modeled city with two facilities as shown in Figure 1. The finite
element mesh that is used for analysis is shown in Figure 2. There are two classes of
customers, each of which has distinct demand and cost functions. Different classes can be
used to represent the heterogeneous characteristics of customers, such as the different values
of times for low and high income groups or the different mobility of light and heavy vehicles.
The travel demands are fixed at 150 and 100 veh/h/km2 for class 1 and 2, respectively. The
total demand (classes 1 and 2 combined) in the system is 147,779 veh/h. The cost-flow
functions are given as

2
4

1
4

1 104.0105.001.0 ff ��

�����c (47)

2
4

1
4

2 106.0104.005.0 ff ��

�����c (48)
throughout the city, where c1 and c2 are expressed in terms of h/km. The in-situ costs for class
1 customers are 2.0 and 4.0 hours for facilities 1 and 2, respectively, and those for class 2
customers are 2.5 and 3.5 hours. The model can be solved by the Newtonian algorithm with
an acceptable error � of 10-3. The results of flow vectors for class 1 and class 2 customers are
shown in Figures 3 and 4, respectively. These figures show the paths that are chosen by the
customers from their home locations to their chosen facilities. The catchment areas of the two
facilities can also be visualized from the figures. The flow intensities and generalized costs of
the two customers classes are shown in Figures 5 to 8. Note that the unit for flow intensity is
veh/h/km, and that for the generalized cost is hours. The total generalized cost incurred by all
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customers is 672,679 veh-h, with 390,111 and 282,568 veh-h for class 1 and class 2
customers, respectively.

The market shares of facility 1 for class 1 and class 2 customers are 70.8% and 47.9%,
respectively, whereas those of facility 2 are 29.2% and 52.1%. For class 1 customers, facility
1 takes up a larger proportion of demand as its facility in-situ cost for class 1 customers is
much less than that of facility 2, which can compensate for the extra congestion that is
incurred by the customers around that facility. However, for class 2 customers, the situation
is the reverse. Although the in-situ cost of facility 1 for class 2 customers is less than that of
facility 2, more customers choose to use facility 2 because the congestion cost that is incurred
by class 1 customers around facility 1 is relatively large, and cannot be compensated for by
the lower in-situ cost at facility 1. Consequently, class 2 customers choose to use a more
expensive but less congested facility. This result demonstrates how customers of different
classes affect each other in their choices of route in the road network and facility.

5.2 Example 2: Elastic Demand

The elastic demand for the two customer classes is also considered. The demand functions for
customer classes 1 and 2 are taken as follows:

13.0
11 400)( ueuD �

� (49)
22.0

22 350)( ueuD �

� (50)
where u1 and u2 are, respectively, the generalized cost potentials for class 1 and class 2
customers at their home locations. The model can also be solved by the Newtonian algorithm,
which gives similar patterns of flow vectors, flow intensities, and generalized costs as for the
case of fixed demand. The distribution patterns of demand for class 1 and class 2 customers
are shown in Figures 9 and 10, respectively. Generally, the demand intensity decreases with
the distance away from the facilities due to increasing generalized cost. The total demand
(classes 1 and 2 combined) is 146,783 veh/h for this elastic demand case. The total
generalized cost incurred by all customers is 659,986 veh-h, with 279,544 and 380,442 veh-h
for class 1 and class 2 customers, respectively. The social welfare for the transportation
system is 626,919 veh-h.

6. CONCLUSIONS

The continuum approximation of network flow by Wong and Yang (1999) and Yang and
Wong (2000) for a city with a very dense transportation network and multi-competing
facilities has been extended to deal with the interactions of multi-class users. In this study,
each class of users is assumed to have its own transportation cost function, demand function,
and facility in-situ costs. Each user class affects the others through congestion externality in
the transportation system. A mathematical program for this multi-class problem has been
formulated, and the user equilibrium conditions have been satisfied. The finite element
method has been used to discretize the problem, and a Newtonian algorithm has been
developed to determine the solution. Both cases of fixed and elastic demand have been used
as numerical examples to demonstrate the effectiveness of the proposed methodology. There
are two directions for further research. The first is to develop a multi-class model with
asymmetric cost functions. The second is to consider the elastic market externality function to
account for the congestion effect at the facilities.
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Figure 1: The Modeled City
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Figure 3: Flow Pattern of Class 1Customers
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Figure 5: Flow Intensity of Class 1 Customers
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Figure 2: The Finite Element Mesh
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Figure 4: Flow Pattern of Class 2Customers
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Figure 6: Flow Intensity of Class 2 Customers
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Figure 7: Total Cost for Class 1 Customers
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Figure 9: Demand of Class 1 Customers
(Elastic Demand Case)

0 5 10 15 20 25 30 35 40 45
Distance (km)

5.
7

5.5

5.35.1
4.9

4.74.5
4.3

3.9
3.7

3.5

5.5

5.3

5.1

4.9

4.7

4.5
4.3

Figure 8: Total Cost for Class 2 Customers
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Figure 10: Demand of Class 2 Customers
(Elastic Demand Case)
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